TOP SECRET

Влияние условий аэрации на качество готового пива

В НАСТОЯЩЕЕ ВРЕМЯ | Несмотря на множество исследований, однозначного ответа о влиянии кислорода воздуха в ходе приготовления сусла нет. Что касается брожения то здесь ответ один — аэрация нужна, чтобы обеспечить успешное развитие дрожжей, а также хороший ход брожения. Вопрос только в том, что аэрировать и когда? На этот счет существует два мнения: либо аэрировать сусло, либо дрожжи. Причем, все исследования выполнены либо в лаборатории, либо в крупномасштабных условиях производства. Данных относительно малых предприятий нет, а между тем существуют определенные отличия между ними. Цель данной работы заключалась в изучении влияния режима аэрации при сбраживании сусла в условиях МПЗ на сенсорный профиль свежего пива.

НА МИНИ ПИВОВАРЕННЫХ ЗАВОДАХ (МПЗ) не испольферментные препараты, они не имеют отделений чистой культуры и семенных дрожжей. Важным обстоятельством является отсутствие гидростатического давления на клетки в виду незначительной, по сравнению с крупными предприятиями, высоты бродильных емкостей. Кроме того, в виду отсутствия специальной обработки пива (пастеризации, стерилизации) сроки годности продукта невелики и поэтому можно исключить мероприятия, направленные на повышение его вкусовой стабильности.

Авторы: Г. А. Тамазян, В. Б. Тишин, Т. В. Меледина и В. Г. Оганнисян, Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий, Санкт-Петербург

В состав рецептуры исследуемого пива в рамках данной работы входили различные солода, характеристики которых приведены в таблице1.

Для охмеления применяли гранулированный хмель таких сортов, как Hallertau Spalter Select (HSE) (Германия), Saaz (Чехия). Основные показатели качества хмелевых препаратов приведены в таблице 2.

Сусло получали настойным методом по режиму, приведенному на рисунке 1. Массовая доля сухих веществ в сусле составляла $11.8 \pm 0.2\%$.

Для брожения использовали дрожжи низового брожения штамма RH, третьей генерации. Норма внесения дрожжевых клеток составляла 25 млн клеток/мл, количество мертвых клеток не превышало 3%. Брожение проводили в течение 7 суток в производственных условиях при температуре 11 °C. Брожение осуществлялось без аэрации, с аэрацией сусла или засевных дрожжей.

В процессе исследований изучали биосинтез вторичных метаболитов дрожжей. Концентрации высших спиртов и эфиров оценивали на хроматографе Shimadzu GC-2010.

Концентрация клеток дрожжей подсчитывалась в камере Горяева под микроскопом. Определение концентрации мертвых клеток осуществлялось с помощью окраски препаратов дрожжей раствором метиленового синего.

Рис. 1 Температурный режим затирания

TOP SECRET

ФИЗИКО-ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ КАЧЕСТВА СОЛОДА

Наименование солода	Влажность,	Экстрак- тивность, %	Цвет сусла, ед. EBC	Разница экстрактов, %	Число Кольбаха, %	Число Хартронга (VZ 45°C)	Содержание аминного азота, мг/л	Общий белок, %	PH, H ⁺
Светлый солод	4,5	80,1	3,7	1,0	39,0	36	160	11,1	5,9
Мюних	3,0	80,0	20,0	1,0	37,0	38	138	10,2	5,6
Кара Плюс 10	4,8	82,6	13,0						
Таб. 1									

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ КАЧЕСТВА ХМЕЛЯ

Показатели	Единица измерений	HSE	Saaz
Общие смолы	%	17,3	11 – 14
а	%	4,6	3,0
b	%	3,9	4,5
Когумулон	% от а	22 – 23	23,0
Колупулон	% от b	42 – 46	39 – 43
Хмелевые масла	%	0,7	0,5-1,0
Таб. 2			

ФИЗИКО-ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ГОТОВОГО ПИВА

	Режим аэрации				
Показатели готового пива	С аэрацией дрожжей	С аэрацией сусла	Без аэрации		
Массовая доля спирта, %	4,07	3,74	3,69		
Действительный экстракт, %	3,5	3,97	4,11		
Видимый экстракт, %	2,1	2,44	2,61		
Видимая степень сбраживания, %	82,2	79,32	77,9		
Действительная степень сбраживания, %	70,3	66,7	65,2		
Таб. 3					

Аэрацию сусла проводили в потоке во время перекачивания сусла из вирпула в бродильный танк. Аэра-

цию дрожжей проводили в танке для брожения, после чего перекачивали сусло из вирпула в бродильный танк.

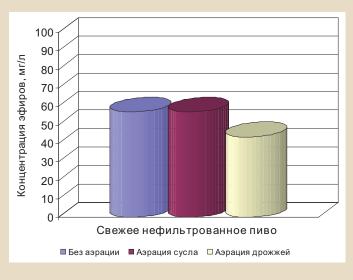


Рис. 2 Влияние режимов аэрации на количество сложных эфиров в свежем нефильтрованном пиве

Концентрацию растворенного в сусле кислорода определяли анализатором растворенного кислорода МАРК-404. Измерение проводили при помощи датчиков. Один из датчиков был установлен в танке для брожения и измерял концентрацию растворенного кислорода в дрожжах, а другой на линии между теплообменником и бродильным танком. При аэрации дрожжей и сусла концентрация растворенного кислорода составляла 9 мг/л.

Влияние режимов аэрации на физико-химические показатели пива

Результаты физико-химического анализа пива, полученного при использовании различных режимов аэрации, представлены в таблице 3.

Из результатов анализа, приведенных в таблице 3, видно, что аэрирование сусла приводит к повышению действительной степени сбраживания на 1,5%, в то время как при аэрации дрожжей, этот эффект достигает 5,1%.

Влияние режима аэрации на образование вторичных продуктов брожения

На вкус и аромат пива влияет огромное количество компонентов. Аромат пива создают побочные продукты брожения, хмелевые эфирные масла, органические сернистые соединения [1]. Особую роль в создании сенсорного профиля пива играют высшие спирты, эфиры, летучие кислоты [2, 3, 4]. В данных исследованиях проведен анализ влияния режимов аэрации на биосинтез высших спиртов и сложных эфиров. Установлено, что режим аэрации незначительно

TOP SECRET

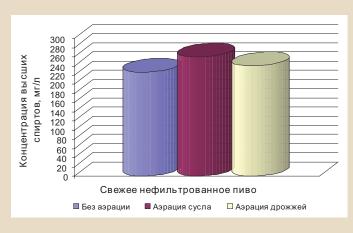


Рис. 3 Влияние режимов аэрации на количество высших спиртов в свежем нефильтрованном пиве

влияет на синтез этих вкусоароматических компонентов (рис. 2 и 3). Сравнивая свежее пиво, приготовленное различными способами, можно обнаружить небольшие различия в концентрациях вторичных продуктов брожения. Так, например, большое количество сложных эфиров образовалось в образце, который получали без аэрации, это можно связывать с тем, что образование эфиров тесно связано со снабжением дрожжевых клеток кислородом, который влияет как на синтез жирных кислот и стеролов, так и на дыхание и брожение. А самое низкое количество эфиров содержит образец, приготовленный по режиму, предусматривающему аэрацию дрожжей (рис. 2). Следует отметить, что в образце с аэрированными дрожжами концентрация изоамилацетата, который дает пиву фруктовый аромат, была ниже чувствительности детектирования.

Что касается высших спиртов, в образце, приготовленном по методу аэрации дрожжей их концентрация ниже по сравнению с другими образцами (рис. 3). Необходимо также отметить, что количество высших спиртов во всех образцах превышает норму. Это можно связать с повышенным уровнем свободных аминокислот в сусле,

Ароматный эфирный

Толнота вкуса

СО2

Толадкий

Классическая аэрация

Аэрация дрожжей

Рис. 4 Органолептический профиль нефильтрованного пива (свежее пиво)

которое получали из перерастворенного солода (таб. 1), а затирание начинали с 52 °C (рис. 1).

Пиво, приготовленное при разных режимах аэрации, было оценено профессиональной дегустационной комиссией. Как видно из профилеграммы (рис. 4), пиво, полученное с аэрацией либо сусла, либо дрожжей имеет более высокие показатели качества: полноту вкуса, насыщенность диоксидом углерода, в нем меньше выявлена сладость.

При проведении органолептического контроля установлено, что в нефильтрованном свежем пиве, произведенном при использовании метода аэрации дрожжей, не был отмечен жирный запах и привкус диацетила. По интенсивности эфирного аромата, этот образец не отличался от других. Было также отмечено отсутствие отличий в восприятии серного и окисленного запаха. Общие оценки дегустационной комиссии были следующими:

- контроль: 3,2 балла;
- пиво, полученное при аэрации сусла: 4,2 балла;
- при аэрации дрожжей: 4,9 балла. Таким образом, наилучшие результаты имели образцы пива, где использовали режим аэрации дрожжей. Данный способ может быть рекомендован для заводов малой производительности.

Литература

- 1. Кунце, В.: Технология солода и пива, СПб.: Профессия, 2001,—912 стр.
- 2. Лебедева, Е.П.: Технологический подход к регулированию сенсорного профиля пива ч. 1 (Высшие спирты), Индустрия напитков, № 4, 2004, стр. 10–14.
- 3. Сандаков, О. А.: Технологический подход к регулированию сенсорного профиля пива ч. 2 (Эфиры), Индустрия напитков, № 5, 2004, стр. 10–14.
- 4. Афонин, Д.В.: Технологический подход к регулированию сенсорного профиля пива ч. 3 (Органические кислоты), Индустрия напитков, № 6, 2004, стр. 10–14.