УДК 547.913:543.544.45

COCTAB ЭФИРНОГО МАСЛА СИБИРСКИХ ПОПУЛЯЦИЙ *ARTEMISIA* PONTICA L. – ПЕРСПЕКТИВНОГО ЛЕКАРСТВЕННОГО РАСТЕНИЯ

© М.А. Ханина,^а Е.А. Серых,^а А.Ю. Королюк,⁶ Л.А. Бельченко,^в Л.М. Покровский,^г А.В. Ткачев^{в,г,*}

Авторы благодарят Конкурсный центр фундаментального естествознания при Санкт-Петербургском университете (грант "Изучение летучих терпеноидов полезных растений Сибири и Дальнего Востока")

Исследовано эфирное масло надземной части Artemisia pontica L. сибирской флоры, содержание которого колеблется от 0.20 до 0.85% в расчете на воздушно-сухое сырье. По данным хромато-масс-спектрометрии основными компонентами масла являются п-цимол (до 3%), 1,8-цинеол (до 20%), γ -терпинен (до 2%), камфора (до 50%), пинокарвеол (до 2%), пинокарвон (до 3%), борнеол (до 25%), терпинеол-4 (до 4%), α -терпинеол (до 0.7%), миртеналь + миртенол (до 1.3%), борнилацетат (до 22%), кариофиллен (до 1.4%), спатчуленол (до 3%), окись кариофиллена (до 2.3%), хамазулен (до 13%). Эфирное масло локализуется в терпеноидсодержащих структкрах трех типов — неспециализированных паренхимных клетках, схизогенных вместилищах и эфирно-масличных железках. Синэкологическим оптимумом полыни можно считать остепненные солонцеватые луга.

Artemisia pontica L. – полынь понтийская. Евразийский вид, корневищный, травянистый многолетник, своим распространением связанный преимущественно с северной частью степной зоны. Растет среди кустарников, в лесах, на их полянах и опушках, сухих солонцеватых и солончаковатых лугах, в поймах рек [1–4]. На территории Западно-Сибирской равнины Artemisia pontica является постоянным компонентом солонцеватых остепненных лугов, широко распространенных в лесостепных ландшафтах.

В странах Западной Европы, на юге Канады и в США Artemisia pontica культивируется с XVII в. как пряно-ароматическое растение, используется как заменитель хмеля в пивоварении и в ликерном производстве [5]; применяется в официальной медицине: на ее основе в Болгарии выпускается оригинальный комплексный препарат мараславин [6] для лечения заболеваний десен (парадантоза); в народной медицине используется при широком спектре заболеваний. В экспериментальных исследованиях эфирное масло проявило противовоспалительное, ранозаживляющее и анальгезирующее действие [7–9]; в зависимости от концентрации оно проявляет противогрибковую и бактериостатическую активность [10]. Вместе с тем, несмотря на перспективность данного вида полыни для практического использования в медицине, сибирские популяции Artemisia pontica в химическом плане исследована весьма скромно [11–15]. В связи с этим нами проведен химический анализ эфирного масла из надземной части Artemisia

.

^а Сибирский медицинский университет, Московский тракт, 2, Томск, 634050 (Россия)

⁶ Центральный сибирский ботанический сад СО РАН, Новосибирск, 630090 (Россия)

⁶ Новосибирский государственный университет, кафедра органической химии, ул. Пирогова, 2, Новосибирск, 630090 (Россия) e-mail: atkachev @nioch.nsc.ru

² Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН, проспект Академика Лаврентьева, 9, Новосибирск, 630090 (Россия)

^{*} Автор, с которым следует вести переписку.

pontica с целью выявления оптимальных экологических условий для накопления биологически активных веществ и микроскопическое исследование для установления диагностических признаков сырья.

Материалы и методы

Материал для химических исследований (надземная часть растения Artemisia pontica) был собран в лесостепной и степной зонах Барабинской лесостепи (Каргатский, Карасукский районы; стационар кафедры химии окружающей среды Новосибирского государственного университета), в степях Кемеровской, Курганской и Омской областей в разные фазы развития растений и из разных местообитаний. Характеристика образцов дана в таблице 1. Засоленность почв в местах сбора образцов растительного сырья определялась потенциометрическим методом с использованием ион-селективных электродов, как описано в работе [16].

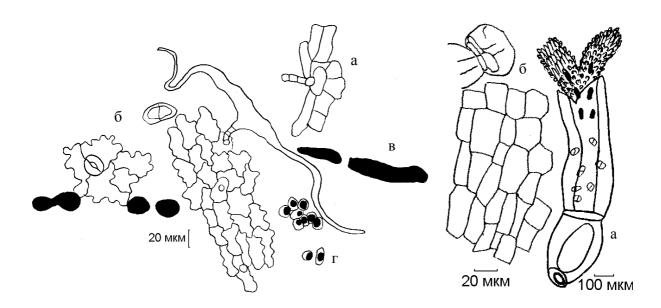
Гербарные образцы растений хранятся в Гербарии им. П.Н. Крылова Томского государственного университета (ТК), Гербарии им. В.В. Сапожникова Алтайского государственного университета (АLТВ) и в Гербарии ЦСБС СО РАН Новосибирска (NS).

Эфирные масла получены методом гидродистилляции из воздушно-сухого сырья [17]. Их исследовали методом хромато-масс-спектрометрии на газовом хроматографе Hewlett-Packard 5890/II так, как описано в работе [18]. Состав масел приведен в таблице 2. Микроскопический анализ проводили на свежем и высушенном материале [19]. Результаты микроскопических исследований даны на рисунках 1 и 2.

 Таблица 1.
 Характеристика исследованных образцов сырья Artemisia pontica L.

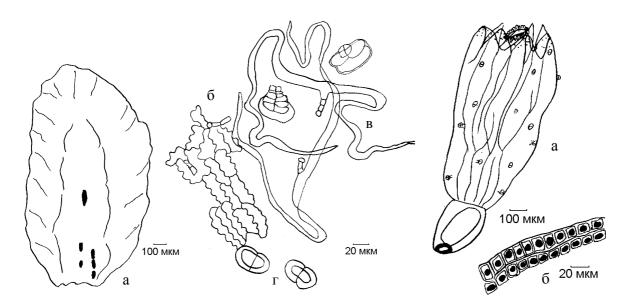
Номер образца	Характеристика места сбора сырья, время сбора и фаза развития растений	Содержание масла, %*
1	Новосибирская область, Карасукский р-он, окр. с. Троицкое, солонцеватый луг, 03.07.97 г., фаза вегетации	0.45
2	Новосибирская область, Карасукский р-он, окр. с. Солонец, 03.07.97 г., фаза вегетации	0.22
3	Новосибирская область, Карасукский р-он, окр. с. Солонец, опушка разреженного березового леса, 02.07.97 г., фаза вегетации	0.20
4	Новосибирская область, Карасукский р-он, в 2-х км от с. Троицкое, солонцеватая степь, 11.07.96 г., фаза бутонизации	0.50
5	Новосибирская область, Карасукский р-он, в 2-х км от с. Троицкое, вдоль трассы, солонцеватая степь, 11.07.96 г., фаза бутонизации	0.49
6	Там же, окр. с. Сорочиха, левый берег р. Карасук, пойменный солонцеватый луг, 10.07.96 г., фаза бутонизации	0.39
7	Новосибирская область, Карасукский р-он, окр. с. Троицкое, солонцеватый луг, 11.07.96 г., фаза бутонизации	0.54
8	Новосибирская область, Карасукский р-он, окр. с. Троицкое, вблизи оросительного канала, солонцеватый луг, 11.07.96 г., фаза бутонизации	0.85
9	Новосибирская область, Карасукский р-он, окр. г. Карасук, в 1,5-2-х км от станции Карасук, вдоль жд.полотна, солончак, 12.07.96 г., фаза бутонизации	0.49
10	Новосибирская область, Каргатский р-он, окр. с. Озерки, разнотравно-злаковополынный солонцеватый луг, 18.08.95 г., фаза цветения	0.32
11	Новосибирская область, Каргатский р-он, окр. П. Усть-Сумы, остепненный солонцеватый луг, 17.08.95 г., фаза цветения	0.35
12	Новосибирская область, Куйбышевский р-он, окр. п. Сартакова, остепненный луг, 18.08.96 г., фаза цветения	0.30
13	Кемеровская обл., окр. п. Майский, лесостепь, 20.08.90 г., фаза цветения	0.26
14	Курганская обл., Альменевский р-он, степь, 21.08.97 г., фаза цветения	0.85

Примечание: * содержание эфирного масла в надземной части растений приведено в % в пересчете на вес воздушно-сухого сырья.


Результаты и обсуждение

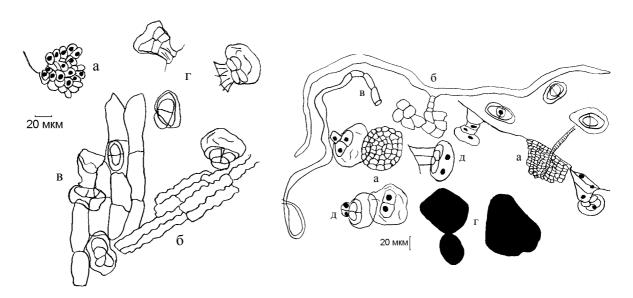
Для более точной оценки эколого-ценотического положения данного вида были проанализированы 225 полных геоботанических описаний, выполненных в различных регионах Западной Сибири и Северного Казахстана, определены условия произрастания полыни по экологическим шкалам [20]. Среднее увлажнение соответствует ступени 53, которая характеризуется как увлажнение сухих и сырых лугов, соответствующее плакорным местообитаниям в лесной и лесостепной зонах, и условиям с переменным режимом увлажнения в степной зоне (в первую очередь высокие поймы). Среднее богатство-засоление соответствует ступени 13 — довольно богатым почвам без признаков засоления. Для более детального анализа эколого-ценотической приуроченности полыни для всех описаний были вычислены статусы увлажнения и засоления по методике, предложенной канадскими экологами [21, 22]. Из 225 описаний 2 характеризуются среднестепным увлажнением, 55 — лугово-степным, 165 — сухолуговым, 3 — влажнолуговым, для 157 почвы оценены как довольно богатые и для 68 — как богатые, но еще не засоленые.

Исходя из вышесказанного синэкологическим оптимумом полыни можно считать остепненные солонцеватые луга. Популяции *Artemisia pontica*, встреченные в некоторых случаях на корковых и мелких солонцах, обычно приурочены к рассоленным микроповышениям. Наиболее активна полынь в лесостепных ландшафтах. В степной зоне она обычна в пойменных лугах и луговых степях. В горах Южной Сибири она изредко встречается в кустарниковых зарослях на остепненных лугах по северной и западной низкогорной периферии Алтая.


При микроскопическом анализе вегетативных и генеративных органов растения выявлено наличие трех типов терпеноидсодержащих структур: неспециализированные паренхимные клетки, схизогенные вместилища и эфирно-масличные железки (рис. 1 и 2). Характерным для данного вида полыни является то, что основная часть эфирного масла локализуется в эндогенных образованиях (схизогенных вместилищах и неспециализированных паренхимных клетках).

Полынь Artemisia pontica характеризуется следующими анатомическими признаками, определяемыми при микроскопических исследованиях вегетативных и генеративных органов: (а) лист амфистоматический, устьица аномоцитного типа, эпидерма листа извилистостенная, лист опушен Т-образными волосками - тонкостенными с 2-3-х клеточным основанием, поперечная клетка широкая с длинными зауженными концами; (б) соцветие - корзинка, почти шаровидная 2,5-4 мм шир., обертка войлочноопушенная, многорядная, наружные листочки ее травянистые, продолговато-яйцевидные, внутренние эллиптические, с широким пленчатым краем, срединная часть их травянистая, железтстая, опушена Т-образными волосками с длинными волнистыми концами; клетки эпидермы прозенхимные, извилистостенные; (в) пестичные цветки мелкие, узко-трубчатые, двузубчатые, железистые; эфирномасличные железки выступают над поверхностью эпидермы с выраженным кутикулярным колпаком; клетки эпидермы полигональные, прямостенные; (г) обоеполые цветки широко-трубчатые, с короткими прямыми зубцами, железистые; эфирно-масличные железки выступают над поверхностью эпидермы; эпидермальные клетки прозенхимные, извилистостенные; (д) в основании венчика два ряда толстостенных клеток заполнены эфирным маслом; цветоложе голое, изредка обнаруживаются простые и Т-образные волоски с 2-3 клеточным основанием и длинной тонкостенной поперечной клеткой; простые волоски бичевидные и мечевидные; эфирно-масличные железки крупные, выступают над поверхностью эпидермы, располагаются на "постаменте", состоящем из нескольких клеток; обнаруживаются крупные, округлой формы схизогенные вместилища.

Фрагменты анатомическорй структуры листа: верхняя (а) и нижняя (б) эпидермы, схизогенные вместилища (в) и неспециализированные паренхимные клетки с эфирным маслом (г)


Фрагменты анатомической структуры пестичного цветка. Общий вид (а), эпидерма с эфирномасличными железками (б)

Фрагменты анатомической структуры внутреннего листочка обертки. Общий вид, схизогенные вместилища в центральной части (а), эпидерма в срединной части листочка (б) с Т-образными волосками (в) и эфирномасличными железками (г)

Фрагменты анатомической структуры обоеполого цветка. Общий вид (а), "поясок" у основания венчика — два ряда толстостенных изодиаметрияеских клеток с крупными каплями эфирного масла (б)

Рис. 1. Фрагменты анатомических признаков вегетативных и генеративных органов *Artemisia pontica* L.

Фрагменты анатомической структуры пестичного цветка: кончик зубчика венчика (а), эпидерма в верхней (б) и срединной (в) части венчика с эфирно-масличными железками

Фрагменты анатомической структуры цветоложа: места прикрепления цветков (а), Т-образный (б), бичевидный (в) волоски, схизогенные вместилища (г), эфирно-масличные железки (д)

Рис. 2. Фрагменты анатомических признаков вегетативных и генеративных органов *Artemisia* pontica L.

Образцы эфирного масла, полученные методом гидродистилляции из воздушно-сухого сырья для химического анализа, представляют собой легкие подвижные жидкости интенсивно синего цвета с полынным запахом. По нашим данным, в траве содержится от 0.20 до 0.85% эфирного масла. Синтез эфирного масла начинается на самых ранних этапах развития растения, и в фазу вегетации в надземной части обнаруживается до 0.45% эфирного масла. Наибольшее содержание эфирного масла характерно для фазы бутонизации — начала цветения. Однако следует отметить, что содержание эфирного масла колеблется от следовых количеств до 0.85% в зависимости от местообитания. Наибольшее количество эфирного масла отмечено для образцов, собранных на остепненном лугу. Образцы, собранные на солончаковатом лугу, где *Artemisia pontica* встречается отдельными экземплярами, содержат наименьшее количество эфирного масла. Затенение (по опушкам березовых колков и в самих колках) приводит к снижению содержания эфирных масел, что уже отмечалось ранее [23, 24].

Для выявления влияния экологических факторов (засоленности почв) на накопление биологически активных веществ в полынях нами исследовалась *Artemisia pontica*, произрастающая на территории Барабинской лесостепи. Образцы сырья для анализа были собраны с трех участков, различающихся по степени засоленности почв и по растительному покрову: солонцеватый луг, солонец и опушка разреженного березового леса. В растениях, в почве под растениями потенциометрическим методом с использованием ион-селективных электродов определялось содержание ионов Cl⁻, Na⁺, NO₃⁻. В этих же образцах определялось содержание эфирного масла. Установлено, что наибольшее содержание эфирного масла характерно для образцов растений, собранных на почвах с повышенным содержанием нитратов и наименьшей концентрацией хлоридов и натриевых солей. При увеличении концентрации в почве хлоридов и натриевых солей отмечено снижение содержание эфирного масла в растениях [23, 24].

Таким образом, полученные данные могут служить основой для оптимизации минеральных смесей для подкормки посадок при возделывании данного вида полыни в условиях культуры.

Ранее для полыни понтийской, собранной в Семипалатинской области Республики Казахстан, было отмечено, что эфирное масло из травы экстрагируется бесцветным, а синяя окраска масла возникает при хранении [14, 25]. В наших исследованиях из всех образцов сырья первые порции эфирного масла получаются всегда окрашенными в голубой цвет, последующие порции масла имеют интенсивно синий цвет. Синяя окраска масла обусловлена, как известно, присутствием хамазулена, который не содержится как таковой в растении, а образуется в результате высокотемпературной обработки растительного материала в результате ряда процессов дегидратации-декарбокислирования проазуленовых соединений. При исследовании влияния продолжительности экстракции на выход эфирного масла из сырья полыни понтийской было установлено, что увеличение времени экстракции с 2-х до 4-х и 6-ти часов приводит не к существенному увеличению выхода эфирного масла, а к увеличению содержания хамазулена в эфирном масле почти в 5 раз.

При хромато-масс-спектрометрическом исследовании в образцах эфирного масла обнаруживается до 240 компонентов, большая часть из которых, составляющая основную часть масла, известна и легко идентифицируется (табл. 2). Основными и константными компонентами всех исследуемых образцов эфирных масел *Artemisia pontica* являются: п-цимол (до 3,0%), 1,8-цинеол (до 20%), γ-терпинен (до 2%), камфора (до 50%), пинокарвеол (до 2%), пинокарвон (до 3%), борнеол (до 25%), терпинеол-4 (до 4%), α-терпинеол (до 0.7%), миртеналь + миртенол (до 1.3%), борнилацетат (до 22%), кариофиллен (до 1.4%), спатчуленол (до 3%), окись кариофиллена (до 2.3%), хамазулен (до 13%). Другие компоненты являются минорными или обнаруживаются в составе эфирных масел спорадически.

Наиболее разнообразный состав эфирного масла установлен для фазы бутонизации и цветения. При сравнительном анализе результатов химического анализа образцов эфирного масла *Artemisia pontica* выявляются закономерности, свидетельствующие о достаточно высокой стабильности в качественном составе эфирного масла вне зависимости от местообитания: визуальный рисунок хроматограмм практически повторяется для всех образцов. Наибольшее содержание хамазулена отмечено для фазы вегетации, в фазу бутонизации происходит плавное снижение содержания данного соединения при увеличении содержания эфирного масла; в фазу цветения наблюдается дальнейшее снижение содержания хамазулена.

Несмотря на то, что в целом состав масла для всех (или почти всех) образцов похож между собой, в некоторых образцах встречаются в значительных количествах компоненты, отсутствующие в других образцах: только образец №6 содержит артемизиакетон и артемизиевый спирт, α- и β-туйоны в некоторых образцах вовсе отсутствуют, а в некоторых содержатся суммарно в количестве до 22%, хризантенол и хризантенил ацетат содержатся только в образцах №№4-7, пиперитон — в заметном количестве только в масле №3, вульгарон В — в образце №13, α-эвдесмол — в маслах №№10 и 14, селинановый спирт — в маслах №7, 12 и 14.

В результате химического исследования эфирного масла *Artemisia pontica* нами не обнаружены в качестве основных компонентов следующие соединения, отмеченные ранее в литературе как составляющие эфирного масла этого вида полыни: изоартемизиевый спирт, эстрагол, β -фарнезен, лимонен, энантовая и изомасляная кислоты, эфиры масляной и муравьиной кислот, фенолы.

Таким образом, в результате проведенных исследований *Artemisia pontica* Сибирской флоры установлено, что синэкологическим оптимумом данного вида полыни можно считать остепненные солонцеватые луга. Растения, обитающие в этих условиях, характеризуются наибольшим содержанием эфирного масла. Выявлены диагностические признаки травы *Artemisia pontica*, позволяющие отличать данный вид от морфологически трудно отличимых – *Artemisia abrotanum* и *Artemisia macrantha*, что особенно важно при анализе измельченного сырья [26].

Таблица 2. Содержание компонентов эфирного масла *Artemisia pontica* L. в % от цельного эфирного масла (показаны компоненты с содержанием ≥0.1%).

Наименование			Номер образца по таблице 1											
компонентов*	1	2	3	5	4	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Трициклен							0.1	0.1				0.1		
α-туйен							0.2	0.1				0.1		0.1
α-пинен				0.3		0.1	0.2					0.1		0.2
Камфен	1.0	0.4		0.7			1.8	1.5		0.2	0.1	2.7		0.5
Вербенен				0.1			0.1				0.1			0.1
Сабинен							1.6	0.1		0.4	0.4	1.5		0.8
β-пинен				0.2			0.1	0.1				0.1		0.2
1-октен-3-ол				0.1	0.1	0.2	0.2			0.1	0.1	0.1		
α-терпинен	0.2	0.2		0.2	0.1	0.3	1.1	0.2		0.1	0.4	0.8	0.1	0.4
п-цимол	0.5	0.5	0.1	1.0	0.4	0.6	2.9	0.4	0.6	1.0	1.1	2.7	0.9	1.1
1,8-цинеол	19.0	12.4	3.4	12.9	4.5	10.8	16.4	8.3	8.2	13.6	13.7	19.7	11.0	14.8
ү-терпинен	0.4	0.3		0.4	0.2	0.4	1.8	0.3	0.3	0.96	1.0	1.4	0.4	0.7
Е-сабинен-гидрат					0.2		0.3			1.1	0.4	2.1	0.1	0.3
Терпинолен							0.5	0.1			0.4	0.3	0.2	0.2
Z-сабинен-гидрат							0.5			0.8	0.3	1.7	0.1	0.3
Артемизиакетон						4.6								
Артемизиевый спирт						0.5								
α-туйон		0.2	4.17			1.7			9.6		0.5	0.1	0.8	20.1
MM=152**									0.5		1.0	2.0	0.5	0.5
β-туйон			0.75			0.2			1.1		0.2	0.1	0.5	2.0
<i>n</i> -мент-2-ен-1-ол	0.2			0.2	0.2	0.6		0.2	1.7	0.5	0.5	0.8	0.4	1.0
Пинокарвеол	1.4	0.2	0.1	1.2	1.3	0.6	0.1	0.5	1.8	0.4	1.8	0.1	0.2	1.3
<i>Цис</i> -вербенол				0.2	0.3						0.7			
Камфора	50.4	3.5	0.1	2.2	5.4	14.7	5.1	49.7	17.5	14.7	5.6	21.3	11.5	13.7
Пинокарвон	2.1	0.3	0.7	3.2	4.0	0.9	5.3	1.8	1.1	0.6	2.8	0.5	0.5	0.9
Хризантенол				6.4	9.5	8.5	0.1							
Борнеол	2.9	25.3	9.2	2.1	0.6	3.9	12.4	2.5	17.5	7.4	7.4	2.6	13.2	8.7
Терпинеол-4	1.9	1.2	1.6	1.2	0.7	1.8	3.5	1.8	1.2	2.1	3.0	2.7	1.9	2.1
5-изопропилбицик- ло[3.1.0.]гекс-2-ен-2- карбальдегид							0.5	0.2				0.7		
α-терпинеол	0.4	0.2	0.1	0.2	0.2	0.3	0.1	0.2	0.2	0.7	0.4	0.4	0.4	0.8
Миртеналь + миртенол	0.8	0.4	0.1	0.7	1.0	0.7	0.7	1.3	0.6	0.5	0.8	0.7	0.3	0.1
Аустролол						0.2	0.9	0.3		0.8	0.7	1.2	1.0	
Куминовый альдегид							0.9	0.3	0.2	0.4	0.6	1.1	0.4	
Карвон							0.2		0.2	0.2				

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Пиперитон		3	19.1	3	U	,	0.5	1.8	1.0	11	12	13	0.2	0.4
<i>Цис</i> -пепиретол			17.1			0.5	0.5	1.0	1.0				0.2	0.4
<i>Транс</i> -карвеол				0.2		0.5								
Хризантенилацетат				20.4	30.6	11.0	3.0		0.7					
Пеларгоновая кислота				0.6	0.6	0.2	0.4		0.7				0.5	
Капиллен				0.0	0.0	0.2	0.4					1.4	0.5	
Борнилацетат	0.1	21.6	3.5	4.2	1.2	0.4	2.5	0.2	5.0	0.8	1.9	0.1	0.4	2.9
Карвакрол	0.1	21.0	3.3	7.2	1.2	0.4	2.3	0.2	3.0	0.0	1.7	1.3	0.5	2.7
<i>п</i> -мента-1,4-диен-7-ол							0.6	0.2			0.1	0.8	0.3	
α-терпенилацетат	0.3		3.8				0.2	0.2			0.1	0.0	0.4	0.3
α-терпенилацетат	0.5	0.2	5.0				0.2	0.2	0.2		0.3			0.5
		0.2	0.6				0.1		0.2		0.3			
β-бурбонен			0.6			1.4	0.2		0.2					0.2
β-элемен				0.2	0.5		0.2	0.2		0.1	1.5	0.1	0.0	0.3
Метилэвгенол	0.1	0.4	1.4	0.3	0.5	0.3	0.2	0.2	0.2	0.1	1.0	0.1	0.0	0.1
Кариофиллен	0.1	0.4	1.4	0.6	0.2	0.4	0.3	0.6	0.1	0.7	1.2	0.2	0.1	0.1
Гермакрен Д	0.3	0.2	2.4			1.2	0.2	0.5		1.0	1.5	0.3		
1-фенил-2,4-гексадиин	0.6	0.0						0.6				1.3		
α-селинен	0.6	0.9				1.1		0.6		1.5				
Спатчуленол	0.5	3.0	0.1	1.0	0.7	0.9	1.2	1.3	0.9	1.5	0.8	0.8	0.8	0.5
Окись кариофиллена	0.5	2.3	2.2	2.3	1.0	0.6	1.4	1.1	0.9	2.1	1.9	1.3	1.5	0.5
Дегидрооплапанон			1.4											
β-эвдесмол			1.8											
т-муролол			1.9			0.6								
Вульгарон В***													12.8	
α-эвдесмол										5.3				2.5
Селинановый спирт**							3.1					4.6		2.3
Хамазулен	10.6	11.7	12.8	7.6	10.4	10.8	8.1	9.5	8.9	1.2	8.4	5.7	8.9	5.3
Общее количество компонентов	56	94	52	130	172	148	241	134	148	240	219	153	158	156

Примечание:

Список литературы

- 1. Амельченко В.П. О полынях в степях Хакасии // Систематические заметки по материалам Гербария им. П.Н.Крылова при Томском госуниверситете им. В.В. Куйбышева. Томск, 1974. С. 17–18.
- 2. Красноборов И.М. Род Artemisia L. // Флора Сибири. Новосибирск, 1997. T. 13. C. 90–141.
- 3. Куприянов А.Н., Пугачева С.К. Полыни (Artemisia L.) Алтайского края // Ботанические исследования Сибири и Казахстана: Сб. научных статей Гербария им. В.В. Сапожкова. Барнаул, 1996. С. 3–14.

^{*} компоненты приведены в порядке увеличения времени удерживания,

^{**} не идентифицированный компонент;

^{***} идентифицирован только по масс-спектру

- Поляков П.П. К биологии полыни подрода Seriphidium (Bess.)Rouy. // Ботанический журнал. 1958.
 Т. 43. №4. С. 579–580.
- 5. Интродукция лекарственных, ароматических и технических растений // Итоги работ интродукционного питомника БИН АН СССР за 250 лет. М.; Л., 1965. 425 с.
- 6. Род Artemisia L. Полынь // Растительные ресурсы СССР (цветковые растения, их химический состав, использование) Семейство Asteraceae. С.-Пб., 1993. С. 30–73.
- Саратиков А.С., Прищеп Т.П., Венгеровский А.И. и др. Противовоспалительные свойства эфирных масел тысячелистника и некоторых видов полыней // Химико-фармацевтический журн.1986. Т. 20. № 5. С. 585–588.
- 8. Таран Д.Д. Противовоспалительное и анальгетическое действие эфирных масел некоторых видов полыни, тысячелистника и хамазулена // Проблемы освоения лекарственных ресурсов Сибири и Дальнего Востока: Всесоюзн. конф. Новосибирск, 1983. С. 222–224.
- 9. Таран Д.Д. Противовоспалительное и анальгетическое действие эфирных масел некоторых полыней, тысячелистника и хамазулена // Проблемы освоения лекарственных ресурсов Сибири и Дальнего Востока. Томск, 1983. С. 222–223.
- 10. Николаевский В.В., Еременко А.Е., Иванов А.К. Биологическая активность эфирных масел. М., 1987. 144 с.
- 11. Полыни Сибири (систематика, экология, химия, хемосистематика, перспективы использования) / Т.П. Березовская, В.П. Амельченко, И.М. Красноборов и др. Новосибирск, 1991. 124 с.
- 12. Березовская Т.П., Усынина Р.В., Великанова В.И. и др. Эфирные масла некоторых видов полыни Сибирской флоры // 4-й Междунар.конгр. по эфирным маслам и эфирномасличным растениям (Тбилиси, 1968). М., 1971. Ч. 1. С. 34–39.
- 13. Березовская Т.П., Песегова Л.П., Усынина Р.В., Серых Е.А., Уралова Р.П. Полынь понтийская новый источник азуленов // Растительные ресурсы. 1973. Т. 9. Вып. 2. С. 225–235.
- 14. Горяев М.И., Базалицкая В.С., Поляков П.П. Химический состав полыней. Алма-Ата, 1962. 152 с.
- 15. Hurabielle M., Tillequin F., Paris M. Etude chimique de I'huile essentielle d'Artemisia pontica // Planta med. 1977. Jg. 31. H. 2.
- 16. Бельченко Л.А., Коковкин В.В. Химическая экология. Новосибирск, 1992. 109 с.
- 17. Государственная Фармакопея СССР. Вып.2. Общие методы анализа. Лекарственное растительное сырье M3 СССР.- XI изд.- М., 1990. 400 с.
- 18. Опарин Р.В., Покровский Л.М., Высочина Г.И., Ткачев А.В. Исследование химического состава эфирного масла Monarda fistulosa L. и Monarda didyma L., культивируемых в условиях Западной Сибири // Химия растительного сырья. 2000. № 3. С. 17–22.
- 19. Долгова А.А., Ладыгина Е.Я. Руководство к практическим занятиям по фармакогнозии. М., 1977. 255 с.
- 20. Методические указания по экологической оценке кормовых угодий лесостепной и степной зон Сибири по растительному покрову. М., 1974. 246 с.
- 21. Jeglum J.K. Plant indicators of Ph and water level in peatlands at Candle Lake, Saskatchewan // Can. J. Bot. 1971. V. 49. P. 1661–1667.

- 22. Kenkel N.C. Trends and interrelatuoships in boreal vetland vegetation // Can J. Bot. 1987. V. 65. №1. P. 12–22.
- 23.. Ханина М.А., Серых Е.А. Влияние эдафических факторов на накопление биологически активных веществ в полынях Барабы // Труды II Межрег. эколог. конф. Томск, 1998. С. 38–40.
- 24. Влияние засолености почвы на накопление биологически активных веществ в некоторых видах рода Artemisia (Asteraceae) / М.А. Ханина, Е.А. Серых, Л.А. Бельченко и др. // Проблемы ботаники на рубеже XX XXI веков. СПб., 1998. С. 355.
- 25. Горяев М.И., Серкебаева Т.Е., Кротова Г.И., Дембицкий А.Д. Изучение веществ, входящих в состав эфирных масел // Растит. ресурсы. 1967. Т. 3. Вып. 1. С. 63–67.
- 26. Ханина М.А., Серых Е.А., Амельченко В.П. Атлас анатомических признаков полыней. Томск, 1999. 55 с.

Поступило в редакцию 9 января 2000 года

После переработки 18 апреля 2000 года