
Page 1

Table of Contents

Introduction..42
Important Documentation Notes – ESP8266 and ESP32...43
Overview..43

The ESP32..44
The ESP32 specification...45
Modules...46

ESP-WROOM-32..46
ESP32-DevKitC..47
ESP-WROVER-KIT..49
The SparkFun ESP32 thing..53

Connecting to the ESP32...54
Assembling circuits..56

USB to UART converters...56
Breadboards..58
Power..59
Multi-meter / Logic probe / Logic Analyzer...60
Sundry components..60
Physical construction...60
Configuration for flashing the device...60

Programming for ESP32..62
Espressif IoT Development framework..62

Application entry point..65
How ESP-IDF works...66
Error handling...68
The build environment menu configuration...69
Adding a custom ESP-IDF component...75
Working with memory...78

Compiling..79
Compilation...80
Flashing..82
Loading a program..84
Programming environments..86
Compilation tools..86

xntensa-esp32-elf-ar..87
esptool.py...87
xtensa-esp32-elf-gcc..90
gen_appbin.py..91
make..92
xtensa-esp32-elf-nm..92
xtensa-esp32-elf-objcopy...92

Page 2

xtensa-esp32-elf-objdump..92
xxd...93

Linking...93
Debugging...96

ESP-IDF logging...97
Exception handling...99
Core dump processing..100
Using a debugger (GDB)..105
OpenOCD and JTAG..106

Using the ESP-WROVER-KIT for JTAG...108
Dumping IP Addresses...108
Debugging and testing TCP and UDP connections...108

Android – Socket Protocol..109
Android – UDP Sender/Receiver..109
Windows – Hercules...109
SocketTest..109
Linux – netcat (nc)..109
Curl...110
Eclipse – TCP/MON...110
httpbin.org..113
RequestBin...113
tcpdump..113

ESP-IDF component debugging..113
LWIP...113

Run a Blinky..113
WiFi subsystem..114

WiFi Theory...114
Initializing the WiFi environment..116
Setting the operation mode..116
Scanning for access points..117
Handling WiFi events...119
Station configuration..126
Starting up the WiFi environment..127
Connecting to an access point..127
Being an access point...130
Working with connected stations...134
WiFi at boot time...134
The DHCP client..135
The DHCP server..135
Current IP Address, netmask and gateway..136
WiFi Protected Setup – WPS..136
Designs for bootstrapping WiFi...137

Page 3

Working with TCP/IP..138
The Lightweight IP Stack – lwip...138
TCP...140
TCP/IP Sockets...140

Handling errors...144
Configuration settings...148
Using select()..148
Differences from "standard" sockets...149

UDP/IP Sockets...149
TLS, SSL and security...150

mbedTLS app structure..152
mbedTLS Example...155
OpenSSL..157

Name Service..157
Multicast Domain Name Systems..158

mDNS API programming...159
Installing Bonjour..159
Avahi...162

Working with SNTP...164
Java Sockets...165

Bluetooth..168
Bluetooth specification..169

Bluetooth UUIDs...171
Bluetooth GAP..172

GAP Advertizing data...173
Advertisability – limited and general...176
Filtering devices...176
Performing a scan..176
Performing advertising...180

Bluetooth GATT..181
GATT Characteristic...183
Being a GATT client...183
Being a GATT Server...185
Notifications and indications...185
GATT XML descriptions..186

Service Discovery Protocol...186
ESP32 and Bluetooth..187

GATT Server – Read request..188
Debugging ESP32 Bluetooth..189

Bluetooth C Programming in Linux..189
hci_get_route..189
hci_open_dev...189
hci_inquiry..190
hci_read_remote_name..191

Page 4

str2ba..191
ba2str..191

Bluetooth Audio...192
Bluetooth RFCOMM..192
Bluetooth tools...194

l2ping..194
rfcomm..195
bluetoothctl...195
hciconfig...196
hcidump..197
hcitool...197
gatttool..198

Bluetooth examples...200
The iTag peripheral...200
Smart Watch / The TW64 Band..201

Web Bluetooth...203
The Physical Web...210

Hardware interfacing..210
GPIOs...210

Pull up and pull down settings..213
GPIO Interrupt handling..213
Expanding the number of available GPIOs...216

PCF8574..217
MCP23017...220

Interrupt Service Routines – ISRs...225
Working with I2C...227

Using the ESP-IDF I2C driver...229
Using Arduino I2C libraries...232
Common I2C devices..232

Working with SPI – Serial Peripheral Interface..233
Using the ESP-IDF SPI driver...235
The Arduino Hardware Abstraction Layer SPI...238
Common SPI devices...240

Working with UART/serial..241
Using the VFS component with serial...244

I2S Bus..244
I2S – Camera..245
I2S – LCD...245
I2S – DMA..245

RMT – The Remote Peripheral..250
Timers and time...256
LEDC – Pulse Width Modulation – PWM...259

Page 5

Automated PWM fading..263
Analog to digital conversion...264
Sleep modes...267
Security...269
Working with flash memory...269
Working with RAM memory...270

RAM Utilization...272
Using PSRAM...273

EFUSE..275
Button press detection...276
GPS..277

GPS decoding...280
Temperature and pressure – BMP180...280

Using the Arduino APIs...283
NeoPixels..283

NeoPixel theory..283
NeoPixels and the ESP32...286

LED 7-Segment displays...286
MAX7219/MAX7221 – Serial interface, 8-digit, led display drivers..................................287

The U8g2 library..291
LCD display – Nokia 5110 – PCD8544..292
OLED 128x32, 128x64 – SSD1306...294
Ambient light level sensor – BH1750FVI...296
Ambient light and proximity sensor..297
Infrared receivers..298
RFID MFRC522...300

MFRC522 – Low levels...303
Initialization..306
AntennaOn...307

Cameras..307
Ivan's sample..307
OV7670..309

Accelerometer and Gyroscope – MPU-6050 (aka GY-521)...309
The math of accelerometers...315
Visualizing orientation...316

Compass – HMC5883L (aka GY-271) (aka CJ-M49)...316
Tilt compensation of the compass...322

Real time clocks..323
Servos...326

The Mini/Micro SG90..328
Audio...328

PCM5102 – I2S DAC..328
Graphic Equalizer...329

External networking...332

Page 6

The nRF24..332
Using the Arduino APIs...338
Integrating the nRF24 with the ESP32...345

Programming using Eclipse...347
Installing the Eclipse Serial terminal..358
Web development using Eclipse..363

Programming using the Arduino IDE..364
Mapping from the Arduino to the ESP32...365
Implications of Arduino IDE support...366
Installing the Arduino IDE with ESP32 support..367
Using the Arduino libraries as an ESP-IDF component...368
Tips for working in the Arduino environment..369

Initialize global classes in setup()..369
Invoking Espressif SDK API from a sketch..369
Reasons to consider using Eclipse over Arduino IDE...370

Programming with JavaScript..370
Duktape...371

Compiling code...372
Building for ESP32..372
Integrating Duktape in an ESP32 application..372
The Duktape stack..372
Working with object properties..372
Calling C from a JavaScript program..373

JerryScript...374
Platform specific files..374
JerryScript life-cycle..374
Accessing the global environment..375
The jerry_value_t..375
Handling errors...375
Interfacing JerryScript with C..376

IoT.js..377
Programming with Python..377

Pycom Micropython...377
Programming with Lua...377

Lua-RTOS for ESP32..377
Integration with Web Apps...377

HTTP Protocol...377
HTTP Headers..377

Accept header..378
Authorization header..378
Connection header...378
Content-Length header..378

Page 7

Content-Type header..378
Host header..379
User-Agent header...379

Web Servers..379
Mongoose networking library..379

Setting up Mongoose on an ESP32...383
Sending a request from Mongoose..383
The Mongoose struct mg_connection..384
Handling file uploads..384

GoAhead Web Server...385
JavaScript Webserver...385

REST Services..385
REST protocol..386
ESP32 as a REST client...386

Making a REST request using Curl..386
Making a REST request using Mongoose..391

ESP32 as a REST service provider..391
WebSockets..392

A WebSocket browser app..392
Mongoose WebSocket..394
Other Websocket implementations...395

Tasker..395
AutoRemote..396
DuckDNS..397

Networking protocols...398
MQTT..398

Mosquitto MQTT...400
Installing on Windows...402

Writing ESP32 MQTT clients..404
Using Mongoose as an MQTT client..404
Using Espruino as an MQTT client...406

Writing non ESP32 MQTT clients...407
Eclipse paho...407
C – Mosquitto client library...408
Node.js JavaScript – MQTT...410
Browser JavaScript – MQTT...411

CoAP – Constrained Application Protocol..414
FTP...416
TFTP...416
Telnet...417
DNS Protocol..419

Mobile apps...421
Blynk...421

Cloud environments...421

Page 8

IBM Bluemix..422
If This Then That – IFTTT..423

Storage programming..423
Partition table..424
Non Volatile Storage..427
Virtual File System..428

VFS Implementations..429
FATFS File System..430
Spiffs File System..430

Building SPIFFs for the ESP32...433
mkspiffs tool..433

The ESP File System – EspFs..434
SD, MMC and SDIO interfacing...436
ZIP files...437

miniz...437
kuba--/zip..437

Charting data...437
Kst...439

Sample Snippets..439
Sample applications...440

Sample – Ultrasonic distance measurement...440
Sample – WiFi Scanner...443
Sample – A changeable mood light...444

Using FreeRTOS...448
The architecture of a task in FreeRTOS..449

Stacks and FreeRTOS tasks...451
Timers in FreeRTOS..454
Blocking and synchronization within FreeRTOS..455
Semaphores and Mutices within FreeRTOS..456
Queues within FreeRTOS...457
Ring buffer withing FreeRTOS...458
Working with queue sets...459
Running untested functions...459

The Serial AT command processor..460
Mongoose OS..460

The Mongoose OS file system..462
Setting up Mongoose OS WiFi..462
Building a Mongoose OS App..462

AWS IoT..463
The ESP-IDF aws_iot component...465

Developing solutions on Linux...465
Building a Linux environment..466

Page 9

Hardware architecture..467
The CPU and cores...467
Intrinsic data types..467
Native byte order, endian and network byte order...467
Memory mapping and address spaces..469
Reading and writing registers..470
Pads and multiplexing...471
Register based GPIO..474

GPIO_OUT_REG...476
GPIO_OUT_W1TS_REG..476
GPIO_OUT_W1TC_REG...476
GPIO_OUT1_REG...477
GPIO_OUT1_W1TS_REG..477
GPIO_OUT1_W1TC_REG...477
GPIO_ENABLE_REG...477
GPIO_ENABLE_W1TS_REG...477
GPIO_ENABLE_W1TC_REG...477
GPIO_ENABLE1_REG...477
GPIO_ENABLE1_W1TS_REG...478
GPIO_ENABLE1_W1TC_REG...478
GPIO_STRAP_REG...478
GPIO_IN_REG...478
GPIO_IN1_REG...478
GPIO_STATUS_REG...478
GPIO_STATUS_W1TS_REG..478
GPIO_STATUS_W1TC_REG...478
GPIO_STATUS1_REG...479
GPIO_STATUS1_W1TS_REG..479
GPIO_STATUS1_W1TC_REG...479
GPIO_PCPU_NMI_INT1_REG...479
GPIO_PCPU_NMI_INT1_REG...479
GPIO_PINn_REG...479
GPIO_FUNCm_IN_SEL_CFG_REG..479
GPIO_FUNCn_OUT_SEL_CFG_REG...480

Strapping pins...480
Boot mode source...480
Debugging on U0TX0 at boot...481
Timing of SDIO slave..481

Boot-loader..481
Power modes..483
Bootloader...483
Peripherals..484

Remote Control Peripheral – RMT..484
SPI..487

Page 10

PID Controller...487
UART..488
I2S..488

I2S Clock..489
Camera mode..489
Registers..493
I2S_CONF_REG..495
I2S_CONF2_REG..495
I2S_CLKM_CONF_REG..496
I2S_CONF_CHAN_REG..496
I2S_LC_CONF_REG...496
I2S_FIFO_CONF_REG..496
I2S_IN_LINK_REG..497
I2S_RXEOF_NUM_REG..497
I2S_CONF_CHAN_REG..497
I2S_SAMPLE_RATE_CONF_REG..497
I2S_INT_RAW_REG..498
I2S_INT_ENA_REG...498
I2S_INT_CLR_REG...499

Electronics...500
Transistors as switches...500
Logic Level Shifting...501

Projects..503
JerryScript library for ESP32...503

The "require" capability...503
API Reference...503

Configuration, status and operational retrieval..504
Arduino Mapping...504

bitRead...505
bitWrite...505
delay...505
digitalWrite..505
pinMode..506
SPI.begin..506
SPI.setBitOrder...506
SPI.setClockDivider..506
SPI.setDataMode..507
SPI.transfer...507
Wire.begin..507
Wire.beginTransmission..507
Wire.endTransmission..508
Wire.read..508

Page 11

Wire.requestFrom...508
Wire.write..508

FreeRTOS API reference..508
portENABLE_INTERRUPTS...508
portDISABLE_INTERRUPTS..508
xPortGetCoreID..508
pvPortMalloc...509
pvPortFree..509
xEventGroupClearBits..509
xEventGroupCreate..509
xEventGroupSetBits...510
xEventGroupWaitBits..510
xQueueAddToSet..511
xQueueCreate...511
xQueueCreateSet...511
xQueueCreateStatic...512
vQueueDelete...512
xQueueGenericReceive..512
uxQueueMessagesWaiting...512
xQueueOverwrite..513
xQueuePeek...513
xQueuePeekFromISR...513
xQueueReceive..513
xQueueReceiveFromISR..514
xQueueRemoveFromSet..514
xQueueReset..514
xQueueSelectFromSet..514
xQueueSelectFromSetFromISR...515
xQueueSend...515
xQueueSendFromISR...515
xQueueSendToBack...515
xQueueSendToBackFromISR...516
xQueueSendToFront...516
xQueueSendToFrontFromISR..517
uxQueueSpacesAvailable...517
xRingbufferAddToQueueSetRead...517
xRingbufferAddToQueueSetWrite...517
xRingbufferCreate...517
vRingbufferDelete...518
xRingbufferGetMaxItemSize...518
xRingBufferPrintInfo..518
xRingbufferReceive...518
xRingbufferReceiveFromISR..519
xRingbufferReceiveUpTo..519

Page 12

xRingbufferReceiveUpToFromISR..519
xRingbufferRemoveFromQueueSetRead...519
xRingbufferRemoveFromQueueSetWrite..519
vRingbufferReturnItem..519
vRingbufferReturnItemFromISR..520
xRingbufferSend...520
xRingbufferSendFromISR...520
vSemaphoreCreateBinary...520
xSemaphoreCreateCounting..521
xSemaphoreCreateMutex...521
vSemaphoreDelete...521
vSemaphoreGive..521
xSemaphoreGiveFromISR..521
vSemaphoreTake..522
xTaskCreate..522
xTaskCreatePinnedToCore...523
vTaskDelay...524
vTaskDelayUntil..524
vTaskDelete..525
vTaskGetInfo...525
xTaskGetCurrentTaskHandle..526
pcTaskGetTaskName..526
uxTaskGetNumberOfTasks...526
eTaskGetState..527
uxTaskGetSystemState...527
xTaskGetTickCount...528
xTaskGetTickCountFromISR...528
vEventGroupDelete..528
vTaskList...529
uxTaskPriorityGet..529
vTaskPrioritySet..529
vTaskResume...529
xTaskResumeAll...529
vTaskResumeFromISR...529
vTaskSuspend..530
vTaskSuspendAll..530
xTimerChangePeriod..530
xTimerChangePeriodFromISR..530
xTimerCreate..531
xTimerCreateStatic...532
xTimerDelete..532
pcTimerGetName..532

Page 13

xTimerGetExpiryTime...532
xTimerGetPeriod...533
pvTimerGetTimerDaemonTaskHandle..533
pvTimerGetTimerID...534
xTimerIsTimerActive...534
xTimerPendFunctionCall...534
xTimerPendFunctionCallFromISR...535
xTimerReset...535
xTimerResetFromISR...535
vTimerSetTimerID...535
xTimerStart...536
xTimerStartFromISR...536
xTimerStop...536
xTimerStopFromISR...536
List Processing...537

vListInitialise...537
vListInitialiseItem..537
vListInsert...537
vListInsertEnd..537

Sockets APIs...537
accept...538
bind...538
close...539
closesocket...539
connect...539
fcntl...540
freeaddrinfo..540
getaddrinfo..540
gethostbyname...542
gethostbyname_r..542
getpeername...543
getsockname..543
getsockopt..543
htonl..544
htons...544
inet_ntop...544
inet_pton...545
ioctlsocket...545
listen...545
read..545
recv...546
recvfrom..546
select..547
send..548

Page 14

sendmsg...548
sendto...548
setsockopt..549
shutdown..549
socket...550
write..550
writev..551
Socket data structures..551

Sockets – struct sockaddr..551
Sockets – struct sockaddr_in...551

Working with WiFi..551
DNS...552

dns_getserver...552
dns_setserver...553

System Functions..553
esp_chip_info..553
esp_cpu_in_ocd_debug_mode...554
esp_efuse_read_mac...554
esp_get_free_heap_size...554
esp_get_idf_version..554
esp_random..555
esp_restart..555
system_rtc_mem_write...555
rtc_get_reset_reason..555
software_reset..556
software_reset_cpu..556
system_deep_sleep..556
system_get_time...556
system_restore...557
system_rtc_mem_read...557
system_rtc_mem_write...557
system_rtc_mem_read...558

WiFi...558
esp_event_loop_init..558
esp_event_loop_set_cb..558
esp_wifi_ap_get_sta_list...559
esp_wifi_clear_fast_connect...559
esp_wifi_connect..559
esp_wifi_deauth_sta...559
esp_wifi_deinit..560
esp_wifi_disconnect..560
esp_wifi_free_station_list..560

Page 15

esp_wifi_get_auto_connect..560
esp_wifi_get_bandwidth..561
esp_wifi_get_channel...561
esp_wifi_get_config..561
esp_wifi_get_country..562
esp_wifi_get_mac...562
esp_wifi_get_mode...562
esp_wifi_get_promiscuous..563
esp_wifi_get_protocol...563
esp_wifi_get_ps..564
esp_wifi_get_station_list...564
esp_wifi_init..565
esp_wifi_restore..565
esp_wifi_reg_rxcb...565
esp_wifi_scan_get_ap_records...565
esp_wifi_scan_get_ap_num...566
esp_wifi_scan_start..567
esp_wifi_scan_stop..567
esp_wifi_set_auto_connect...568
esp_wifi_set_bandwidth..568
esp_wifi_set_channel..568
esp_wifi_set_config..568
esp_wifi_set_country..571
esp_wifi_set_mac...571
esp_wifi_set_mode...571
esp_wifi_set_promiscuous_rx_cb...572
esp_wifi_set_promiscuous..572
esp_wifi_set_protocol...572
esp_wifi_set_ps..573
esp_wifi_set_storage..573
esp_wifi_set_vendor_ie..574
esp_wifi_set_vendor_ie_cb...574
esp_wifi_sta_get_ap_info...574
esp_wifi_start..574
esp_wifi_stop..575

WiFi WPS..575
wifi_wps_enable...575
wifi_wps_disable...576
wifi_wps_start...576
wifi_set_wps_cb..576

mbed TLS..576
mbedtls_ctr_drbg_free..576
mbedtls_ctr_drbg_init..576
mbedtls_ctr_drbg_seed..577

Page 16

mbedtls_debug_set_threshold..577
mbedtls_entropy_free...577
mbedtls_entropy_init...578
mbedtls_net_accept..578
mbedtls_net_bind...578
mbedtls_net_connect..578
mbedtls_net_free..578
mbedtls_net_init..579
mbedtls_net_recv...579
mbedtls_net_recv_timeout..579
mbedtls_net_send..579
mbedtls_net_set_block...580
mbedtls_net_set_nonblock...580
mbedtls_printf...580
mbedtls_sha1...580
mbedtls_ssl_close_notify..580
mbedtls_ssl_conf_authmode..580
mbedtls_ssl_conf_ca_chain..581
mbedtls_ssl_conf_dbg..581
mbedtls_ssl_conf_rng...581
mbedtls_ssl_config_defaults...581
mbedtls_ssl_config_free...582
mbedtls_ssl_config_init...582
mbedtls_ssl_free...582
mbedtls_ssl_get_verify_result...583
mbedtls_ssl_handshake...583
mbedtls_ssl_init..583
mbedtls_ssl_read..583
mbedtls_ssl_session_reset...583
mbedtls_ssl_set_bio...583
mbedtls_ssl_set_hostname..584
mbedtls_ssl_setup..584
mbedtls_ssl_write...584
mbedtls_strerror..584
mbedtls_x509_crt_init...585
mbedtls_x509_crt_parse...585
mbedtls_x509_crt_veryify_info...585

Bluetooth LE..585
esp_bt_uuid_t...585
esp_attr_value_t...586
esp_gatt_id_t..586
esp_gatt_srvc_id_t..586

Page 17

esp_gatt_status_t...586
esp_ble_resolve_adv_data...588
esp_ble_gap_config_adv_data...588
esp_ble_gap_config_adv_data_raw...590
esp_ble_gap_config_scan_rsp_data_raw...590
esp_ble_gap_config_local_privacy...590
esp_ble_gap_register_callback...590

ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT..591
ESP_GAP_BLE_ADV_START_COMPLETE_EVT...591
ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT..591
ESP_GAP_BLE_AUTH_CMPL_EVT...591
ESP_GAP_BLE_KEY_EVT..592
ESP_GAP_BLE_LOCAL_ER_EVT..592
ESP_GAP_BLE_LOCAL_IR_EVT..592
ESP_GAP_BLE_NC_REQ_EVT..592
ESP_GAP_BLE_OOB_REQ_EVT...592
ESP_GAP_BLE_PASSKEY_NOTIF_EVT..592
ESP_GAP_BLE_PASSKEY_REQ_EVT...592
ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT..592
ESP_GAP_BLE_SCAN_RESULT_EVT...592
ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT..................................594
ESP_GAP_BLE_SCAN_START_COMPLETE_EVT..594
ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT..594
ESP_GAP_BLE_SEC_REQ_EVT..594

esp_ble_gap_security_rsp..595
esp_ble_gap_set_device_name...595
esp_ble_set_encryption..596
esp_ble_gap_set_scan_params...596
esp_ble_gap_set_pkt_data_len..597
esp_ble_gap_set_rand_addr..597
esp_ble_gap_set_security_param..597
esp_ble_gap_start_advertising...598
esp_ble_gap_start_scanning..600
esp_ble_gap_stop_advertising...600
esp_ble_gap_stop_scanning..600
esp_ble_gap_update_conn_params...600
esp_ble_gattc_app_register..601
esp_ble_gattc_app_unregister..601
esp_ble_gattc_close...601
esp_ble_gattc_config_mtu..601
esp_ble_gattc_execute_write...602
esp_ble_gattc_get_characteristic..602
esp_ble_gattc_get_descriptor...603
esp_ble_gattc_get_included_service..603

Page 18

esp_ble_gattc_open...603
esp_ble_gattc_prepare_write..604
esp_ble_gattc_read_char...604
esp_ble_gattc_read_char_descr...605
esp_ble_gattc_register_callback...605

ESP_GATTC_ACL_EVT..608
ESP_GATTC_ADV_DATA_EVT...608
ESP_GATTC_ADV_VSC_EVT...608
ESP_GATTC_BTH_SCAN_CFG_EVT...608
ESP_GATTC_BTH_SCAN_DIS_EVT..608
ESP_GATTC_BTH_SCAN_ENB_EVT...608
ESP_GATTC_BTH_SCAN_PARAM_EVT..608
ESP_GATTC_BTH_SCAN_RD_EVT...608
ESP_GATTC_BTH_SCAN_THR_EVT...608
ESP_GATTC_CANCEL_OPEN_EVT...608
ESP_GATTC_CFG_MTU_EVT..608
ESP_GATTC_CLOSE_EVT...608
ESP_GATTC_CONGEST_EVT..609
ESP_GATTC_CONNECT_EVT..609
ESP_GATTC_DISCONNECT_EVT..609
ESP_GATTC_ENC_CMPL_CB_EVT...610
ESP_GATTC_EXEC_EVT..610
ESP_GATTC_GET_CHAR_EVT..610
ESP_GATTC_GET_DESCR_EVT..611
ESP_GATTC_GET_INCL_SRVC_EVT..611
ESP_GATTC_MULT_ADV_DATA_EVT..611
ESP_GATTC_MULT_ADV_DIS_EVT...611
ESP_GATTC_MULT_ADV_ENB_EVT..611
ESP_GATTC_MULT_ADV_UPD_EVT...611
ESP_GATTC_NOTIFY_EVT..611
ESP_GATTC_OPEN_EVT...612
ESP_GATTC_PREP_WRITE_EVT..612
ESP_GATTC_READ_CHAR_EVT...612
ESP_GATTC_READ_DESC_EVT..613
ESP_GATTC_REG_EVT..613
ESP_GATTC_REG_FOR_NOTIFY_EVT...613
ESP_GATTC_SEARCH_CMPL_EVT...614
ESP_GATTC_SEARCH_RES_EVT...614
ESP_GATTC_SCAN_FLT_CFG_EVT..614
ESP_GATTC_SCAN_FLT_PARAM_EVT...614
ESP_GATTC_SCAN_FLT_STATUS_EVT..614
ESP_GATTC_SRVC_CHG_EVT..614

Page 19

ESP_GATTC_UNREG_EVT..615
ESP_GATTC_UNREG_FOR_NOTIFY_EVT..615
ESP_GATTC_WRITE_CHAR_EVT..615

esp_ble_gattc_register_for_notify...615
esp_ble_gattc_unregister_for_notify...616
esp_ble_gattc_search_service...616
esp_ble_gattc_write_char...616
esp_ble_gattc_write_char_descr..617
esp_ble_gatts_add_char...618
esp_ble_gatts_add_char_descr..619
esp_ble_gatts_add_included_service...620
esp_ble_gatts_app_register..620
esp_ble_gatts_app_unregister..621
esp_ble_gatts_close...621
esp_ble_gatts_create_attribute_tab..621
esp_ble_gatts_create_service..622
esp_ble_gatts_delete_service..622
esp_ble_gatts_get_attr_value...623
esp_ble_gatts_open...623
esp_ble_gatts_register_callback...623

ESP_GATTS_ADD_CHAR_DESCR_EVT...624
ESP_GATTS_ADD_CHAR_EVT..624
ESP_GATTS_ADD_INCL_SRVC_EVT..625
ESP_GATTS_CANCEL_OPEN_EVT...625
ESP_GATTS_CLOSE_EVT...625
ESP_GATTS_CONF_EVT...625
ESP_GATTS_CONGEST_EVT..626
ESP_GATTS_CONNECT_EVT..626
ESP_GATTS_CREAT_ATTR_TAB_EVT..626
ESP_GATTS_CREATE_EVT...626
ESP_GATTS_DELETE_EVT..627
ESP_GATTS_DISCONNECT_EVT..627
ESP_GATTS_EXEC_WRITE_EVT..627
ESP_GATTS_LISTEN_EVT...628
ESP_GATTS_MTU_EVT..628
ESP_GATTS_OPEN_EVT...628
ESP_GATTS_READ_EVT..628
ESP_GATTS_REG_EVT..629
ESP_GATTS_RESPONSE_EVT..629
ESP_GATTS_SET_ATTR_VAL_EVT...629
ESP_GATTS_START_EVT..629
ESP_GATTS_STOP_EVT..630
ESP_GATTS_UNREG_EVT...630
ESP_GATTS_WRITE_EVT..630

Page 20

esp_ble_gatts_send_indicate...631
esp_ble_gatts_send_response...632
esp_ble_gatts_set_attr_value...633
esp_ble_gatts_start_service...633
esp_ble_gatts_stop_service...634
esp_ble_resolve_adv_data...634
esp_bluedroid_deinit...636
esp_bluedroid_disable..636
esp_bluedroid_enable...636
esp_bluedroid_init...636
esp_bt_controller_init..636
esp_bt_controller_enable..637
esp_vhci_host_check_send_available..637
esp_vhci_host_register_callback..637
esp_vhci_host_send_packet...637

Upgrade APIs..638
system_upgrade_flag_check..638
system_upgrade_flag_set...638
system_upgrade_reboot...638
system_upgrade_start..638
system_upgrade_userbin_check..638

Smart config APIs..639
smartconfig_start..639
smartconfig_stop..639

SNTP API..639
sntp_enabled..639
sntp_getoperatingmode..639
sntp_getserver..639
sntp_getservername...640
sntp_init..640
sntp_servermode_dhcp..640
sntp_setoperatingmode..641
sntp_setserver..641
sntp_setservername...641
sntp_stop..642

Generic TCP/UDP APIs...642
ipaddr_addr..642
IP4_ADDR..642
IP2STR...643
MAC2STR..643

TCP Adapter APIs...643
tcpip_adapter_ap_input..643

Page 21

tcpip_adapter_create_ip6_linklocal...644
tcpip_adapter_dhcpc_get_status..644
tcpip_adapter_dhcpc_option...644
tcpip_adapter_dhcpc_start..645
tcpip_adapter_dhcpc_stop..645
tcpip_adapter_dhcps_get_status..645
tcpip_adapter_dhcps_option...646
tcpip_adapter_dhcps_start..647
tcpip_adapter_dhcps_stop..647
tcpip_adapter_down...647
tcpip_adapter_eth_input...647
tcpip_adapter_free_sta_list...648
tcpip_adapter_get_esp_if..648
tcpip_adapter_get_hostname...648
tcpip_adapter_get_ip_info...648
tcpip_adapter_get_ip6_linklocal..649
tcpip_adapter_get_sta_list..649
tcpip_adapter_get_wifi_if..650
tcpip_adapter_init...650
tcpip_adapter_set_hostname..650
tcpip_adapter_set_ip_info...651
tcpip_adapter_sta_input..652
tcpip_adapter_start...652
tcpip_adapter_stop...652
tcpip_adapter_up..653

mdns...653
mdns_free...653
mdns_init..653
mdns_query..654
mdns_query_end..654
mdns_result_free..654
mdns_result_get...654
mdns_result_get_count...655
mdns_service_add..655
mdns_service_instance_set..655
mdns_service_port_set...655
mdns_service_remove..656
mdns_service_remove_all..656
mdns_service_txt_set...656
mdns_set_hostname..656
mdns_set_instance...657

OTA...657
esp_ota_begin..657
esp_ota_end...657

Page 22

esp_ota_get_boot_partition..658
esp_ota_set_boot_partition...658
esp_ota_write...658

GPIO Driver...658
gpio_config...658
gpio_get_level...660
gpio_install_isr_service...660
gpio_intr_enable...660
gpio_intr_disable...661
gpio_isr_handler_add...661
gpio_isr_handler_remove...662
gpio_isr_register...662
gpio_set_direction...663
gpio_set_intr_type..664
gpio_set_level...664
gpio_set_pull_mode..665
gpio_uninstall_isr_service...665
gpio_wakeup_enable..665
gpio_wakeup_disable...666

GPIO Low Level..666
gpio_init..666
gpio_input_get..666
gpio_input_get_high...666
gpio_intr_ack..667
gpio_intr_ack_high..667
gpio_intr_handler_register..667
gpio_intr_pending...667
gpio_intr_pending_high...667
gpio_matrx_in...668
gpio_matrix_out..668
gpio_output_set..669
gpio_output_set_high...669
gpio_pad_hold..669
gpio_pad_pulldown...670
gpio_pad_pullup...670
gpio_pad_select_gpio...670
gpio_pad_set_drv...670
gpio_pad_unhold..670
gpio_pin_wakeup_disable...671
gpio_pin_wakeup_enable...671

Analog to Digital Conversion...671
adc1_config_channel_atten..671

Page 23

adc1_config_width..672
adc1_get_voltage...672
hall_sensor_read..672

UART driver API..672
uart_clear_intr_status...673
uart_disable_intr_mask...673
uart_driver_delete...673
uart_driver_install...674
uart_disable_intr_mask...675
uart_disable_pattern_det_intr...675
uart_disable_rx_intr..675
uart_disable_tx_intr..675
uart_enable_intr_mask...676
uart_enable_pattern_det_intr..676
uart_enable_rx_intr...676
uart_enable_tx_intr...677
uart_flush..677
uart_get_baudrate..677
uart_get_buffered_data_len..678
uart_get_hw_flow_ctrl...678
uart_get_parity..678
uart_get_stop_bits..679
uart_get_word_length...679
uart_intr_config...679
uart_isr_free..680
uart_isr_register..681
uart_param_config..681
uart_read_bytes..682
uart_set_baudrate...682
uart_set_dtr..683
uart_set_hw_flow_ctrl...683
uart_set_line_inverse..683
uart_set_parity..684
uart_set_pin..684
uart_set_rts...685
uart_set_stop_bits..685
uart_set_word_length...685
uart_tx_chars..686
uart_wait_tx_done..686
uart_write_bytes...686
uart_write_bytes_with_break..687

UART low level APIs..687
uartAttach...687
Uart_Init..687

Page 24

uart_div_modify..688
uart_buff_switch..688
uart_tx_switch...688
uart_baudrate_detect..688
uart_rx_one_char..688
uart_tx_wait_idle...688
uart_tx_flush...688
uart_tx_one_char..688
uart_tx_one_char2..688

I2C APIs..688
i2c_cmd_link_create...688
i2c_cmd_link_delete...689
i2c_driver_delete..689
i2c_driver_install...690
i2c_get_data_mode..690
i2c_get_data_timing..691
i2s_get_period..691
i2c_get_start_timing..691
i2c_get_stop_timing..692
i2c_isr_free...692
i2c_isr_register...692
i2c_master_cmd_begin...692
i2c_master_read...693
i2c_master_read_byte..694
i2c_master_start...694
i2c_master_stop...695
i2c_master_write...695
i2c_master_write_byte..695
i2c_param_config...696
i2c_reset_rx_fifo...696
i2c_reset_tx_fifo..697
i2c_set_data_mode..697
i2c_set_data_timing..697
i2c_set_period..698
i2c_set_pin...698
i2c_set_start_timing..698
i2c_set_stop_timing..699
i2c_slave_read_buffer...699
i2c_slave_write_buffer..699

SPI APIs..700
spi_bus_add_device...700
spi_bus_free...701

Page 25

spi_bus_initialize...702
spi_bus_remove_device...703
spi_device_get_trans_result...703
spi_device_queue_trans...703
spi_device_transmit..705

I2S APIs..706
i2s_driver_install...706
i2s_driver_uninstall...706
i2s_pop_sample..706
i2s_push_sample..706
i2s_read_bytes...707
i2s_set_pin...707
i2s_set_sample_rates...707
i2s_start..707
i2s_stop..707
i2s_write_bytes...707
i2s_zero_dma_buffer..707

RMT APIs..707
rmt_clr_intr_enable_mask...707
rmt_config...708
rmt_driver_install..709
rmt_driver_uninstall..709
rmt_fill_tx_items..710
rmt_get_clk_div...710
rmt_get_mem_block_num..710
rmt_get_mem_pd..711
rmt_get_memory_owner...711
rmt_get_ringbuf_handler...711
rmt_get_rx_idle_thresh...712
rmt_get_status..712
rmt_get_source_clk..712
rmt_get_tx_loop_mode...713
rmt_isr_deregister...713
rmt_isr_register...713
rmt_memory_rw_rst..714
rmt_rx_start..714
rmt_rx_stop...714
rmt_set_clk_div...715
rmt_set_err_intr_en..715
rmt_set_idle_level...715
rmt_set_intr_enable_mask..715
rmt_set_mem_block_num...716
rmt_set_mem_pd..716
rmt_set_memory_owner...716

Page 26

rmt_set_pin...716
rmt_set_rx_filter..717
rmt_set_rx_idle_thresh...717
rmt_set_rx_intr_en..718
rmt_set_tx_carrier...718
rmt_set_tx_intr_en..718
rmt_set_tx_loop_mode...718
rmt_set_tx_thr_intr_en..719
rmt_set_source_clk...719
rmt_tx_start...719
rmt_tx_stop...720
rmt_wait_tx_done...720
rmt_write_items..720

LEDC/PWM APIs...721
ledc_bind_channel_timer..721
ledc_channel_config...721
ledc_fade_func_install..722
ledc_fade_start...722
ledc_fade_func_uninstall..722
ledc_get_duty...722
ledc_get_freq..723
ledc_set_duty..723
ledc_isr_register...724
ledc_set_fade...724
ledc_set_fade_with_step..725
ledc_set_fade_with_time..725
ledc_set_freq..725
ledc_stop..726
ledc_timer_config..726
ledc_timer_pause...727
ledc_timer_resume...727
ledc_timer_rst...728
ledc_timer_set..728
ledc_update_duty...729

Pulse Counter..729
pcnt_counter_clear...729
pcnt_counter_pause...729
pcnt_counter_resume...729
pcnt_event_disable...729
pcnt_event_enable...730
pcnt_filter_enable...730
pcnt_filter_disable...730

Page 27

pcnt_get_counter_value..730
pcnt_get_event_value...730
pcnt_get_filter_value...730
pcnt_intr_enable...730
pcnt_intr_disable...730
pcnt_isr_register...730
pcnt_set_event_value...731
pcnt_set_filter_value...731
pcnt_set_mode...731
pcnt_set_pin...731
pcnt_uint_config..731

Logging...731
esp_log_level_set...731
esp_log_set_vprintf...732
esp_log_write..732

Non Volatile Storage..733
nvs_close..733
nvs_commit..734
nvs_erase_all..734
nvs_erase_key..734
nvs_flash_init..734
nvs_flash_init_custom...735
nvs_get_blob..735
nvs_get_str...736
nvs_get_i8..736
nvs_get_i16..736
nvs_get_i32..737
nvs_get_i64..737
nvs_get_u8...737
nvs_get_u16...738
nvs_get_u32...738
nvs_get_u64...739
nvs_open..739
nvs_set_blob...740
nvs_set_str...740
nvs_set_i8..740
nvs_set_i16..741
nvs_set_i32..741
nvs_set_i64..741
nvs_set_u8...741
nvs_set_u16...742
nvs_set_u32...742
nvs_set_u64...742

Partition API..743

Page 28

esp_partition_erase_range...743
esp_partition_find...743
esp_partition_find_first..744
esp_partition_get..746
esp_partition_iterator_release..747
esp_partition_mmap...747
esp_partition_next..747
esp_partition_read..747
esp_partition_write..748

Virtual File System..748
esp_vfs_dev_uart_register..748
esp_vfs_register...748

FatFs file system...753
esp_vfs_fat_register...753
esp_vfs_fat_sdmmc_mount..753
esp_vfs_fat_sdmmc_unmount..755
esp_vfs_fat_spiflash_mount...755
esp_vfs_fat_spiflash_unmount...756
esp_vfs_fat_unregister..756
esp_vfs_fat_unregister_path...757
f_mount...757
ff_diskio_register...757

SPI Flash...757
spi_flash_erase_range..758
spi_flash_erase_sector...758
spi_flash_get_chip_size..758
spi_flash_get_counters...759
spi_flash_init...759
spi_flash_mmap..759
spi_flash_mmap_dump...760
spi_flash_munmap..760
spi_flash_read..760
spi_flash_reset_counters..760
spi_flash_write..760

SDMMC...761
sdmmc_card_init...761
sdmmc_card_print_info...761
sdmmc_host_deinit...761
sdmmc_host_do_transaction..761
sdmmc_host_init...761
sdmmc_host_init_slot...762
sdmmc_host_set_bus_width...762

Page 29

sdmmc_host_set_card_clk...762
sdmmc_read_sectors..762
sdmmc_write_sectors...762

Hardware Timers...763
timer_disable_intr...763
timer_enable_intr..763
timer_get_alarm_value...763
timer_get_config...764
timer_get_counter_time_sec...765
timer_get_counter_value..765
timer_group_intr_enable...766
timer_group_intr_disable..766
timer_isr_register..766
timer_init...767
timer_pause..767
timer_set_counter_value...768
timer_start...768
timer_set_alarm..768
timer_set_alarm_value..769
timer_set_auto_reload..769
timer_set_counter_mode..770
timer_set_divider..771

Watchdog processing..771
esp_int_wdt_init..772
esp_task_wdt_init...772
esp_task_wdt_feed...772
esp_task_wdt_delete..772

AWS-IoT..772
aws_iot_is_autoreconnect_enabled..772
aws_iot_mqtt_attempt_reconnect...772
aws_iot_mqtt_autoreconnect_set_status..773
aws_iot_mqtt_connect..773
aws_iot_mqtt_disconnect..774
aws_iot_mqtt_get_client_state..774
aws_iot_mqtt_get_network_disconnected_count..774
aws_iot_mqtt_get_next_packet_id..775
aws_iot_mqtt_init..775
aws_iot_mqtt_is_client_connected...775
aws_iot_mqtt_publish...776
aws_iot_mqtt_reset_network_disconnected_count...776
aws_iot_mqtt_resubscribe..776
aws_iot_mqtt_set_connect_params..776
aws_iot_mqtt_set_disconnect_handler...777
aws_iot_mqtt_subscribe...777

Page 30

aws_iot_mqtt_unsubscribe...778
aws_iot_mqtt_yield...778

JSON processing..778
HTTP/2 processing..781
Parsing XML – expat...781
Arduino – ESP32 HAL for UART...781

uartAvailable...781
uartBegin..781
uartEnd...782
uartFlush...782
uartGetBaudRate..782
uartGetDebug...783
uartPeek...783
uartRead...783
uartSetBaudRate..783
uartSetDebug..784
uartWrite...784
uartWriteBuf..784

Arduino – ESP32 HAL for I2C...784
i2cAttachSCL..784
i2cAttachSDA..785
i2cDetachSCL...785
i2cDetachSDA..785
i2cGetFrequency..785
i2cInit..785
i2cRead..785
i2cSetFrequency...786
i2cWrite...786

Arduino – ESP32 HAL for SPI...786
spiAttachMISO..786
spiAttachMOSI..787
spiAttachSCK..787
spiAttachSS..787
spiClockDivToFrequency..787
spiDetachMISO...787
spiDetachMOSI...787
spiDetachSCK..787
spiDetachSS...787
spiDisableSSPins...788
spiEnableSSPins..788
spiFrequencyToClockDiv..788
spiGetBitOrder..788

Page 31

spiGetClockDiv...788
spiGetDataMode...788
spiRead..789
spiReadByte...789
spiReadLong...789
spiReadWord..789
spiSetBitOrder..789
spiSetClockDiv..789
spiSetDataMode...789
spiSSClear..790
spiSSDisable..790
spiSSEnable...790
spiSSSet...790
spiStartBus...790
spiStopBus...791
spiTransferBits..791
spiTransferBytes...792
spiWaitReady..792
spiWrite...792
spiWriteByte..792
spiWriteLong...792
spiWriteWord..792

Newlib...792
abort...793
abs..793
asctime...793
atoi..794
atol..794
bzero...794
calloc..794
check_pos..795
close...795
creat..795
ctime...795
div...796
environ..796
fclose..796
fflush...796
fmemopen...797
fprintf...797
fread...797
free...798
fscanf..798
fseek...798

Page 32

fstat...798
fwrite...798
gettimeofday...799
gmtime..800
isalnum...800
isalpha..800
isascii..800
isblank..801
isdigit..801
islower..801
isprint..801
ispunct..801
isspace...802
isupper..802
itoa..802
labs...802
ldiv..802
localtime...803
malloc...803
memchr...803
memcmp...803
memcpy..804
memmove...804
memrchr...804
memset...804
mkdir...805
mktime..805
open..805
open_memstream...806
printf..807
qsort..807
rand..807
read..807
readdir..808
realloc...808
scanf...808
setenv...808
setlocale...808
settimeofday...808
sprintf..809
srand...809
sscanf...809

Page 33

stat..809
strcasecmp...810
strcasestr..810
strcat...810
strchr...810
strcmp...810
strcoll..810
strcpy..811
strcspn..811
strdup..811
strerror..811
strftime..812
strlcat..812
strlcpy...812
strlen...812
strncasecmp...812
strncat...812
strncmp...813
strncpy..813
strndup..813
strnlen...813
strrchr...813
strsep..813
strspn..813
strstr..814
strtod...814
strtof..814
strtol..814
strtoul..814
strupr..814
time...814
times...815
toascii...815
tolower..815
toupper...815
tzset..816
ungetc...816
unlink..816
utoa...816
vprintf..816
vscanf...817
write..817

SPIFFs API..817
SPIFFS_check..817

Page 34

SPIFFS_clearerr...817
SPIFFS_close...818
SPIFFS_closedir...818
SPIFFS_creat...818
SPIFFS_eof..818
SPIFFS_errno...818
SPIFFS_fflush...820
SPIFFS_format...820
SPIFFS_fremove..820
SPIFFS_fstat..821
SPIFFS_gc...821
SPIFFS_gc_quick...821
SPIFFS_info...822
SPIFFS_lseek...822
SPIFFS_mount...822
SPIFFS_mounted...823
SPIFFS_open...823
SPIFFS_open_by_dirent...824
SPIFFS_open_by_page..824
SPIFFS_opendir...825
SPIFFS_read..825
SPIFFS_readdir..825
SPIFFS_remove...826
SPIFFS_rename...826
SPIFFS_stat...826
SPIFFS_tell...827
SPIFFS_unmount...827
SPIFFS_write..827

Eclipse Paho – MQTT Embedded C..828
MQTTClientInit..828
MQTTConnect..828
MQTTDisconnect..829
MQTTPublish..829
MQTTRun...830
MQTTSubscribe..830
MQTTUnsubscribe..831
MQTTYield..831
NetworkConnect...831

Arduino ESP32 Libraries...831
Arduino WiFi library..831

WiFi.begin..832
WiFi.beingSmartConfig..832

Page 35

WiFi.beginWPSConfig..832
WiFi.BSSID..833
WiFi.BSSIDstr..833
WiFi.channel..833
WiFi.config...833
WiFi.disconnect..834
WiFi.dnsIP..834
WiFi.enableAP...834
WiFi.enableSTA...834
WiFi.encryptionType...834
WiFi.gatewayIP..835
WiFi.getAutoConnect...835
WiFi.getMode...835
WiFi.getNetworkInfo...835
WiFi.hostByName..835
WiFi.hostname...836
WiFi.isConnected...836
WiFi.isHidden...836
WiFi.localIP..836
WiFi.macAddress...836
WiFi.mode..837
Wifi.persistent...837
WiFi.printDiag...837
WiFi.psk...838
WiFi.RSSI...838
WiFi.scanComplete..838
WiFi.scanDelete...838
WiFi.scanNetworks...839
WiFi.setAutoConnect..839
WiFi.setAutoReconnect..839
WiFi.smartConfigDone...839
WiFi.softAP..840
WiFi.softAPConfig..840
WiFi.softAPdisconnect...840
WiFi.softAPmacAddress...840
WiFi.softAPIP...840
WiFi.SSID...841
WiFi.status...841
WiFi.stopSmartConfig..841
WiFi.subnetMask..841
WiFi.waitForConnectResult..842

Arduino WiFiClient..842
WiFiClient...842
WiFiClient.available..842

Page 36

WiFiClient.connect...842
WiFiClient.connected...843
WiFiClient.flush..843
WiFiClient.getNoDelay...843
WiFiClient.peek..843
WiFiClient.read...843
WiFiClient.remoteIP...843
WiFiClient.remotePort..843
WiFiClient.setLocalPortStart..844
WiFiClient.setNoDelay...844
WiFiClient.setOption...844
WiFiClient.status..844
WiFiClient.stop...844
WiFiClient.stopAll...844
WiFiClient.write..844

Arduino WiFiServer...845
WiFiServer...845
WiFiServer.available...845
WiFiServer.begin..845
WiFiServer.getNoDelay..845
WiFiServer.hasClient..845
WiFiServer.setNoDelay..845
WiFiServer.status...845
WiFiServer.write...845

Arduino IPAddress..846
Arduino SPI..846

SPI.begin...846
SPI.beginTransaction...846
SPI.end..846
SPI.endTransaction..846
SPI.setBitOrder..847
SPI.setClockDivider..847
SPI.setDataMode...847
SPI.setFrequency...847
SPI.setHwC..847
SPI.transfer..847
SPI.transfer16..847
SPI.transfer32..847
SPI.transferBytes...847
SPI.transferBits..847
SPI.write...848
SPI.wirite16..848

Page 37

SPI.write32...848
SPI.writeBytes..848
SPI.writePattern...848

Arduino I2C – Wire...848
Wire.available...849
Wire.begin..849
Wire.beginTransmission...849
Wire.endTransmission..850
Wire.flush...850
Wire.onReceive..850
Wire.onReceiveService..850
Wire.onRequest...850
Wire.onRequestService..851
Wire.peek...851
Wire.pins..851
Wire.read...851
Wire.requestFrom..852
Wire.setClock...852
Wire.write...852

Arduino Ticker library..852
Ticker...853
attach...853
attach_ms..853
detach..853
once...854
once_ms..854

Arduino EEPROM library..854
EEPROM.begin..854
EEPROM.commit...854
EEPROM.end...854
EEPROM.get..855
EEPROM.getDataPtr..855
EEPROM.put..855
EEPROM.read...855
EEPROM.write...855

Arduino SPIFFS..855
SPIFFS.begin...855
SPIFFS.open..856
SPIFFS.openDir...856
SPIFFS.remove..856
SPIFFS.rename...856
File.available..856
File.close..857
File.flush...857

Page 38

File.name...857
File.peek..857
File.position..857
File.read...857
File.seek...857
File.size..858
File.write...858
Dir.fileName..858
Dir.next...858
Dir.open..858
Dir.openDir...858
Dir.remove..858
Dir.rename..858

Arduino ESP library...858
ESP.eraseConfig..858
ESP.getChipId..859
ESP.getCpuFreqMHz...859
ESP.getCycleCount..859
ESP.getFlashChipMode...859
ESP.getFlashChipSize...859
ESP.getFlashChipSpeed..859
ESP.getFreeHeap...859
ESP.getOption..859
ESP.getSdkVersion..859
ESP.flashEraseSector..859
ESP.flashRead...859
ESP.flashWrite..860
ESP.magicFlashChipSize...860
ESP.magicFlashChipSpeed..860
ESP.restart...860

Arduino String library..860
Constructor...860
String.c_str...860
String.reserve...860
String.length...860
String.concat..861
String.equalsIgnoreCase..861
String.startsWith...861
String.endsWith..861
String.charAt..861
String.setCharAt...861
String.getBytes...861

Page 39

String toCharArray...861
String.indexOf..861
String.lastIndexOf...861
String.substring..862
String.replace...862
String.remove...862
String.toLowerCase..862
String.toUpperCase..862
String.trim...862
String.toInt..862
String.toFloat..862

Reference materials...862
C++ Programming...862

Eclipse configuration...862
Simple class definition..863
Mixing C and C++...865
Including stdc++ in your app...865
C++ Specialized Data types..866

String..866
List...866
Map..866
Queue..867
Stack..867
Vector...867

Lambda functions...868
Designated initializers not available in C++...868
Ignoring warnings...868
File I/O in C++...869
The Factory pattern..869
Logging pre-defined symbols..870

The ESP-IDF C++ class libraries...870
GPIO interactions...871
Task management..871
SPI Interaction..872
Bluetooth BLE...872

A BLE Server..874
A BLE Client...880

POSIX file system APIs...884
Documenting your code – Doxygen...885
Creating a build environment on the Raspberry Pi 3...885
Makefiles...888

The component.mk settings..891
Forums..892
Reference documents...892

Page 40

Github..892
Github quick cheats..893

Installing Ubuntu on Virtual Box...893
Single board computer comparisons..899
Areas to Research...899

Page 41

Introduction
Howdy Folks,

I've been working in the software business for over 30 years but until recently, hadn't been playing directly
with Micro Processors. When I bought a Raspberry PI and then an Arduino, I'm afraid I got hooked. In
my house I am surrounded by computers of all shapes, sizes and capacities … any one of them with
orders of magnitude more power than any of these small devices … however, I still found myself
fascinated.

When I stumbled across the ESP8266 in early 2015, it piqued my interest. I hadn't touched C
programming in decades (I'm a Java man these days). As I started to read what was available in the way
of documentation from the excellent community surrounding the device, I found that there were only small
pockets of knowledge. The best source of information was (and still is) the official PDFs for the SDK from
Espressif (the makers of the ESP8266) but even that is quite "light" on examples and background. As I
studied the device, I started to make notes and my pages of notes continued to grow and grow. About a
year later, the ESP32 found its way into my possession.

This book (if we want to call it that) is my collated and polished version of those notes. Rather than keep
them to myself, I offer them to all of us in the ESP32 community in the hope that they will be of some
value. My plan is to continue to update this work as we all learn more and share what we find in the
community forums. As such, I will re-release the work at regular intervals so please check back at the
book's home page for the latest.

As you read, make sure that you fully understand that there are undoubtedly inaccuracies, errors in my
understanding and errors in my writing. Only by feedback and time will we be able to correct those.
Please forgive the grammatical errors and spelling mistakes that my spell checker hasn't caught.

Please don't email me directly with technical questions. Instead, let us use the forum and ask and answer
the questions as a great community of ESP32 minded enthusiasts, hobbyists and professionals.

Neil Kolban
Texas, USA

Page 42

Important Documentation Notes – ESP8266 and ESP32
At the start of 2015 I released a book of notes on ESP8266 and the ESP32 was still a
long way off. At the time we knew very little about the ESP32 and my initial thinking
was that I would cover both the ESP8266 and the ESP32 in one book. Now that we
have the ESP32 it has become obvious that the distinctions between that device and
the ESP8266 are far too great to be accommodated in one document. If we tried to
merge the two we would be forever reading that "this applies to ESP8266" and "that
applies to ESP32". As such, this book is explicitly for the ESP32. However … there is
currently a catch. Since there is indeed a goodly amount of material that is common to
both devices, rather than start from scratch on a new book, I have taken the ESP8266
book as a base and am working through this book reworking it for ESP32 exclusivity.
This is a work in progress. I have added the majority of what is new in ESP32 but
haven't yet gotten to removing much of what is ESP8266 specific. As such, when your
read this work, you will have to pay attention because some of the story is ESP8266
only and will either be removed or reworked over the period ahead.

Overview
A micro controller is an integrated circuit that is capable of running programs. There are
many instances of those on the market today from a variety of manufacturers. The
prices of these micro controllers keeps falling. In the hobbyist market, an open source
architecture called "Arduino" that uses the Atmel range of processors has caught the
imagination of countless folks. The boards containing these Atmel chips combined with
a convention for connections and also a free set of development tools has lowered the
entry point for playing with electronics to virtually nill. Unlike a PC, these processors are
extremely low end with low amounts of ram and storage capabilities. They won't be
replacing the desktop or laptop any time soon. For those who want more "oomph" in
their processors, the folks over at Raspberry PI have developed a very cheap (~$45)
board that is based on the ARM processors that has much more memory and uses
micro SD for persistent data storage. These devices run a variant of the Linux
operating system. I'm not going to talk further about the Raspberry PI as it is in the
class of "computer" as opposed to microprocessor.

These micro controllers and architectures are great and there will always be a place for
them. However, there is a catch … and that is networking. These devices have an
amazing set of capabilities including direct electrical inputs and outputs (GPIOs) and
support for a variety of protocols including SPI, I2C, UART and more, however, few of
them so far come with wireless networking included.

Page 43

No question (in my mind) that the Arduino has captured everyone’s attention. The
Arduino is based on the Atmel chips and has a variety of physical sizes in its open
hardware footprints. The primary micro controller used is the ATmega328. One can
find instances of these raw processors on eBay for under $2 with fully constructed
boards containing them for under $3. This is 10-20 times cheaper than the Raspberry
PI. Of course, one gets dramatically less than the Raspberry PI so comparison can
become odd … however if what one wants to do is tinker with electronics or make some
simple devices that connect to LEDs, switches or sensors, then the functional features
needed become closer.

Between them, the Arduino and the Raspberry PI appear to have all the needs covered.
If that were the case, this would be a very short book. Let us add the twist that we
started with … wireless networking. To have a device move a robot chassis or flash
LED patterns or make some noises or read data from a sensor and beep when the
temperature gets too high … these are all great and worthy projects. However, we are
all very much aware of the value of the Internet. Our computers are Internet connected,
our phones are connected, we watch TV (Netflix) over the Internet, we play games over
the Internet, we socialize (??) over the Internet … and so on. The Internet has become
such a basic commodity that we would laugh if someone offered us a new computer or
a phone that lacked the ability to go "on-line".

Now imagine what a micro controller with native wireless Internet could do for us? This
would be a processor which could run applications as well as or better than an Arduino,
which would have GPIO and hardware protocol support, would have RAM and flash
memory … but would have the killer new feature that it would also be able to form
Internet connections. And that … simply put … is what the ESP32 device is. It is an
alternative microprocessor to the ones already mentioned but also has WiFi and TCP/IP
(Transmission Control Protocol / Internet Protocol) support already built in. What is
more, it is also not much more expensive than an Arduino. Searching eBay, we find
ESP32 modules around the $6 price point.

The ESP32
The ESP32 is the name of a micro controller designed by Espressif Systems. Espressif
is a Chinese company based out of Shanghai. The ESP32 advertises itself as a self-
contained WiFi networking solution offering itself as a bridge from existing micro
controllers to WiFi … and … is also capable of running self contained applications.

Volume production of the ESP32 didn't start until the late of 2016 which means that, in
the scheme of things, this is a brand new entry in the line-up of processors. And … in
our technology hungry world, new commonly equates to interesting. A couple of years
after IC production, 3rd party OEMs are taking these chips and building "breakout

Page 44

boards" for them. If I were to hand you a raw ESP32 straight from the factory, it is
unlikely we would know what to do with one. They are very tiny and virtually impossible
for hobbyists to attach wires to allow them to be plugged into breadboards. Thankfully,
OEMs bulk purchase the ICs, design basic circuits, design printed circuit boards and
construct pre-made boards with the ICs pre-attached immediately ready for our use. It
is these boards that capture our interest and that we can buy for a few dollars on eBay.

There are a variety of board styles available but from a programming perspective, they
are all the same.

The ESP32 specification
When we look at a new electronic device, we are always interested in its specifications.
This is the set of characteristics as described by the manufacturer. Sometimes it is
immediately obvious to us what a specification item means and for others, it takes some
time to appreciate its ramifications. Here is a summary list of the core ESP32 items:

Attribute Details

Voltage 3.3V

Current consumption Unknown

Flash memory attachable Module based

Processor Tensilica L108 32 bit

Processor speed Dual 160MHz

RAM 520K

GPIOs 34

Analog to Digital 7

802.11 support 11b/g/n/e/i

Bluetooth BLE

Maximum concurrent TCP connections 16

SPI 3

I2S 2

I2C 2

UART 3

The ESP32 is a dual core processor running the Xtensa LX6 instructions. The cores
are called "PRO_CPU" and "APP_CPU".

The question of determining how long an ESP32 can run on batteries is an interesting
one. The current consumption is far from constant. When transmitting at full power, it

Page 45

can consume 260mA but when in a deep sleep, it only need 20uA. That is quite a
difference. This means that the run-time of an ESP32 on a fixed current reservoir is not
just a function of time but also of what it is doing during that time … and that is a
function of the program deployed upon it.

The ESP32 is designed to be used with a partner memory module and this is most
commonly flash memory. Most of the modules come with some flash associated with
them. Realize that flash has a finite number of erases per page before something fails.
They are rated at about 10,000 erases. This is not normally an issue for configuration
change writes or daily log writes … but if your application is continually writing new data
extremely fast, then this may be an issue and your flash memory will fail.

Modules
At the time of writing, the ESP32 has only recently become generally available, as such
there are still relatively few modules to be bought.

ESP-WROOM-32
A module called the ESP-WROOM-32 is available from Espressif that contains an
ESP32 plus accompanying supporting hardware such as flash memory. Don't mistake
this for a breadboard friendly device … this is much more oriented to those with good
electronics skills that wish to embed an ESP32 in a specific project. The module is only
18mm x 25.5mm and has pin spacings at the 1.27mm pitch. This is an extremely small
spacing.

The fantastic web site called PIGHIXXX provides the most top quality pin-out images I
have ever seen. Please visit their site. They have pin-outs for almost every
conceivable device I have ever wanted to know about.

Here is a schematic of the current device:

Page 46

The WROOM-32 uses 6 GPIO pins for driving the external flash and these must not be
used for other purposes. They are off limits. The pins are GPIO6, GPIO7, GPIO8,
GPIO9, GPIO10 and GPIO11.

See also:

• ESP-WROOM-32 Datasheet

• Adafruit – seller of devices in US

• ESP-WROOM-32 Home Page

ESP32-DevKitC
With the release of the ESP32, Espressif have released their own module for exposing
the ESP32 to more consumers. The board they have produced is called the "ESP32-
DevKit" and is considered bread-board friendly.

Page 47

http://www.espressif.com/en/products/hardware/esp-wroom-32/overview
https://www.adafruit.com/products/3320
https://espressif.com/sites/default/files/documentation/esp_wroom_32_datasheet_en.pdf

The board contains headers for the ESP32 as well as a micro USB adapter and two
buttons called enable and boot. These buttons can be used to "flash" or "download"
new application code into the module. To perform this task, hold the "EN" button down
while pressing and releasing "Boot".

The pin out of the module is shown in the following image:

Page 48

To reboot the device, pulse EN low. If GPIO0 is high, the device will normal boot while if
GPIO0 is low, it will boot into flash mode allowing us to upload a new application into the
device's flash storage.

See also:

• ESP32-DevKitC – Getting Started Guide

• ESP32-DevKitC home page

• Adafruit reseller

ESP-WROVER-KIT
The ESP-WROVER-KIT is the be-all and end-all of ESP32 development. It is pricier
than the other modules coming in at about $50, however it is without question the most
"robust" module currently available. It sports an LCD display, a socket for a camera, an
on/off switch, a micro-sd connector, an RGB LED and many broken out connector pins.

The pins are broken out both on the front and rear.

This module is not at all bread-board friendly but that should be inherently understood
from its purpose.

Here is the schematic of the USB interface:

Page 49

https://www.adafruit.com/products/3269
http://www.espressif.com/en/products/hardware/esp32-devkitc/overview
https://espressif.com/sites/default/files/documentation/esp32-devkitc_getting_started_guide_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-devkitc_getting_started_guide_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-devkitc_getting_started_guide_en.pdf

The LED anode pins are connected to IO2, IO0 and IO4.

The camera is connected:

Function Pin

SIO_C IO27

SIO_D IO26

VSYNC IO25

HREF IO23

PCLK IO22

XCLK IO21

RESET IO2

D0 IO4

D1 IO5

D2 IO18

D3 IO19

D4 IO36

D5 IO39

D6 IO34

D7 IO35

PWDN GND

The LCD screen is SPI attached at:

Page 50

Function Pin

RESET IO18

CLK IO19

D/C IO21

CS IO22

MOSI IO23

MISO IO25

Backlight? IO5

There is an RGB led attached to GPIO 0, GPIO 2 and GPIO 4 (Blue)

The module can be powered from an external 2.5m power source (5V) or from USB.
There is a jumper which must be in place to select which is enabled.

Page 51

In addition, you should also enable the UARTs with two jumpers here:

There have been a number of releases of the WROVER board. Unfortunately,
determining which board you have is not the easiest task because the identity isn't on
the boad. The following are good indications:

• red board, female camera header – V1

• black (shiny) board, male camera header – V2

• black (matte) board, female camera header – V3

See also: ESP32 Modules and Boards for good pictures to aid in identification.

The USB device is an FTDI2232HL. This manifests as two serial ports. On Linux these
are /dev/ttyUSB0 and /dev/ttyUSB1. It is /dev/ttyUSB1 that we wish to use for console
and flashing.

Page 52

http://esp-idf.readthedocs.io/en/latest/hw-reference/modules-and-boards.html

Given that the WROVER's primary distinction between itself and the WROOM is the
inclusion of the 4MBytes of psRAM we want to take advantage of this. At this early date
(2017-07), we are required to use a distinct build environment that includes a custom
compiler and a custom build of the ESP-IDF (Special instructions).

In summary, the ESP-IDF is:

https://github.com/espressif/esp-idf/tree/feature/psram_malloc

and the tool chain is:

See also:

• ESP-WROVER-KIT Home Page

• ESP-WROVER-KIT Getting Started Guide

• Complete Schematic – V1

• Complete Schematic – V 2

• Complete Schematic – V3

• Adafruit reseller

• FTDI – FT2232H home page

The SparkFun ESP32 thing
SparkFun make an ESP32 board called the "ESP32 Thing".

One of the distinguishing features of this board is the built in battery charger socket.
We can use this board with a LIPO battery and charge that battery at the same time.

Page 53

http://www.ftdichip.com/Products/ICs/FT2232H.html
https://www.adafruit.com/product/3384
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP32-DevKitJ-v1_sch.pdf
https://dl.espressif.com/dl/schematics/ESP32-DevKitJ-v1_sch.pdf
http://esp-idf.readthedocs.io/en/latest/get-started/get-started-wrover-kit.html
http://www.espressif.com/en/products/hardware/esp-wrover-kit/overview
https://github.com/espressif/esp-idf/tree/feature/psram_malloc
https://www.esp32.com/viewtopic.php?f=13&t=2031

The width of the Sparkfun board allows it to sit in a breadboard with one row open either
side of it. This makes it more convenient for quick prototyping.

See also:

• SparkFun ESP32 Thing

Connecting to the ESP32
The ESP32 is a WiFi device and hence we will eventually connect to it using WiFi
protocols but some bootstrapping is required first. The device doesn't know what
network to connect to, which password to use and other necessary parameters. This of
course assumes we are connecting as a station, if we wish the device to be an access
point or we wish to load our own applications into it, the story gets deeper. This implies
that there is a some way to interact with the device other than WiFi and there is … the
answer is UART (Serial). The ESP32 has a dedicated UART interface with pins labeled
TX and RX. The TX pin is the ESP32 transmission (outbound from ESP32) and the RX
pin is used to receive data (inbound into the ESP32). These pins can be connected to a

Page 54

https://www.sparkfun.com/products/13907

UART partner. By far the easiest and most convenient partner for us is a USB → UART
converter. These are discussed in detail later in the book. For now let us assume that
we have set those up. Through the UART, we can attach a terminal emulator to send
keystrokes and have data received from the ESP32 displayed as characters on the
screen. A second purpose of the UART is to receive binary data used to "flash" the
flash memory of the device to record new applications for execution. There are a
variety of technical tools at our disposal to achieve that task.

When we use a UART, we need to consider the concept of a baud rate. This is the
speed of communication of data between the ESP32 and its partner. During boot, the
ESP32 attempts to automatically determine the baud rate of the partner and match it. It
assumes a default of 115200 and if you have a serial terminal attached, you will see a
message like:

???

if it is configured to receive at 115200.

When connected to a Windows 10 machine via micro USB, it shows up as a serial
device:

The default serial baud rate is 115200.

Once the ESP32 is serially connected, we typically want to attach a monitor or terminal
emulator against the device. The ESP-IDF framework provides a nice technique to
achieve that. We can run the command "make monitor". This launches a monitor tool
that tails the ESP32 serial output. This tool is based on "miniterm" which is part of the
"PySerial" package. We can terminate miniterm with CTRL+].

From a Linux environment, we see the serial port (usually) as /dev/ttyUSB0. If we
install the "screen" application, we can then connect a terminal using:

$ screen /dev/ttyUSB0 115200

To exit screen, enter "CTRL+A" followed by ":quit".

An an alternative to screen, we also have "cu":

$ cu -l /dev/ttyUSB0 -s 115200

To terminate the program enter "~."

Another program is "minicom":

$ minicom --baudrate 115200 --device /dev/ttyUSB0

Page 55

And of course, since the serial port is just a stream of characters, there is nothing to
prevent you from simply running "cat" against it:

$ cat /dev/ttyUSB0

If we are not sure about the settings of the serial port, we can run:

$ stty -F /dev/ttyUSB0 -a

which will return the current settings. Following a flash, you may need to change some
setting to perform a simple cat:

$ stty -F /dev/ttyUSB0 ispeed 115200 ospeed 115200 min 100 ixon

See also:

• USB to UART converters
• Loading a program

• Screen user's manual

• PySerial – miniterm

• man(1) – stty

Assembling circuits
Since the ESP32 is an actual electronic component, some physical assembly is
required. This book will not attempt to cover non-ESP32 electronics as that is a very big
and broad subject in its own right. However, what we will do is describe some of the
components that we have found extremely useful while building ESP32 solutions.

USB to UART converters
You can't program an ESP32 without supplying it data through a UART. The easiest
way to achieve this is through the use of a USB to UART converter. I use the devices
that are based upon the CP2102 which can be found cheaply on eBay for under $2
each. Another popular brand are the devices from Future Technology Devices
International (FTDI). You will want at least two. One for programming and one for
debugging. I suggest buying more than two just in case …

When ordering, don't forget to get some male-female USB extender cables as it is
unlikely you will be able to attach your USB devices to both a breadboard and the PC at

Page 56

https://linux.die.net/man/1/stty
http://pyserial.readthedocs.io/en/latest/tools.html#module-serial.tools.miniterm
https://www.gnu.org/software/screen/manual/screen.html

the same time via direct connection and although connector cables will work, plugging
into the breadboard is just so much easier. USB connector cables allow you to easily
connect from the PC to the USB socket to the UART USB plug. Here is an image of the
type of connector cable I recommend. Get them with as short a cable length as
possible. 12-24 inches should be preferred.

When we plug in a USB → UART into a Windows machine, we can learn the COM port
that the new serial port appears upon by opening the Windows Device Manager. There
are a number of ways of doing this, one way is to launch it from the DOS command
window with:

mmc devmgmt.msc

Under the section called Ports (COM & LPT) you will find entries for each of the COM
ports. The COM ports don't provide you a mapping that a particular USB socket is
hosting a particular COM port so my poor suggestion is to pull the USB from each
socket one by one and make a note of which COM port disappears (or appears if you
are inserting a USB).

Page 57

See also:

• Connecting to the ESP32
• Working with UART/serial

Breadboards
I find I can never have too many breadboards. I suggest getting a few full size and half
size boards along with some 24 AWG connector wire and a good pair of wire strippers.
Keep a trash bin close by otherwise you will find yourself knee deep in stripped
insulation and cut wire parts before you know it. I also recommend some Dupont male-
male pre-made wires. Ribbon cable can also be useful.

Page 58

Power
We need electricity to get these devices working. I choose the MB102 breadboard
attachable power adapters. These can be powered from an ordinary wall-wart (mains
adapter) or from USB. It appears that the plug for wall-wart power is 2.1mm and center
positive however I strongly suggest that you read your specific supplier's data sheets
very carefully. There is also a potential concern that the barrel socket is wired in parallel
with the USB input which could mean that if you attach a high voltage input (eg. 12V)
while also having a USB source connected, you may very well damage your USB
device. The devices have a master on/off power switch plus a jumper to set 3.3V or 5V
outputs. You can even have one breadboard rail be 3.3V and the other 5V … but take
care not to apply 5V to your ESP32. By having two power rails, one at 3.3V and the
other at 5V, you can power both the ESP32 and devices/circuits that require 5V.

When the ESP32 starts to transmit over wireless, that can draw a lot of current which
can cause ripples in your power supply. You may also have other sensors or devices
connected to your supply as well. These fluctuations in the voltage can cause
problems. It is strongly recommended that you place a 10 micro farad capacitor
between +ve and -ve as close to your ESP32 as you can. This will provide a reservoir
of power to even out any transient ripples. This is one of those tips that you ignore at
your peril. Everything may work just fine without the capacitor … until it doesn't or until
you start getting intermittent problems and are at a loss to explain them. Let me put it
this way, for the few cents it costs and the zero harm it does, why not?

Page 59

Multi-meter / Logic probe / Logic Analyzer
When your circuit doesn't work and you are staring at it wondering what is wrong, you
will be thankful if you have a multi-meter and a logic probe. If your budget will stretch, I
also recommend a USB based logic analyzer such as those made by Saleae. These
allow you to monitor the signals coming into or being produced by your ESP32. Think
of this as the best source of debugging available to you. Not only can these devices
display signals over time, the software also allows us to specify the protocol being used
and the content of the signal displayed at a higher level with interpretation.

See also:

• Saleae logic analyzers

• YouTube: ESP32 and logic analyzers

Sundry components
You will want the usual set of suspects for sundry components including LEDs,
resistors, capacitors and more.

Physical construction
When you have bread-boarded your circuit and written your application, there may
come a time where you wish to make your solution permanent. At that point, you will
need a soldering iron, solder and some strip-board. I also recommend some female
header sockets so that you don't have to solder your ESP32 directly into the circuits.
Not only does this allow you to reuse the devices (should you desire) but in the
unfortunate event that you fry one, it will be easier to replace.

Configuration for flashing the device
Later on in the book you will find that when it comes time to flash the device with your
new applications, you will have to set some of the GPIO pins to be low and then reboot.
This is the indication that it is now ready to be flashed. Obviously, you can build a

Page 60

https://www.youtube.com/watch?v=CE4-T53Bhu0
https://www.saleae.com/

circuit that you use for flashing your firmware and then place the device in its final circuit
but you will find that during development, you will want to flash and test pretty
frequently. This means that you will want to use jumper wires and to allow you to move
the links of pins on your breadboards from their "flash" position to their "normal use"
position.

Page 61

Programming for ESP32
The ESP32 allows you to write applications that can run natively on the device. You can
compile applications written in the C programming language and deploy them to the
device through a process known as flashing. In order for your applications to do
something useful, they have to be able to interact with the environment. This could be
making network connections or sending/receiving data from attached sensors, inputs
and outputs. In order to make that happen, the ESP32 contains a core set of functions
that we can loosely think of as the operating system of the device. The services of the
operating system are exposed to be called from your application providing a contract of
services that you can leverage. These services are fully documented. In order to
successfully write applications for deployment, you need to be aware of the existence of
these services. They become indispensable tools in your tool chest. For example, if
you need to connect to a WiFi access point, there is an API for that. To get your current
IP address, there is an API for that and to get the time since the device was started,
there is an API for that. In fact, there are a LOT of APIs available for us to use. The
good news is that no-one is expecting us to memorize all the details of their use.
Rather it is sufficient to broadly know that they exist and have somewhere to go when
you want to look up the details of how to use them.

To sensibly manage the number and variety of these exposed APIs, we can collect sets
of them together in meaningful groups of related functions. This gives us yet another
and better way to manage our knowledge and learning of them.

The primary source of knowledge on programming the ESP32 is the ESP32 SDK API
Guide. Direct links to all the relevant documents can be found at Reference documents.

See also:

• Espressif Systems – Manufacturers of the ESP8266
• Espressif Bulletin Board System – Place for SDKs, docs and forums

Espressif IoT Development framework
For the ESP32, a framework has been developed by Espressif called the IoT
Development Framework which has become commonly known as "ESP-IDF". It can be
found on Github here:

https://github.com/espressif/esp-idf

The documentation for this can be found in the esp-idf/docs folder. The documentation
is very good and should always be read thoroughly. This book should not be
considered the primary source for this information.

Page 62

https://github.com/espressif/esp-idf
http://bbs.espressif.com/
http://espressif.com/en/products/esp8266/

Here is a walk through of building an environment on Linux. The full details are found in
the doc file called "linux-setup.rst". Our environment build will be broken down into a
number of distinct parts. The first is the generation of the tool-chain which are the tools
necessary to compile the programs:

$ cd ~
$ mkdir esp32
$ cd esp32
$ sudo apt-get install git wget make libncurses-dev flex bison gperf python python-
serial
// >> Here we download and install an x86-64 build chain (compilers)
$ wget https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-61-gab8375a-
5.2.0.tar.gz
$ tar -xvf xtensa-esp32-elf-linux64-1.22.0-61-gab8375a-5.2.0.tar.gz
$ sudo mv xtensa-esp32-elf /opt
$ export PATH=/opt/xtensa-esp32-elf/bin:$PATH
// << End of build chain install

With the tools in place, what remains is the creation of the development environment
using the ESP-IDF framework:

$ git clone --recursive https://github.com/espressif/esp-idf.git
$ cd esp-idf
$ git submodule update --init
$ export IDF_PATH=~/esp32/esp-idf

At this point, we should have all the ingredients necessary for building an application.
The recommended way to build an application is to clone the Espressif template app
and use that as the basis for your own work.

$ cd ~/esp32
$ mkdir apps
$ cd apps
$ git clone https://github.com/espressif/esp-idf-template.git myapp
$ cd myapp
$ make menuconfig

At this point an attractive configuration menu is presented that allows us to customize
our build environment.

We are now ready to compile our application:

Page 63

$ make

The targets that we can make are:

• make menuconfig – Run the configuration menu.

• make deconfig –

• make all – Compile all the code.

• make flash – Flash the code to the device.

• make clean – Clean the build removing anything that was present previously.

• make monitor – Connect to the ESP32 serial port and display messages.

• make erase_flash – Erase the flash on the ESP32.

• make app –

• make app-flash –

• make app-clean –

• make bootloader –

• make bootloader-flash –

• make bootloader-clean –

• make partition-table –

It is important to note that the ESP-IDF is an evolving platform. It is being actively
worked upon by Espressif and the community. What that means is that from time to
time you should review how current your ESP-IDF build is and consider replacing it with
a newer build. Realize that this may result in some rework to your applications,
especially if build procedures or APIs change. If you are building production level
versions, make a note of the dates of download from Guthub so that if needed, you can
checkout those specific versions which may have worked successfully for you in the
past.

I recommend using "doxygen" to build an HTML document tree of the content of the IDF.
If you don't have doxygen installed run:

$ sudo apt-get install doxygen

Once installed, create a doxygen configuration file by running:

$ doxygen -g

Page 64

The result will be a file called "Doxyfile".

Some of the doxygen configuration changes you will want to make will include:

• INPUT=<Root of IDF Install>/components

• OUTPUT_DIRECTORY=output

• OPTIMIZE_OUTPUT_FOR_C=YES

• RECURSIVE=YES

• GENERATE_HTML=YES

• GENERATE_LATEX=NO

• EXTRACT_ALL=YES

• EXTRACT_PRIVATE=YES

• EXTRACT_PACKAGE=YES

• EXTRACT_STATIC= YES

• EXTRACT_LOCAL_CLASSES =YES

• EXTRACT_LOCAL_METHODS =YES

• CLASS_DIAGRAMS=NO

• HAVE_DOT=NO

See also:

• Github: espressif/esp-idf-template

• Github: espressif/esp-idf

• ESP-IDF Getting Started Guide

Application entry point
When your custom ESP32 application boots within an ESP32 device, it has to start
somewhere and that somewhere is called the "application entry point". The entry point
into your custom ESP32 application is a function called app_main with the following
signature:

int app_main(void)

It is your responsibility to implement this function in your C code and provide the logic
that is performed.

Page 65

http://espressif.com/sites/default/files/documentation/esp-idf_getting_started_guide_en.pdf
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf-template

How ESP-IDF works
When we type "make" in an ESP-IDF template project, the Makefile is executed. It does
us no harm in understanding how this works.

The Makefile in our project template sets a variable called "PROJECT_NAME" to the name
of our project. It then includes the Makefile found at <IDF_PATH>/make/project.mk and
make processing continues.

We can run a make with verbosity switched on to see exactly what is performed:

$ make VERBOSE=1

The build performs the following major steps:

• build the "conf" tool found in <IDF>/tools/kconfig

• The various components are built including:

◦ bt/libbt.a - Bluetooth

◦ driver/libdriver.a – Access for GPIO

◦ esp32/libesp32.a

◦ expat/libexpat.a – A C library for parsing XML

◦ freertos/libfreertos.a

◦ json/libjson.a – A C library for working with JSON

◦ log/liblog.a – Logging capabilities

◦ lwip/liblwip.a – Implementation of TCP/IP

◦ main/libmain.a

◦ mbed/libmbedtls.a – SSL/TLS support

◦ nvs_flash/libnvs_flash.a – Non Volatile storage

◦ spi_flash/libspi_flash.a – SPI flash driver

◦ tcpip_adapter/libtcpip_adapter.a – TCP/IP adapter

• Build the application

A source file compilation includes:

• -std=gnu99

• -Og

• -ggdb

• -ffunction-sections

• -fdata-sections

Page 66

• -fstrict-volatile-bitfields

• -mlongcalls

• -nostdlib

• -MMD

• -MP

• -Wall

• -Werror

• -Wno-error=unused-function

• -Wno-error=unused-but-set-variable

• -Wno-error=unused-variable

• others

The last step is the one that is likely most useful to us. At a high level it runs:

• xtensa-esp32-elf-gcc – The C compiler

• -nostdlib – Don't include the standard C library

• -L<directory> - Include a bunch of directories looking for libraries

• -u call_user_start_cpu0 – Specify the entry point into code

• -Wl,--gc-sections

• -Wl,-static

• -Wl,--start-group

• Link with the following libraries:

◦ -lbt

◦ -lbtdm_app

◦ -ldriver

◦ -lesp32
-lhal.a

◦ -lcrypto

◦ -lcore

◦ -lnet80211

◦ -lphy

◦ -lrtc

Page 67

◦ -lpp

◦ -lwpa

• Do whatever -T says

◦ -T esp32_out.ld

◦ -T esp32.common.ld

◦ -T esp32.rom.ld

◦ -T esp32.peripherals.ld

• Link with:

◦ -lexpat

◦ -lfreertos

◦ -Wl,--undefined=uxTopUsedPriority

◦ -ljson

◦ -llog

◦ -llwip

◦ -lmbedtls

◦ /home/kolban/projects/esp32/esp-idf/components/newlib/lib/libc.a

◦ /home/kolban/projects/esp32/esp-idf/components/newlib/lib/libm.a

◦ -lnvs_flash

◦ -lspi_flash

◦ -ltcpip_adapter

◦ -lmain

◦ -lgcc

◦ -Wl,--end-group

◦ -Wl,-EL

◦ -o /home/kolban/projects/esp32/apps/myapp/build/app-template.elf

◦ -Wl,-Map=/home/kolban/projects/esp32/apps/myapp/build/app-
template.map

Error handling
Most of the ESP32 functions we call can return an error indication in the event that
something goes wrong. The result is an esp_err_t which can be treated as an integer.
If the function call succeeded, then the return value is ESP_OK. Any other value is an
error indication. A macro is available called ESP_ERROR_CHECK() which takes a statement

Page 68

as a parameter. The statement is expected to return an esp_err_t. If the return is other
than ESP_OK, then an assertion is raised, the ESP32 halts and the statement is written to
the console. We must include "esp_err.h" to use this capability.

The other codes defined that are values that can be returned from ESP-IDF API calls
include:

Symbol Value

ESP_OK 0

ESP_FAIL -1

ESP_ERR_NO_MEM 257 (0x101)

ESP_ERR_INVALID_ARG 258 (0x102)

ESP_ERR_INVALID_STATE 259 (0x103)

ESP_ERR_INVALID_SIZE 260 (0x104)

ESP_ERR_NOT_FOUND 261 (0x105)

ESP_ERR_NOT_SUPPORTED 262 (0x106)

ESP_ERR_TIMEOUT 263 (0x107)

If you need to convert an error code into a string representation a sample code fragment
can be found here: https://github.com/nkolban/esp32-snippets/blob/master/error
%20handling/fragments/espToError.c

See also:

• ESP-IDF logging

The build environment menu configuration
Within a project, we can create a configuration file that controls how the build of a
project progresses. This configuration file (sdkconfig) has a very attractive menu
configuration tool that can be opened by running:

$ make menuconfig

Note: I am especially impressed with this component of the ESP-IDF. An attention to detail and quality that makes
configuration a lot nicer to use and less error prone than hand editing files.

After running the command we see a text based menu editor:

Page 69

https://github.com/nkolban/esp32-snippets/blob/master/error%20handling/fragments/espToError.c
https://github.com/nkolban/esp32-snippets/blob/master/error%20handling/fragments/espToError.c

We can tab between major components and make changes. There is even selection
context help assistance.

Under SDK tool configuration

• Compiler toolchain path/prefix – xtensa-esp32-elf-

• Python 2 interpreter – python

Under Bootloader config

• Bootloader log verbosity – Warning

• Build bootloader with Link Time Optimisation

Under Security features

• Enable secure boot in bootloader

• Enable flash encryption on boot

Under Serial flasher config

• Default serial port – /dev/ttyUSB0

• Default baud rate – 115200 baud

• Use compressed upload – false

• Flash SPI mode – DIO

• Flash SPI speed – 40MHz

• Flash size – 2MB

• Detect flash size when flashing bootloader

Page 70

• Before flashing

• After flashing

• 'make monitor' baud rate

Under Partition Table

• Partition Table – Single factory app, no OTA

Under Compiler options

• Optimisation Level – Debug (-Og)

• Assertion level – Enabled

Under Component config

• Application Level Tracing

◦ Data Destination

◦ FreeRTOS SystemView Tracing

• Amazon Web Services IoT Platform

• Bluetooth

• ESP32-specific config

◦ CPU frequency – 240MHz

◦ Reserve memory for two cores – true

◦ Use TRAX tracing feature – false

◦ Core dump destination

◦ Number of universally administered MAC address

◦ System event queue size – 32

◦ Event loop task stack size – 2048

◦ Main task stack size – 4096

◦ Inter-Processor Call (IPC) task stack size

◦ Standard-out outputs adds carriage return before newline – true

◦ Enable 'nano' formatting options for printf/scanf family

◦ UART for console output

◦ UART console baud rate

Page 71

◦ Enable Ultra Low Power (ULP) Coprocessor

◦ Panic handler behavior – Print registers and reboot

◦ Make exception and panic handlers JTAG/OCD aware

◦ Interrupt watchdog

▪ Interrupt watchdog timeout (ms)

◦ Task watchdog

▪ Invoke panic handler when Task Watchdog is triggered

▪ Task watchdog timeout (seconds)

▪ Task watchdog watches CPU0 idle task

◦ Hardware brownout detect & reset

◦ Timers used for gettimeofday function

◦ RTC clock source

◦ Number of cycles for RTC_SLOW_CLK calibration

◦ Extra delay in deep sleep wake stub (in us)

◦ Main XTAL frequency

• Wifi

◦ Software controls WiFi/Bluetooth coexistence

◦ Max number of WiFi RX buffers

◦ Max number of WiFi dynamic RX buffers

◦ Type of WiFi TX buffers

◦ Max number of WiFi dynamic TX buffers

◦ WiFi AMPDU

▪ WiFi AMPDU TX BA window size

▪ WiFi AMPDU RX BA window size

◦ WiFi NVS flash

• PHY

◦ Do phy calibration and store calibration data in NVS

◦ Use a partition to store PHY init data

◦ Max WiFi TX power

Page 72

• Enable Ethernet

• FAT Filesystem support

◦ OEM Code Page

◦ Max long filename length

• FreeRTOS

◦ Run FreeRTOS only on first core – true

◦ Xtensa timer to use as the FreeRTOS tick source – Timer 0 (int (1000) tick
rate (Hz))

◦ Tick Rate (HZ)

◦ Halt when an SMP-untested function is called

◦ Check for stack overflow – Check by stack pointer value

◦ Set a debug watchpoint as a stack overflow check

◦ Number of thread local storage pointers – 3

◦ FreeRTOS assertions – abort() on failed assertions

◦ Stop program on scheduler start when JTAG/OCD is detected – true

◦ Enable heap memory debug – false

◦ Idle Task stack size

◦ ISR stack size

◦ Use FreeRTOS legacy hooks

◦ Maximum task name length

◦ Enable FreeRTOS static allocation API

◦ FreeRTOS timer task priority

◦ FreeRTOS timer task stack size

◦ FreeRTOS timer queue length

◦ Debug FreeRTOS internals – ?

• Log output

◦ Default log verbosity – Warning

◦ Use ANSI terminal colors in log output – true

• LWIP

Page 73

◦ Enable copy between Layer2 and Layer3 packets

◦ Max number of open sockets – 4

◦ Index for thread-local-storage pointer for lwip – 0

◦ Enable SO_REUSEADDR option – false

◦ Enable SO_RCVBUF option

◦ Maximum number of NTP servers – 1

◦ Enable fragment outgoing IP packets

◦ Enable reassembly incoming fragmented IP packets

◦ Enable an ARP check on the offered address

◦ TCP/IP Task Stack Size

◦ Enable PPP support

◦ ICMP

▪ Respond to multicast pings

▪ Respond to broadcast pins

• mbedTLS

◦ TLS maximum message content length – 16384

◦ Enable mbedTLS debugging – false

◦ Enable hardware AES acceleration

◦ Enable hardware MPI (bignum) acceleration

▪ Use interrupt for MPI operations

◦ Enable hardware SHA acceleration

◦ Enable mbedtls time

▪ Enable mbedtls time data

• OpenSSL

◦ Enable OpenSSL debugging

◦ Select OpenSSL assert function

• SPI Flash driver

◦ Enable operation counters – false

◦ Enable SPI flash ROM driver patched functions

Page 74

After changing a configuration parameter, one should perform a complete clean rebuild
of the ESP-IDF environment.

Adding a custom ESP-IDF component
As you build projects, you may want to build your own custom components. To create a
component, create a directory in the root of your application called "components" and
within there, create a directory named after your new component. In that directory, we
will construct our component. It should contain:

• component.mk

• <your source files>.c

• Kconfig (optional)

Should you wish to place source files in sub-directories beneath your component
directory, you can do so and name the additional directories in "component.mk" using the
COMPONENT_SRCDIRS variable. For example:

COMPONENT_SRCDIRS:=dir1 dir2

By default, this will compile all the C source files in the component directory and link
them into a library for linking with your application. If you wish to name the source files
to be compiled explicitly you can do so by naming the resulting object files using the
COMPONENT_OBJS variable. For example:

COMPONENT_OBJS := file1.o file2.o dir1/file3.o

The Kconfig file contains details that are shown in the menu system shown by "make
menuconfig". The format of this file is a configuration language which is called
"Kconfig". The idea is that we wish to have a custom set of configuration options and
we wish to be able to set/change the value of these options. The Kconfig file defines
the existence of a set of options, their data types, their default values, the allowable
values for an option and help text associated with an option. The "make menuconfig"
then parses the set of distinct Kconfig files that it can find and creates a text/full-screen
menu showing each of the options and navigation to set and change them.

Rather than show you all the possible options that can be set as one long huge list, we
can create menus and sub-menus of options to allow the user of the configuration to
drill down and locate the specific options that they might want to change.

It is described in a web file but at a high level, it has the following format:

Page 75

menu "<Menu heading text>"
config <ITEM_NAME>
 <type>
 prompt "<text>"
 default <value>
 help
 help text
endmenu

A specific configuration item is given a name. For example we can define:

config OPTION1

This will create a new configuration option called CONFIG_OPTION1. Note that the
"CONFIG_" prefix is added to each option automatically. Each option can have a type
associated with it. The choices of types are:

• bool – A true/false value specified by "y" or "n".

• tristate – A boolean option that is either "y", "n" or not set.

• string – A text string.

• hex – A hex number.

• int – An integer.

Page 76

Following the definition of a configuration option, we can have prompt text. For
example:

config OPTION1
 bool
 prompt "This is my prompt text!"

A default value can be supplied using the "default" option:

config OPTION1
 bool
 prompt "This is my prompt text!"
 default y

The prompt text is shown beside the current value of the option in the menu:

Help text can be provided which is shown as assistance to the user.

config OPTION1
 bool
 prompt "This is my prompt text!"
 default y
 help
 This is my help text to select the
 correct value for OPTION1.

Page 77

Detailed documentation on the ESP-IDF build system and how to configure it can be
found in the "build_system.rst" document in Github.

If you have defined your own constants, your code will need to include "sdkconfig.h" in
order to be able to test the value of the menu defined entries. This file is generated by
the ESP-IDF at compilation time from the "sdkconfig" file generated by running the
menu system.

See also:

• Kconfig language

• The component.mk settings

Working with memory
Heap based storage can allocated with malloc() and released with a corresponding call
to free(). There are quite a number of ESP-IDF function that take pointers to storage
as input. Unless these explicitly state that the data must be maintained then we can
assume a deep copy for asynchronous function calls. With that in mind, the following is
a legal pattern:

uint8_t* pMyData = malloc(size);
// populate data
esp_idf_function(pMyData);
free(pMyData);

Putting this into words, unless explicitly stated to the contrary, you can pass in a pointer
to storage to an ESP-IDF function and assume that you are at liberty to release or

Page 78

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://github.com/espressif/esp-idf/blob/master/docs/build_system.rst

otherwise re-use that storage on return from the ESP-IDF call. If the call needs the
content that was in the storage at the time the function was called, it will have taken a
copy of that data.

Compiling
Application code for an ESP32 program is commonly written in C. Before we can
deploy an application, we must compile the code into binary machine code instructions.
Before that though, let us spend a few minutes thinking about the code.

We write code using an editor and ideally an editor that understands the programming
language in which we are working. These editors provide syntax assistance, keyword
coloring and even contextual suggestions. After we save our entered code, we compile
it and then deploy it and then test it. This cycle is repeated so often that we often use a
product that encompasses editing, compilation, execution and testing as an integrated
whole. The generic name for such a product is an "Integrated Development
Environment" or "IDE". There are instances of these both fee and free. In the free
camp, my weapons of choice are Eclipse and Arduino IDE.

The Eclipse IDE is an extremely rich and powerful environment. Originally written by
IBM, it was open sourced many years ago. It is implemented in Java which means that
it runs and behaves identically across all the common platforms (Windows, Linux, OSx).
The nature of Eclipse is that it is architected as a series of extensible plug-ins. Because
of this, many contributors across many disciplines have extended the environment and
it is now a cohesive framework for just about everything. Included in this mix is a set of
plug-ins which, on aggregate, are called the "C Developers Tools" or "CDT". If one
takes a bare bones Eclipse and adds the CDT, one now has a first rate C IDE.
However, what the CDT does not supply (and for good reason) are the actual C
compilers and associated tools themselves. Instead, one "defines" the tools that one
wishes to use within the CDT and the CDT takes it from there.

For our ESP32 story, this means that if we can find (which we can) a set of C compiler
tools that take C source and generate Xtensa binary, we can use CDT to build our
programs.

To make things more interesting though, we need to realize that C is not the only
language we can use for building ESP32 applications. We can also use C++ and
assembly. You may be surprised that I mention assembly as that is as low level as we
can possibly get however there are odd times when we need just that (thankfully rarely)
… especially when we realize that we are pretty much programming directly to the
metal. The Arduino libraries (for example) have at least one assembly language file.

Page 79

For physical file types, the suffixes used for different file we will come across during
development include:

• .h – C and C++ language header file

• .c – C language source file

• .cpp – C++ source file

• .S – Assembler source file

• .o – Object file (compiled source)

• .a – Archive library

To perform the compilations, we need a set of development tools.

My personal preference is the package for Eclipse which has everything pre-built and
ready for use. However, these tools can also be downloaded from the Internet as open
source projects on a piece by piece basis.

Compilation
Let us imagine we have a "main.c" source file. How then can we properly compile that
to get it ready for linking into an ESP32 binary? The Espressif documented mechanism
is to use the ESP-IDF and that works great … but there are times when we can't start
with the Espressif make system but instead need to work in the opposite direction …
namely starting from an existing make system and integrating the correct steps into that
already existent environment. What we have done is spent time studying how the ESP-
IDF works and reverse engineered enough of it to build this recipe. First, if we run the
ESP-IDF make system with the environment variable VERBOSE set to 1, we get a lot of
detail. Here is what I currently see from a current build:

xtensa-esp32-elf-gcc -DESP_PLATFORM -Og -g3 -Wpointer-arith -Werror -Wno-error=unused-
function -Wno-error=unused-but-set-variable -Wno-error=unused-variable -Wall
-ffunction-sections -fdata-sections -mlongcalls -nostdlib -MMD -MP -std=gnu99 -g3
-fstrict-volatile-bitfields -DMBEDTLS_CONFIG_FILE='"mbedtls/esp_config.h"'
-DHAVE_CONFIG_H
-I /home/pi/projects/esp32/apps/parallel1/main/include
-I /home/pi/projects/esp32/esp-idf/components/bt/include
-I /home/pi/projects/esp32/esp-idf/components/driver/include
-I /home/pi/projects/esp32/esp-idf/components/esp32/include
-I /home/pi/projects/esp32/esp-idf/components/expat/port/include
-I /home/pi/projects/esp32/esp-idf/components/expat/include/expat
-I /home/pi/projects/esp32/esp-idf/components/freertos/include
-I /home/pi/projects/esp32/esp-idf/components/json/include
-I /home/pi/projects/esp32/esp-idf/components/json/port/include

Page 80

-I /home/pi/projects/esp32/esp-idf/components/log/include
-I /home/pi/projects/esp32/esp-idf/components/lwip/include/lwip
-I /home/pi/projects/esp32/esp-idf/components/lwip/include/lwip/port
-I /home/pi/projects/esp32/esp-idf/components/lwip/include/lwip/posix
-I /home/pi/projects/esp32/esp-idf/components/mbedtls/port/include
-I /home/pi/projects/esp32/esp-idf/components/mbedtls/include
-I /home/pi/projects/esp32/esp-idf/components/newlib/include
-I /home/pi/projects/esp32/esp-idf/components/nghttp/port/include
-I /home/pi/projects/esp32/esp-idf/components/nghttp/include
-I /home/pi/projects/esp32/esp-idf/components/nvs_flash/include
-I /home/pi/projects/esp32/esp-idf/components/spi_flash/include
-I /home/pi/projects/esp32/esp-idf/components/tcpip_adapter/include
-I /home/pi/projects/esp32/apps/parallel1/build/include/
-I. -c /home/pi/projects/esp32/apps/parallel1/main/./main.c -o main.o

Let us now pull it apart piece by piece and see what it going on:

• xtensa-esp-elf-gcc – This is the C compiler that generates compiled code for
the ESP32 CPUs.

• -DESP_PLATFORM – This sets the existence of a macro definition called
"ESP_PLATFORM". The belief is that this can be used by the C pre-processor to
include, exclude or otherwise manipulate the source before compilation. For
example, there may be source files that have common code within them where
some code is valid for one environment/platform and some other code, also
contained in the same source file, is valid for a different environment/platform.
The existence of ESP_PLATFORM could be used as a distinguisher within the
code.

• -Og – Optimize for debugging experience.

• -g3 – Level 3 debugging information included.

• -Wpointer-arith – Produce warnings relating to pointer arithmetic. Specifically,
anything that relies on the size of a function type or the size of void.

• -Werror – Make all warnings into errors. This stops/fails a compilation on any
warnings produced during compile.

• -Wno-error=unused-function – Don't flag an un-used function as an error.

• -Wno-error=unused-but-set-variable – Don't flag an unused variable as an
error that had a value set upon it.

• -Wno-error=unused-variable – Don't flag an unused variable as an error.

• -Wall – Enable a large set of warnings.

• -ffunction-sections – Place each function in its own section.

Page 81

• -fdata-sections – Place each piece of data in its own section.

• -mlongcalls – An Xtensa specific option

• -nostdlib – Do not use the standard startup files or libraries when linking.

• -MMD

• -MP – Something about makefiles.

• -std=gnu99 – Set the compiler standard.

• -fstrict-volatile-bitfields – How volatile bit fields should be accessed.

• -DMBEDTLS_CONFIG_FILE='"mbedtls/esp_config.h"'

• -DHAVE_CONFIG_H – Define a macro flag.

• -I <various> – Specify directories which should be searched for includes. The
majority of additional directories are included in the ESP-IDF directory structures.

• -c – Compile to object file with no linking.

• -o <filename> – write the output into the given file.

If we need to include additional code that is only present on an ESP32, we can use the
existence of the macro definition "ESP_PLATFORM" as the indicator. For example:

#ifdef ESP_PLATFORM
// ESP32 specific code
#endif

Flashing
Flashing is the mechanism used to move a binary from the file system into the ESP32.
If we are using the ESP-IDF, then the process is very straightforward. We can use the
command "make flash" and the tools needed to flash the ESP32 will be run for us with
the correct inputs. The primary parameters for a flash are the port used to
communicate with the ESP32 and the baud rate (transmission rate) to be used. These
and other settings can be configured in the "make menuconfig" in the sub menu called
"Serial flasher config":

We can over-ride these at the command line by using:

$ make flash ESPPORT=<serial port> ESPBAUD=<baud rate>

Page 82

The environment variable ESPPORT specifies the serial port and ESPBAUD specifies the
baud rate. If not supplied, the values defined in make menuconfig will be used.

By examination of the recipes supplied by Espressif, we find that the underlying
command is as follows

python /home/pi/projects/esp32/esp-idf/components/esptool_py/esptool/esptool.py --chip
esp32 --port "/dev/ttyUSB0" --baud 230400 write_flash -z --flash_mode "dio"
--flash_freq "40m"
0x1000 /home/pi/projects/esp32/apps/parallel1/build/bootloader/bootloader.bin
0x10000 /home/pi/projects/esp32/apps/parallel1/build/app-template.bin
0x4000 /home/pi/projects/esp32/apps/parallel1/build/partitions_singleapp.bin

Breaking this down we arrive at:

• python – run a python script.

• esptool.py – Run the program called "esptool.py".

• --chip esp32 – Declare that we are flashing an ESP32.

• --port "/dev/ttyUSB0" – Define the serial port to which the ESP32 is
connected.

• --baud 115200 – Define the transmission baud rate across the serial port.

• write_flash – Perform the write flash command.

• -z – Unknown.

• --flash_mode "dio" – Use "dio" flash mode.

• --flash_freq "40m" – Use a flash frequency of "40m"

• 0x1000 bootloader.bin – Load the bootloader at 0x1000.

• 0x10000 appname.bin – Load the application at 0x10000.

• 0x4000 partitions_singleapp.bin – Load the partition table at 0x4000.

Following the construction of the ELF file, we now run a tool which converts the ELF into
an uploadable image. Again, looking at the ESP-IDF tools, we find the following
command being run:

python /home/pi/projects/esp32/esp-idf/components/esptool_py/esptool/esptool.py --chip
esp32 elf2image --flash_mode "dio" --flash_freq "40m" -o
/home/pi/projects/esp32/apps/v1/build/app-template.bin
/home/pi/projects/esp32/apps/v1/build/app-template.elf

Page 83

• python

• esptool.py

• --chip esp32

• elf2image

• --flash_mode "dio"

• --flash_freq "40m"

• -o <output file>

• <input elf file>

Loading a program
Once the program has been compiled, it needs to be loaded into the ESP32. This task
is called "flashing". In order to flash the ESP32, it needs to be placed in a mode where
it will accept the new incoming program to replace the old existing program. The way
this is done is to reboot the ESP32 either by removing and reapplying power or by
bringing the REST pin low and then high again. However, just rebooting the device is
not enough. During start-up, the device examines the signal value found on GPIO0. If
the signal is low, then this is the indication that a flash programming session is about to
happen. If the signal on GPIO0 is high, it will enter its normal operation mode. Because
of this, it is recommended not to let GPIO0 float. We don't want it to accidentally enter
flashing mode when not desired. A pull-up resistor of 10k is perfect.

We can build a circuit which includes a couple of buttons. One for performing a reset
and one for bringing GPIO0 low. Pressing the reset button by itself will reboot the device.
This alone is already useful. However if we are holding the "GPIO0 low" button while we
press reset, then we are placed in flash mode.

This however suffers from the disadvantage that it requires us to manually press some
buttons to load a new application. This is not a horrible situation but maybe we have
alternatives?

When we are flashing our ESP32s, we commonly connect them to USB->UART
converters. These devices are able to supply UART used to program the ESP32. We
are familiar with the pins labeled RX and TX but what about the pins labeled RTS and
DTR … what might those do for us?

RTS which is "Ready to Send" is an output from the UART to inform the downstream
device that it may now send data. This is commonly connected to the partner input CTS
which is "Clear to Send" which indicates that it is now acceptable to send data. Both
RTS and CTS are active low.

Page 84

DTR which is "Data Terminal Ready" is used in flow control.

When flashing the device using the Eclipse tools and recipes the following are the flash
commands that are run (as an example) and the messages logged:

22:34:17 **** Build of configuration Default for project k_blinky ****
mingw32-make.exe -f C:/Users/User1/WorkSpace/k_blinky/Makefile flash
c:/Espressif/utils/esptool.exe -p COM11 -b 115200 write_flash -ff 40m -fm qio -fs 4m
0x00000 firmware/eagle.flash.bin 0x40000 firmware/eagle.irom0text.bin
Connecting...
Erasing flash...
head: 8 ;total: 8
erase size : 16384

Writing at 0x00000000... (3 %)
Writing at 0x00000400... (6 %)
…
Writing at 0x00007000... (96 %)
Writing at 0x00007400... (100 %)
Written 30720 bytes in 3.01 seconds (81.62 kbit/s)...
Erasing flash...
head: 16 ;total: 41
erase size : 102400

Writing at 0x00040000... (0 %)
Writing at 0x00040400... (1 %)
…
Writing at 0x00067c00... (99 %)
Writing at 0x00068000... (100 %)
Written 164864 bytes in 16.18 seconds (81.53 kbit/s)...

Leaving...

22:34:40 Build Finished (took 23s.424ms)

As an example of what the messages look like if we fail to put the ESP32 into flash
mode, we have the following:

13:47:09 **** Build of configuration Default for project k_blinky ****
mingw32-make.exe -f C:/Users/User1/WorkSpace/k_blinky/Makefile flash
c:/Espressif/utils/esptool.exe -p COM11 -b 115200 write_flash -ff 40m -fm qio -fs 4m
0x00000 firmware/eagle.flash.bin 0x40000 firmware/eagle.irom0text.bin
Connecting…
Traceback (most recent call last):
 File "esptool.py", line 558, in <module>
 File "esptool.py", line 160, in connect
Exception: Failed to connect
C:/Users/User1/WorkSpace/k_blinky/Makefile:313: recipe for target 'flash' failed
mingw32-make.exe: *** [flash] Error 255

13:47:14 Build Finished (took 5s.329ms)

Page 85

The tool called esptool.py provides an excellent environment for flashing the device but
it can also be used for "reading" what is currently stored upon it. This can be used for
making backups of the applications contained within before re-flashing them with a new
program. This way, you can always return to what you had before over-writing. For
example, on Unix:

esptool.py --port /dev/ttyUSB0 read_flash 0x00000 0xFFFF backup-0x00000.bin
esptool.py --port /dev/ttyUSB0 read_flash 0x10000 0x3FFFF backup-0x10000.bin

See also:

• USB to UART converters
• Error: Reference source not found
• What is a UART?
• esptool.py

Programming environments
We can program the ESP32 using the Espressif supplied SDK on Windows using
Eclipse. A separate chapter on setting up that environment is supplied. We also have
the ability to program the ESP32 using the Arduino IDE. This is potentially a game
changing story and it too been given its own important chapter.

See also:

• Programming using Eclipse
• Programming using the Arduino IDE

Compilation tools
There are a number of tools that are essential when building C based ESP32
applications. Many of these tools are supplied as part of the Xtensa tool chain. Let us
remind ourselves that an executable that runs on the ESP32 executes machine code in
Xtensa instruction set. This means that we need a compiler that generates Xtensa code
as opposed to a compiler that generates Intel x86 code.

When a compiler runs on one architecture and generates codes for a different
architecture, that is called a cross compiler. For example, if we have a C source
application and compile it with the Xtensa compiler on an Intel platform, we generate
Xtensa executable code that is not executable on the Intel platform on which it was
compiled. My convention is to install the Xtensa tool set at:

/opt/xtensa-esp32-elf

with the binaries themselves being in

Page 86

http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_111%20What%20is%20UART.pdf

/opt/xtensa-esp32-elf/bin

If we list the tools contained within we will find that they are all prefixed with "xtensa-
esp32-elf-*". The reason for the long name is that we want to be very clear that we are
using a cross compiler tool as opposed to a tool with the exact same name (without the
prefix) that may already be present on the platform where we are performing the
compilation. For example, on a Linux platform, it is not uncommon to compile a C
program using the compiler called "gcc". If one typed "gcc main.c", it is likely it will
compile and produce an object file. However, the code produced would be the native
code for the compilation platform … likely to be Intel x86. The same program to compile
for ESP32 would then be "xtensa-esp32-elf-gcc main.c".

xntensa-esp32-elf-ar
The archive tool is used to packaged together compiled object files into libraries. These
libraries end with ".a" (archive). A library can be named when using a linker and the
objects contained within will be used to resolve externals.

Some of the most common flags used with this tool include:

• -c – Create a library

• -r – Replace existing members in the library

• -u – Update existing members in the library

The syntax of the command is:

ar -cru libraryName member.o member.o ….

See also:

• GNU – ar
• xtensa-esp32-elf-nm

esptool.py
This tool is an open source implementation used to flash the ESP32 through a serial
port. It is written in Python. Versions have been seen to be available as windows
executables that appear to have been generated ".EXE" files from the Python code
suitable for running on Windows without a supporting Python run-time installation. The
location of the tool is:

$IDF_PATH/components/esptool_py/esptool/esptool.py

The flags are:

• -p port | --port port – The serial port to use

Page 87

https://sourceware.org/binutils/docs/binutils/ar.html

• -b baud | --baud baud – The baud rate to use for serial. Common baud rates
include:

◦ 115200 – basic speed

◦ 921600 – high speed

• -h – Help

• {command} -h – Help for that command

• load_ram {filename} – Upload an image to RAM and execute

• dump_mem {address} {size} {filename} – Dump arbitrary memory to disk

• read_mem {address} – Read arbitrary memory location

• write_mem {address} {value} {mask} – Read-modify-write to arbitrary memory
location

• write_flash – Write a binary blob to flash

◦ --flash_freq {40m,26m,20m,80m} | -ff {40m,26m,20m,80m} – SPI Flash
frequency

◦ --flash_mode {qio,qout,dio,dout} | -fm {qio,qout,dio,dout} – SPI Flash
mode

◦ --flash_size {4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2} | -fs

{4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2} – SPI Flash size in Mbit

◦ -z or --compress – compress during transmission

◦ {address} {fileName} – Address to write, file to write … repeatable

• read_flash – Read a blob of flash

◦ {address} {size} {fileName}

• run – Run application code in flash

• image_info {image file} – Dump headers from an application image. Here is
an example output:

Entry point: 40100004
3 segments

Segment 1: 25356 bytes at 40100000
Segment 2: 1344 bytes at 3ffe8000
Segment 3: 924 bytes at 3ffe8540

Checksum: 40 (valid)

Here is an example of image_info against the bootloader.bin

Page 88

esptool.py v2.0-dev

Image version: 1
Entry point: 40098200
4 segments

Segment 1: len 0x00000 load 0x3ffc0000 file_offs 0x00000018
Segment 2: len 0x00a08 load 0x3ffc0000 file_offs 0x00000020
Segment 3: len 0x01068 load 0x40078000 file_offs 0x00000a30
Segment 4: len 0x00378 load 0x40098000 file_offs 0x00001aa0
Checksum: 92 (valid)

• make_image – Create an application image from binary files

◦ --segfile SEGFILE, -f SEGFILE – Segment input file

◦ --segaddr SEGADDR, -a SEGADDR – Segment base address

◦ --entrypoint ENTRYPOINT, -e ENTRYPOINT – Address of entry point

◦ output

• elf2image – Create an application image from ELF file

◦ --output OUTPUT, -o OUTPUT – Output filename prefix

◦ --flash_freq {40m,26m,20m,80m}, -ff {40m,26m,20m,80m} – SPI Flash
frequency

◦ --flash_mode {qio,qout,dio,dout}, -fm {qio,qout,dio,dout} – SPI Flash
mode

◦ --flash_size {4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2}, -fs

{4m,2m,8m,16m,32m,16m-c1,32m-c1,32m-c2} – SPI Flash size in Mbit

◦ --entry-symbol ENTRY_SYMBOL, -es ENTRY_SYMBOL – Entry point symbol
name (default 'call_user_start')

• read_mac – Read MAC address from OTP ROM. Here is an example output:

MAC AP: 1A-FE-34-F9-43-22
MAC STA: 18-FE-34-F9-43-22

• flash_id – Read SPI flash manufacturer and device ID. Here is an example
output:

head: 0 ;total: 0
erase size : 0
Manufacturer: c8
Device: 4014

• read_flash – Read SPI flash content

Page 89

◦ address – Start address

◦ size – Size of region to dump

◦ filename – Name of binary dump

• erase_flash – Perform Chip Erase on SPI flash. This is an especially useful
command if one ends up someone bricking the device as it should reset the
device to its defaults.

See also:

• Loading a program
• Github: themadinventor/esptool

xtensa-esp32-elf-gcc
The open source GNU Compiler Collection includes compilers for C and C++. If we
look carefully at the flags that are supplied for compiling and linking code for the ESP32
we find the following:

Compiling

• -c – Compile the code to a .o object file.

• -Os – Optimize code generation for size.

• -O2 – Optimize for performance which code result in larger code size. For
example, instead of making a function call, code could be in-lined.

• -ggdb – Generate debug code that can be used by the gdb debugger..

• -std=gnu90 – Dialect of C supported.

• -Werror – Make all warnings errors.

• -Wno-address – Do not warn about suspicious use of memory addresses.

• -Wpointer-arith – Warn when pointer arithmetic is attempted that depends on
sizeof.

• -Wundef – Warn when an identifier is found in a #if directive that is not a macro.

• -fno-inline-functions – Do not allow functions to be replaced with in-line code.

• -mlongcalls – Translate direct assembly language calls into indirect calls.

• -mtext-section-literals – Allow literals to be intermixed with the text section.

• -mno-serialize-volatile – Special instructions for volatile definitions.

Linking:

Page 90

https://github.com/themadinventor/esptool

• -nostdlib – Don't use standard C or C++ system startup libraries

See also:

• GCC – The GNU Compiler Collection

gen_appbin.py
The syntax of this tool is:

gen_appbin.py app.out boot_mode flash_mode flash_clk_div flash_size

• flash_mode

◦ 0 – QIO

◦ 1 – QOUT

◦ 2 – DIO

◦ 3 – DOUT

• flash_clk_div

◦ 0 – 80m / 2

◦ 1 – 80m / 3

◦ 2 – 80m / 4

◦ 0xf – 80m / 1

• flash_size_map

◦ 0 – 512 KB (256 KB + 256 KB)

◦ 1 – 256 KB

◦ 2 – 1024 KB (512 KB + 512 KB)

◦ 3 – 2048 KB (512 KB + 512 KB)

◦ 4 – 4096 KB (512 KB + 512 KB)

◦ 5 – 2048 KB (1024 KB + 1024 KB)

◦ 6 – 4096 KB (1024 KB + 1024 KB)

The following files are expected to exist:

• eagle.app.v6.irom0text.bin

• eagle.app.v6.text.bin

• eagle.app.v6.data.bin

Page 91

https://gcc.gnu.org/

• eagle.app.v6.rodata.bin

The output of this command is a new file called eagle.app.flash.bin.

make
Make is a compilation engine used to track what has to be compiled in order to build
your target application. Make is driven by a Makefile. Although powerful and simple
enough for simple C projects, it can get complex pretty quickly. If you find yourself
studying Makefiles written by others, grab the excellent GNU make documentation and
study it deeply.

xtensa-esp32-elf-nm
List symbols from object files.

Useful flags:

• --defined-only – Show only defined exports

• --undefined-only – Show only undefined exports

• --line-numbers

See also:

• xntensa-esp32-elf-ar
• GNU – nm

xtensa-esp32-elf-objcopy
See also:

• GNU – objcopy

xtensa-esp32-elf-objdump
Some of the more important flags are:

• --syms – Dump the symbols in the archive.

• --headers – Dump the section headers.

See also:

• Wikipedia – objdump
• GNU – objdump
• man page – objdump(1)

Page 92

http://linux.die.net/man/1/objdump
https://sourceware.org/binutils/docs/binutils/objdump.html
https://en.wikipedia.org/wiki/Objdump
https://sourceware.org/binutils/docs/binutils/objcopy.html
https://sourceware.org/binutils/docs/binutils/nm.html

xxd
This is a deceptively simple but useful tool. What it does is dump binary data contained
within a file in a formatted form. One powerful use of it is to take a binary file and
produce a C language data structure that represents the content of the file. This means
that you can take binary data and include it in your applications.

The following will read the content of inFile as binary data and produce a header file in
the outFile.

xxd -include <inFile> <outFile>

Linking
We have seen how to compile a C source file into its object file (.o) representation.
Now we turn our attention on how to link these object files together with the ESP32
libraries in order to produce a binary file that can be flashed into the ESP32 for
execution.

If we examine the output of compiling a project using the ESP-IDF with the VERBOSE=1
flag set, we see the underlying command used to perform the linking. Here is an
example and then we'll start to pull it apart:

xtensa-esp32-elf-gcc -nostdlib -L/home/pi/projects/esp32/esp-idf/lib
-L/home/pi/projects/esp32/esp-idf/ld
-L/home/pi/projects/esp32/apps/parallel1/build/bootloader
-L/home/pi/projects/esp32/apps/parallel1/build/bt
-L/home/pi/projects/esp32/apps/parallel1/build/driver
-L/home/pi/projects/esp32/apps/parallel1/build/esp32
-L/home/pi/projects/esp32/apps/parallel1/build/esptool_py
-L/home/pi/projects/esp32/apps/parallel1/build/expat
-L/home/pi/projects/esp32/apps/parallel1/build/freertos
-L/home/pi/projects/esp32/apps/parallel1/build/json
-L/home/pi/projects/esp32/apps/parallel1/build/log
-L/home/pi/projects/esp32/apps/parallel1/build/lwip
-L/home/pi/projects/esp32/apps/parallel1/build/mbedtls
-L/home/pi/projects/esp32/apps/parallel1/build/newlib
-L/home/pi/projects/esp32/apps/parallel1/build/nghttp
-L/home/pi/projects/esp32/apps/parallel1/build/nvs_flash
-L/home/pi/projects/esp32/apps/parallel1/build/partition_table
-L/home/pi/projects/esp32/apps/parallel1/build/spi_flash
-L/home/pi/projects/esp32/apps/parallel1/build/tcpip_adapter
-L/home/pi/projects/esp32/apps/parallel1/build/main -u call_user_start_cpu0 -Wl,--gc-
sections -Wl,-static -Wl,--start-group -lbt -L/home/pi/projects/esp32/esp-
idf/components/bt/lib -lbtdm_app -ldriver -lesp32 /home/pi/projects/esp32/esp-
idf/components/esp32/libhal.a -L/home/pi/projects/esp32/esp-idf/components/esp32/lib
-lcrypto -lcore -lnet80211 -lphy -lrtc -lpp -lwpa -L /home/pi/projects/esp32/esp-
idf/components/esp32/ld -T esp32_out.ld -T esp32.common.ld -T esp32.rom.ld -T
esp32.peripherals.ld -lexpat -lfreertos -Wl,--undefined=uxTopUsedPriority -ljson

Page 93

-llog -llwip -lmbedtls /home/pi/projects/esp32/esp-
idf/components/newlib/lib/libc.a /home/pi/projects/esp32/esp-
idf/components/newlib/lib/libm.a -lnghttp -lnvs_flash -lspi_flash
-ltcpip_adapter -lmain -lgcc -Wl,--end-group -Wl,-EL -o
/home/pi/projects/esp32/apps/parallel1/build/app-template.elf -Wl,-
Map=/home/pi/projects/esp32/apps/parallel1/build/app-template.map

• xtensa-esp32-elf-gcc – The compiler for the Xtensa architecture which also
knows how to link.

• -nostdlib – Do not link with the standard startup files and libraries.

• -L <various> – Specify the directories which should be searched for library files.

• -u call_user_start_cpu0 – Pretend that the symbol called.
"call_user_start_cpu0" is undefined to force the linker to resolve it.

• -Wl,--gc-sections – Garbage collect unused input sections.

• -Wl,-static – Do not link against shared libraries.

• -Wl,--start-group – Start a group of archives. Used to resolve circular
references.

• -Wl,-EL – Link in little-endian format.

• <various libraries> – Link with the named libraries.

• -Wl,--end-group – End a group of archives.

• -T esp32_out.ld – Use a Linker script. Found in build/esp32.ld.

• -T esp32.common.ld – Use a Linker script. Found in ESP_IDF/components
/esp32/ld/esp32.common.ld.

• -T esp32.rom.ld – Use a Linker script. Found in ESP_IDF/components
/esp32/ld/esp32.rom.ld.

• -T esp32.peripherals.ld – Use a Linker script. Found in
ESP_IDF/components/esp32/ld/esp32.peripherals.ld.

• -o <filename> – Write the result to the named file.

• -Wl,-Map=<filename> – Write a link map to the named file.

Linked libraries:

• -lbt – build/bt/libbt.a

• -lbtdm_app – ESP_IDF/components/bt/lib/libbtdm_app.a

• -ldriver – build/driver/libdriver.a

Page 94

• -lesp32 – build/esp32/libesp32.a

• libhal.a – ESP_IDF/components/esp32/libhal.a

• -lcrypto – ESP_IDF/components/esp32/lib/libcrypto.a

• -lcore – ESP_IDF/components/esp32/lib/libcore.a

• -lnet80211 – ESP_IDF/components/esp32/lib/libnet80211.a

• -lphy – ESP_IDF/components/esp32/lib/libphy.a

• -lrtc – ESP_IDF/components/esp32/lib/librtc.a

• -lpp – ESP_IDF/components/esp32/lib/libpp.a

• -lwpa – ESP_IDF/components/esp32/lib/libwpa.a

• -lexpat – build/expat/libexpat.a

• -lfreertos – build/freertos/libfreertos.a

• -ljson – build/json/libjson.a

• -llog – build/log/liblog.a

• -llwip – build/lwip/liblwip.a

• -lmbedtls – build/mbedtls/libmbedtls.a

• libc.a – ESP_IDF/components/newlib/lib/libc.a

• libm.a – ESP_IDF/components/newlib/lib/libm.a

• -lnghttp – build/nghttp/libnghttp.a

• -lnvs_flash – build/nvs_flash/libnvs_flash.a

• -lspi_flash – build/spi_flash/libspi_flash.a

• -ltcpip_adapter – build//tcpip_adapter/libtcpip_adapter.a

• -lmain – Project files

• -lgcc

Within a linked executable there are a variety of "sections". We can dump those with

$ xtensa-esp32-elf --headers <file.elf>

Here is an example (note some of the more uninteresting entries were removed

app-template.elf: file format elf32-xtensa-le

Sections:
Idx Name Size VMA LMA File off Algn

Page 95

 0 .iram0.vectors 00000400 40080000 40080000 00006b40 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .iram0.text 000167d2 40080400 40080400 00006f40 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .dram0.bss 0000f310 3ffb0000 3ffb0000 00005878 2**3
 ALLOC
 3 .dram0.data 000012c0 3ffbf310 3ffbf310 00005880 2**4
 CONTENTS, ALLOC, LOAD, DATA
 4 .flash.rodata 00005794 3f400010 3f400010 000000e0 2**4
 CONTENTS, ALLOC, LOAD, DATA
 5 .flash.text 00028ded 400d0018 400d0018 0001d714 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 16 .comment 00000062 00000000 00000000 0020f49b 2**0
 CONTENTS, READONLY
 17 .xtensa.info 00000038 00000000 00000000 0020f4fd 2**0
 CONTENTS, READONLY

From the above, here are some of the interesting parts:

Section Load address size

.iram0.vectors 0x4008 0000 1024 (0x400)

.iram0.text 0x4008 0400 91114 (0x167d2)

.dram0.bss 0x3ffb 0000 62224 (0xf310)

.dram0.data 0x3ffb f310 4800 (0x12c0)

.flash.rodata 0x3f40 0010 22420 (0x5794)

.flash.text 0x400d 0018 167405 (0x28ded)

After we have linked our libraries together to form an application that is ready for
flashing to the ESP32, we can ask the question: "What does the binary actually
contain?". There are a set of make tools available that will produce diagnostic logs of
the executable that will tell us this information. These commands are:

• make size – Show application wide information.

• make size-components – Show component information of components used by
the application.

• make size-files – Show files (object files) information from each component
used by the application.

Debugging
When writing programs, we may find that they don't always run as expected.
Performing debugging on an SOC can be difficult since we have no readily available
source level debuggers.

Page 96

ESP-IDF logging
The ESP-IDF framework provides a logging set of features. Use these as opposed to
simple "printf()" statements. These logging statements can then be inserted in your
own application for diagnosing problems or capturing traces.

To use the logging functions, we must include "esp_log.h" and also include the
generated "sdkconfig.h".

The high level logging function is called "esp_log_write()" which has the following
signature:

void esp_log_write(esp_log_level_t level, const char *tag, const char * format, …)

Think of it like a specialized printf logger. The format and following parameters follow
the printf style convention.

By default, when logging is requested, the output is sent to the primary serial stream.
However, we can over-ride that destination by using the function called
esp_log_set_vprintf(). This takes as a parameter a reference to a C function that has
the same syntax as vprintf. Specifically:

int myPrintFunction(const char *format, va_list arg)

When we wish to log a message, we choose a log level to write to. The log levels
available are:

• ESP_LOG_NONE

• ESP_LOG_ERROR

• ESP_LOG_WARN

• ESP_LOG_INFO

• ESP_LOG_DEBUG

• ESP_LOG_VERBOSE

The logged output is of the format:

<log level> (<time stamp>) <tag>: <message>

Where log level is one of "E", "W", "I", "D" or "V". The time stamp is the number of
milliseconds since boot.

We also have a global setting which is the maximum log level we should log. For
example if we set ESP_LOG_WARN then messages at level ESP_LOG_WARN, ESP_LOG_ERROR
will be logged but ESP_LOG_INFO, ESP_LOG_DEBUG and ESP_LOG_VERBOSE will be excluded.

Page 97

The tag parameter to the logging function provides an indication of which logical
component/module issues the message. This provides context to what otherwise might
be ambiguous messages.

C language macros are provided to make using the logging simpler. The macros are:

• ESP_LOGE(tag, format, …) - Log an error.

• ESP_LOGW(tag, format, …) - Log a warning.

• ESP_LOGI(tag, format, …) - Log information.

• ESP_LOGD(tag, format, …) - Log debug.

• ESP_LOGV(tag, format, …) - Log verbose information.

Since logging is included or excluded at compile time, we can specify the logging level
to include in our builds. At compile time, this may exclude certain log statements from
the source. The compilation flag -DLOG_LOCAL_LEVEL controls the logging levels
included.

For the log statements that remain in the code after compilation that were not excluded
at build time, we can control the log level at run-time by calling esp_log_level_set().
The signature of this function is:

void esp_log_level_set(const char *tag, esp_log_level_t level)

The tag names the logging groups that we will show. If the special tag of name "*" is
supplied, this matches all tags.

If we are writing interrupt handling routines, do not use these logging functions within
those.

There are a couple of global configuration settings relating to log output that can be set
within the "menuconfig". These are:

• Default log verbosity – choice – CONFIG_LOG_DEFAULT_LEVEL

• Use ANSI terminal colors in log output – boolean – CONFIG_LOG_COLORS

See also:

• Error handling

• esp_log_level_set

• esp_log_set_vprintf

• esp_log_write

Page 98

Exception handling
At run-time, things may not always work as expected and an exception can be thrown.
For example, you might attempt to access storage at an invalid location or write to read
only memory or perform a divide by zero.

When an exception is detected on an ESP32, a register dump is performed on the
primary serial output. For example the text may look like:

Guru Meditation Error of type LoadProhibited occured on core 0. Exception was un-
handled.
Register dump:
PC : 400f835d PS : 00060a30 A0 : 800f83e9 A1 : 3ffc45a0
A2 : 3f4084bc A3 : 3ffc4738 A4 : 00000001 A5 : 00000000
A6 : 3ffb013c A7 : 00000001 A8 : df405982 A9 : 3ffc4550
A10 : ffffffff A11 : 3ffc4738 A12 : 000000ba A13 : 0000002b
A14 : 0000001b A15 : 00000001 SAR : 00000020 EXCCAUSE: 0000001c
EXCVADDR: df405986 LBEG : 4000c28c LEND : 4000c296 LCOUNT : 00000000
Rebooting...

If we know the location of the exception, we can analyze the executable (app.out) to
figure out what piece of code caused the problem.

xtensa-esp32-elf-objdump -x app-template.elf -d

Another option is to load the binary with GDB as in:

xtensa-esp32-elf-gdb ./build/app-template.elf

From there we can run:

info symbol 0x<address>

This will return an indication of where within the code an error was detected. Here is an
example:

(gdb) info symbol 0x400f8806
initSockets + 114 in section .flash.text

This showed that an exception occurred within my "initSockets" function (which was
indeed the case).

If we then run:

list *0x<address>

it will show us the source line number and lines. Here is another example:

(gdb) list *0x400f8806
0x400f8806 is in initSockets
(/home/pi/projects/esp32/apps/myapp/main/./app_main.c:54).
49
50 struct sockaddr_in clientAddress;
51 socklen_t clientAddressLength = sizeof(clientAddress);
52 int clientSock = accept(sock, (struct sockaddr *)&clientAddress,

Page 99

&clientAddressLength);
53 checkSocketRC(clientSock, "accept");
54 printf("Accepted a client connection\n");
55 }
56
57 static void dumpState() {
58 esp_err_t err;

Core dump processing
When a computer program runs, there is always "state" associated with that program.
At a minimum, there is the current location at which the program is executing (this is
called the "program counter"). In addition, there are the values of variables currently in
effect as well as the stack which contains information about the nested functions that
may have been called to arrive at the current program location. Taken in aggregate, all
this information can be extremely useful to you should your program fail or crash
unexpectedly. This set of information is sometimes called a memory dump or a system
dump and in Unix terms it is called a "core dump". ESP32 architecture has decided to
use the term "core dump".

When an ESP32 application fails, we can configure that application to generate a core
dump that can subsequently used for analysis. By default, the generation of a core
dump is disabled. We can change the setting within "make menuconfig" under the
settings:

Component config → ESP32-specific → Core dump destination

If we select that option, we will find it has three possible settings:

• Flash – The core dump data will be written to flash memory.

• UART – The core dump data will be encoded and written to the serial (UART)
output stream.

• None – No core dump information will be saved or written.

Page 100

If we change the core dump destination to UART, an additional pair of options appear:

These are:

• Core dump print to UART delay – A time specified in milliseconds to pause
before the core dump data is written to the console. This can be interrupted by a
keystroke (assuming a terminal is attached). The default is 0 which means dump
immediately.

• Core dump module logging level – This is a value between 0 (no output) and 5
(most verbose). It seems that this effects the debug output of the core dump
generator as opposed to the content of the core dump itself.

There is a relationship between the core dump setting and what the ESP32 should do
as a whole when there is a problem. The options for the ESP32 are found in

Component config → ESP32-specific config → Panic handler behavior

The options for that setting are:

• Print registers and halt

• Print registers and reboot

• Silent reboot

• Invoke GDBStub

For use with the core dump, I recommend "Print registers and halt".

Page 101

Once setup, when a fatal exception occurs, the following is an example of output:

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was
unhandled.
Register dump:
PC : 0x400e6c23 PS : 0x00060330 A0 : 0x800d0b41 A1 : 0x3ffb83b0
A2 : 0x00000000 A3 : 0x00000000 A4 : 0x00060023 A5 : 0x3ffb6c54
A6 : 0x00000000 A7 : 0x00000001 A8 : 0x0000007b A9 : 0x3ffb8390
A10 : 0x000001f6 A11 : 0x3ffb1bf0 A12 : 0x3f4052a8 A13 : 0x0000001f
A14 : 0x00000001 A15 : 0x00000005 SAR : 0x0000001b EXCCAUSE: 0x0000001d

EXCVADDR: 0x00000000 LBEG : 0x00000000 LEND : 0x00000000 LCOUNT : 0x00000000

Backtrace: 0x400e6c23:0x3ffb83b0 0x400d0b41:0x3ffb83d0

================= CORE DUMP START =================
kA8AAAYAAABkAQAA
VGz7P/CC+z9QhPs/
cIP7P/CD+z/2AQAASD37P0g9+z9UbPs/QD37PxgAAAAAAAAAYogwEVRs+z8AAAAA
AQAAAFR0+z9tYWluAIgwIiJISgAAAAAAAAAAAFCE+z8AAAAAIAMGAAEAAAAAAAAA
AAAAAAAAAAAAAAAAAFT7P2hU+z/QVPs/AAAAAAAAAAABAAAAAAAAAIhCQD8AAAAA
…
AA
AA==
================= CORE DUMP END =================
CPU halted.

Once we have captured core dump data, the next step is to examine it to determine
what it means. By and large it is a blob of binary data that by itself is not meaningful to
us. Fortunately the ESP-IDF provides a tool to help us analyze it. That tool is called
"espcoredump.py".

The primary input is a text file that contains the core dump output. This is the text
between the "CORE DUMP START" and "CORE DUMP END" tags. This data is encoded in
base 64. Once the file has been written (in the following examine into a file called
core.dat), we can run the formatting command:

python $IDF_PATH/components/espcoredump/espcoredump.py info_corefile -t b64 -c
core.dat build/app-template.elf

Page 102

Here is an example of the output of that tool:

===
==================== ESP32 CORE DUMP START ====================

================== CURRENT THREAD REGISTERS ===================
pc 0x400e6c17 0x400e6c17 <app_main+47>
lbeg 0x0 0
lend 0x0 0
lcount 0x0 0
sar 0x0 0
ps 0x60330 394032
threadptr <unavailable>
br <unavailable>
scompare1 <unavailable>
acclo <unavailable>
acchi <unavailable>
m0 <unavailable>
m1 <unavailable>
m2 <unavailable>
m3 <unavailable>
expstate <unavailable>
f64r_lo <unavailable>
f64r_hi <unavailable>
f64s <unavailable>
fcr <unavailable>
fsr <unavailable>
a0 0x3ffb83b0 1073447856
a1 0x0 0
a2 0x0 0
a3 0x60023 393251
a4 0x0 0
a5 0x0 0
a6 0x0 0
a7 0x0 0
a8 0x0 0
a9 0x0 0
a10 0x0 0
a11 0x0 0
a12 0x0 0
a13 0x0 0
a14 0x0 0
a15 0x0 0

==================== CURRENT THREAD STACK =====================
#0 0x400e6c17 in app_main () at
/home/kolban/esp32/esptest/apps/workspace/test_core_dump/main/./main.c:29

======================== THREADS INFO =========================
 Id Target Id Frame
 6 process 5 0x40082ae7 in xQueueGenericReceive (xQueue=0x0, pvBuffer=0x0,
xTicksToWait=<unavailable>, xJustPeeking=0) at /home/kolban/esp32/esptest/esp-
idf/components/freertos/./queue.c:1594

Page 103

 5 process 4 0x40082ae7 in xQueueGenericReceive (xQueue=0x1, pvBuffer=0x1,
xTicksToWait=<unavailable>, xJustPeeking=0) at /home/kolban/esp32/esptest/esp-
idf/components/freertos/./queue.c:1594
 4 process 3 0x40084716 in prvProcessTimerOrBlockTask
(xNextExpireTime=<optimized out>, xListWasEmpty=<optimized out>) at
/home/kolban/esp32/esptest/esp-idf/components/freertos/./timers.c:487
 3 process 2 0x400d13ac in esp_vApplicationIdleHook () at
/home/kolban/esp32/esptest/esp-idf/components/esp32/./freertos_hooks.c:52
 2 process 1 0x400d13ac in esp_vApplicationIdleHook () at
/home/kolban/esp32/esptest/esp-idf/components/esp32/./freertos_hooks.c:52
* 1 <main task> 0x400e6c17 in app_main () at
/home/kolban/esp32/esptest/apps/workspace/test_core_dump/main/./main.c:29

======================= ALL MEMORY REGIONS ========================
Name Address Size Attrs
.rtc.text 0x400c0000 0x0 RW
.iram0.vectors 0x40080000 0x400 R XA
.iram0.text 0x40080400 0x13280 R XA
.dram0.data 0x3ffb0000 0x2434 RW A
.flash.rodata 0x3f400010 0x64b0 RW A
.flash.text 0x400d0018 0x18380 R XA
.coredump.tasks 0x3ffb6c54 0x164 RW
.coredump.tasks 0x3ffb82f0 0x160 RW
.coredump.tasks 0x3ffb8b10 0x164 RW
.coredump.tasks 0x3ffb89a0 0x164 RW
.coredump.tasks 0x3ffb845c 0x164 RW
.coredump.tasks 0x3ffb7190 0x16c RW
.coredump.tasks 0x3ffb92b8 0x164 RW
.coredump.tasks 0x3ffb91c0 0xec RW
.coredump.tasks 0x3ffb631c 0x164 RW
.coredump.tasks 0x3ffb6230 0xe0 RW
.coredump.tasks 0x3ffb5c14 0x164 RW
.coredump.tasks 0x3ffb5b20 0xe8 RW

===================== ESP32 CORE DUMP END =====================
===

At first glance, it looks like it contains a bewildering amount of data … too much to make
sense of, however, I hope you will take the time to learn how to interpret it as there is
much to see. Lets start at the top section called:

CURRENT THREAD REGISTERS

These are the CPU registers in effect when the exception happened. Personally, there
is little there that I can interpret with one important exception which is "pc". This is the
"Program Counter" which is the address of the instruction that was being executed
when the exception was encountered. An address by itself though isn't that useful.

Next comes the section called:

CURRENT THREAD STACK

This is where things get interesting. This contains the call stack of the current thread …
the one that contained the exception. Here we will see the path of nested calls that took

Page 104

us to our failure. The final element in the list is exactly where the failure was
encountered. For example:

#0 0x400e6c17 in app_main () at
/home/kolban/esp32/esptest/apps/workspace/test_core_dump/main/./main.c:29

But this time … notice that the source file and exact line number within the source is
displayed. We can't get much more precise than this. I believe that this is the most
important information that we can gleam from the examination of the core.

Next we find a section called:

THREADS INFO

This contains a record for each "thread" or FreeRTOS task running in the ESP32. This
can provide a context on what else may have been running.

Finally we have a section called:

ALL MEMORY REGIONS

This lists all the memory sections within the environment. Good to see where things are
mapped and useful to see if we might be treading on storage we don't own.

See also:

• ESP-IDF documentation on core dump processing

• Wikipedia – core dump

Using a debugger (GDB)
GDB is the GNU Debugger and is an excellent tool for debugging compiled C source
code. Although it is primarily designed to debug OS hosted applications such as those
compiled for Windows or Linux it can be used to debug code on the ESP32.

First we must change a configuration setting in our compilation process for our ESP32
application using "make menuconfig". Visit the menu setting:

Component config → FreeRTOS → Panic handler behavior

From there, select "Invoke GDBStub":

Page 105

https://en.wikipedia.org/wiki/Core_dump
http://esp-idf.readthedocs.io/en/latest/core_dump.html

Now rebuild and re-deploy your solution. Now the next time a crash/exception happens
in your ESP32 application, you will enter a GDB state where you can run xtensa-esp32-
elf-gdb on your PC and use a serial connection to interact with the ESP32. For
example:

xtensa-esp32-elf-gdb ./build/app-template.elf -b 115200 -ex 'target remote
/dev/ttyUSB0'

You will now be in a gdb session where you can execute the normal gdb commands you
would use for debugging.

OpenOCD and JTAG
We must install the Espressif distributed version of OpenOCD. Perform the following:

1. sudo apt get install libusb-1.0

2. git clone --recursive https://github.com/espressif/openocd-esp32.git

3. cd openocd-esp32

4. git submodule init

5. git submodule update

6. ./bootstrap

7. ./configure

8. make

9. cp $IDF_PATH/docs/api-guides/esp32.cfg .

Page 106

https://github.com/espressif/openocd-esp32.git

For my testing I bought an FTDI based C232HM-DDHSL-0. These run about $40 on
eBay. The pin codings are:

Function Id Wire color

VCC 1 Red

TCK – Test Interface
Clock

2 Orange

TDI – Test Data Input 3 Yellow

TDO – Test Data Output 4 Green

TMS – Test Mode Select 5 Brown

GPIOL0 6 Grey

GPIOL1 7 Purple

GPIOL2 8 White

GPIOL3 9 Blue

GND 10 Black

Given the four signals needed for JTAG (TCK, TDI, TDO and TMS), these can be found
mapped to the following ESP32 pins:

JTAG function GPIO Wire color

TCK GPIO 13 Orange

TDI GPIO 12 Yellow

TDO GPIO 15 Green

TMS GPIO 14 Brown

A clean start of openocd looks like:

$ sudo ./src/openocd -s ./tcl -f ./esp32.cfg
Open On-Chip Debugger 0.10.0-dev-ged7b1a9f (2017-07-15-12:33)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
none separate
adapter speed: 200 kHz
force hard breakpoints
Info : clock speed 200 kHz
Info : JTAG tap: esp32.cpu0 tap/device found: 0x120034e5 (mfg: 0x272 (Tensilica),
part: 0x2003, ver: 0x1)
Info : JTAG tap: esp32.cpu1 tap/device found: 0x120034e5 (mfg: 0x272 (Tensilica),
part: 0x2003, ver: 0x1)
Info : esp32: Debug controller was reset (pwrstat=0x5F, after clear 0x0F).
Info : esp32: Core was reset (pwrstat=0x5F, after clear 0x0F).

Page 107

We can restart the ESP32 with "mon reset".

The launch command for gdb is

xtensa-esp32-elf-gdb -ex 'target remote localhost:3333' ./build/app-template.elf

This command says: "Run the xtensa ESP32 gdb program and execute the single
command that is target remote localhost:3333 against the executable called
./build/app-template.elf".

See also:

• JTAG Debugging for ESP32

• Open On-Chip Debugger – OpenOCD

• OpenOCD docs – PDF

• Github: espressif/openocd-esp32

• FTDI C232HM Data Sheet

Using the ESP-WROVER-KIT for JTAG
To use the ESP-WRIVER-KIT for JTAG you have to make some jumper bridges on JP8.
Specifically, I find that I needed TMS, TDO, TDI and TCK bridged.

Dumping IP Addresses
Being a WiFi and TCP/IP device, you would imagine that the ESP32 works a lot with IP
addresses and you would be right. We can generate a string representation of an IP
address using:

printf(IPSTR, IP2STR(pIpAddrVar))

the IPSTR macro is "%d.%d.%d.%d" so the above is equivalent to:

printf("%d.%d.%d.%d", IP2STR(pIpAddrVar))

which may be more useful in certain situations. The IP2STR macro takes a 32bit
integer (an IP address) and produces 4 bytes worth of parameters corresponding to the
4 bytes of an IP address.

See also:

• IP2STR

Debugging and testing TCP and UDP connections
When working with TCP/IP, you will likely want to have some applications that you can
use to send and receive data so that you can be sure the ESP32 is working. There are
a number of excellent tools and utilities available and these vary by platform and
function.

Page 108

http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_C232HM_MPSSE_CABLE.PDF
https://github.com/espressif/openocd-esp32
http://openocd.org/doc-release/pdf/openocd.pdf
http://openocd.org/
http://espressif.com/sites/default/files/documentation/jtag_debugging_for_esp32_en.pdf

Android – Socket Protocol
The Socket Protocol is a free Android app available from the Google play app store.
See:

• https://play.google.com/store/apps/details?id=aprisco.app.android

Android – UDP Sender/Receiver
The UDP Sender/Receiver is another free Android app available from the Google play
app store. What makes this one interesting is its ability to be a UDP (as opposed to
TCP) sender and receiver. See:

• https://play.google.com/store/apps/details?id=com.jca.udpsendreceive

Windows – Hercules
Hercules is an older app for Windows that still seems to work just fine on the latest
releases. It looks a little old in the tooth now but still seems to get the job done just fine.
See also:

• http://www.hw-group.com/products/hercules/index_en.html

SocketTest
This is a Java app that also works well on Windows. Again, an old app but works
exactly as advertized. Nothing fancy.

See also:

• http://sockettest.sourceforge.net/

Linux – netcat (nc)
Netcat can send and receive arbitrary data over TCP/UDP.

For example, to listen on UDP and dump the incoming data:

$ nc -u -l -p 9999 | od -x

To listen on a TCP port and dump the incoming data:

$ nc -l -p 9999 -k | od -x

See also:

• man(1) – nc

• man(1) – od

Page 109

http://man7.org/linux/man-pages/man1/od.1.html
https://linux.die.net/man/1/nc
http://sockettest.sourceforge.net/
http://www.hw-group.com/products/hercules/index_en.html
https://play.google.com/store/apps/details?id=com.jca.udpsendreceive
https://play.google.com/store/apps/details?id=aprisco.app.android

Curl
Curl is powerful and comprehensive command line tool for performing any and all URL
related commands. It can transmit HTTP requests of all different formats and receive
their responses. It has a bewildering set of parameters available to it which is both a
blessing and curse. You can be pretty sure that if it can be done, Curl can do it …
however be prepared to wade through a lot of documentation.

Here are some simple recipes for some of the more common curl commands:

Issue a get against a target:

$ curl http://hostname

Send data in an HTTP post:

$ curl http://hostname --data "data to send"

Include an additional header:

$ curl http://hostname --header "name: value"

Redirect the output to a file

$ curl http://hostname --output <filename>

See also:

• Making a REST request using Curl
• Curl

• Curl C API

• curl_east_setopt

• libcurl examples

Eclipse – TCP/MON
One of the most powerful and useful tools available is called TCP/IP Monitor that is
supplied as part of Eclipse and distributed with the "Eclipse Web Developer Tools".
The TCP/IP monitor is opened through the Eclipse view called "TCP/IP Monitor".

Page 110

https://curl.haxx.se/libcurl/c/example.html
https://curl.haxx.se/libcurl/c/curl_easy_setopt.html
https://curl.haxx.se/libcurl/c/
https://curl.haxx.se/

If you can't find it in the view finder, the chances are high that you haven't installed
"Eclipse Web Developer Tools". Once launched, open its properties pane:

Page 111

From there you can add local listeners. These will be TCP/IP listeners that listen on a
local port where Eclipse is running. During configuration, you specify another IP
address and port number. When TCP traffic now arrives at the listener on which TCP/IP
Monitor is watching, it will forward that traffic to the partner while at the same time
logging it to the TCP/IP Monitor screen.

For example, here TCP/IP Monitor is listening on 192.168.1.2 (localhost) which is where
Eclipse is running. It is listening on port 9999. When TCP/IP traffic arrives at that
address, it will be sent onwards to 192.168.1.17 (which happens to be my ESP32
device) to port 80.

Here is an example of log I saw when sending a browser request:

Page 112

As you can see, the information captured here is powerful stuff. We can see each traffic
request, its content and HTTP headers.

httpbin.org
When testing HTTP protocols, connecting to the web site at http://httpbin.org can be
invaluable. It provides a host of services for testing HTTP requests.

RequestBin
Another excellent HTTP testing resource. We can send a request to a URL and then
see exactly what was received by the target. The URL for this service is
http://requestb.in/.

tcpdump
This Linux based tool can capture and report on IP traffic into and out of your PC.
Where this might be useful for our ESP32 work is that if we direct traffic from the ESP32
to a Linux app, we can look at the low level protocol.

ESP-IDF component debugging
Some of the components of the ESP-IDF have their own debugging techniques and
have special instructions for enablement.

LWIP
In lwipopts.h change the #define for LWIP_DEBUG to LWIP_DBG_ON. This is the master
debug flag. However there are sub components that then declare what to debug.
These include:

• DNS_DEBUG

To enable these, edit the component.mk for LWIP and add CFLAGS with these variables
set to LWIP_DBG_ON.

Run a Blinky
Physically looking at an ESP32 there isn't much to see that tells you all is working well
within it. There is a power light and a network transmission active light … but that's
about it. A technique that I recommend is to always have your device execute a
"blinking led" which is commonly known as a "Blinky". This can be achieved by

Page 113

http://requestb.in/
http://httpbin.org/

connecting a GPIO pin to a current limiting resistor and then to an LED. When the
GPIO signal goes high, the LED lights. When the GPIO signal goes low, the LED
becomes dark. If we define a timer callback that is called (for example) once a second
and toggles the GPIO pin signal value each invocation, we will have a simple blinking
LED. You will be surprised how good a feeling it will give simply knowing that
something is alive within the device each time you see it blink.

The cost of running the timer and changing the I/O value to achieve a blinking should
not be a problem during development time so I wouldn't worry about side effects of
doing this. Obviously for a published application, you may not desire this and can
simply remove it.

However, although this is a trivial circuit, it has a lot of uses during development. First,
you will always know that the device is operating. If the LED is blinking, you know the
device has power and logic processing control. If the light stops blinking, you will know
that something has locked up or you have entered an infinite loop.

Another useful purpose for including the Blinky is to validate that you have entered flash
mode when programming the device. If we understand that the device can boot up in
normal or flash mode and we boot it up in flash mode, then the Blinky will stop
executing. This can be useful if you are using buttons or jumpers to toggle the boot
mode as it will provide evidence that you are not in normal mode. On occasion I have
mis-pressed some control buttons and was quickly able to realize that something was
wrong before even attempting to flash it as the Blinky was still going.

WiFi subsystem

WiFi Theory
When working with a WiFi oriented device, it is important that we have at least some
understanding of the concepts related to WiFi. At a high level, WiFi is the ability to
participate in TCP/IP connections over a wireless communication link. WiFi is
specifically the set of protocols described in the IEEE 802.11 Wireless LAN architecture.

Within this story, a device called a Wireless Access Point (access point or AP) acts as
the hub of all communications. Typically it is connected to (or acts as) as TCP/IP router
to the rest of the TCP/IP network. For example, in your home, you are likely to have a
WiFi access point connected to your modem (cable or DSL). WiFi connections are then
formed to the access point (through devices called stations) and TCP/IP traffic flows
through the access point to the Internet.

Page 114

The devices that connect to the access points are called "stations":

An ESP32 device can play the role of an Access Point, a Station or both at the same
time.

Very commonly, the access point also has a network connection to the Internet and acts
as a bridge between the wireless network and the broader TCP/IP network that is the
Internet.

A collection of stations that wish to communicate with each other is termed a Basic
Service Set (BSS). The common configuration is what is known as an Infrastructure
BSS. In this mode, all communications inbound and outbound from an individual station
are routed through the access point.

Page 115

A station must associate itself with an access point in order to participate in the story. A
station may only be associated with a single access point at any one time.

Each participant in the network has a unique identifier called the MAC address. This is
a 48bit value.

When we have multiple access points within wireless range, the station needs to know
with which one to connect. Each access point has a network identifier called the BSSID
(or more commonly just SSID). SSID is service set identifier. It is a 32 character value
that represents the target of packets of information sent over the network.

See also:

• Wikipedia – Wireless access point
• Wikipedia – IEEE 802.11
• Wikipedia – WiFi Protected Access
• Wikipedia – IEEE 802.11i-2004

Initializing the WiFi environment
WiFi is only a part of the capabilities of an ESP32. As such, there may be some times
when you actually don't want to use the WiFi subsystem. To accommodate those
patterns, the initialization of the WiFi subsystem is expected to be performed by you
when you write your applications. This is done by calling the esp_wifi_init() method.
The recommended way of doing this is as follows:

wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();
esp_wifi_init(&config);

See also:

• esp_wifi_init

Setting the operation mode
The ESP32 can either be a station in the network, an access point for other devices or
both. Remember, when an ESP32 is being a station, it can connect to a remote access
point (your WiFi hub) while when being an access point, other WiFi stations can connect
to the ESP32 (think of the ESP32 as becoming a WiFi hub). This is a fundamental
consideration and we will want to choose how the device behaves early on in our
application design. Once we have chosen what we want, we set a global mode
property which indicates which of the operational modes our device will perform (station,
access point or station AND access point).

This choice is set with a call to esp_wifi_set_mode(). The parameter is an instance of
wifi_mode_t which can have a value of WIFI_MODE_NULL, WIFI_MODE_STA, WIFI_MODE_AP
or WIFI_MODE_APSTA. We can call esp_wifi_get_mode() to retrieve our current mode
state.

Page 116

https://en.wikipedia.org/wiki/IEEE_802.11i-2004
https://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/Wireless_access_point

Scanning for access points
If the ESP32 is going to be performing the role of a station we will need to connect to an
access point. We can request a list of the available access points against which we can
attempt to connect. We do this using the esp_wifi_scan_start() function.

The results of a WiFi scan are stored internally in ESP32 dynamically allocated storage.
The data is returned to us when we call esp_wifi_scan_get_ap_records() which also
releases the internally allocated storage. As such, this should be considered a
destructive read.

A scan record is contained in an instance of a wifi_ap_record_t structure that contains:

uint8_t bssid[6]

uint8_t ssid[32]

uint8_t primary

wifi_second_chan_t second

int8_t rssi

wifi_auth_mode_t authmode

The wifi_auth_mode_t is one of:

• WIFI_AUTH_OPEN – No security.

• WIFI_AUTH_WEP – WEP security.

• WIFI_AUTH_WPA_PSK – WPA security.

• WIFI_AUTH_WPA2_PSK – WPA2 security.

• WIFI_AUTH_WPA_WPA2_PSK – WPA or WPA2 security.

After issuing the request to start performing a scan, we will be informed that the scan
completed when a SYSTEM_EVENT_SCAN_DONE event is published. The event data
contains the number of access points found but that can also be retrieved with a call to
esp_wifi_scan_get_ap_num().

Should we wish to cancel the scanning before it completes on its own, we can call
esp_wifi_scan_stop().

Page 117

Here is a complete sample application illustrating performing a WiFi scan. Much of the
work is performed in the event handler. When we detect a scan completion event, we
retrieve the located access points and log their details.

#include "esp_wifi.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"

esp_err_t event_handler(void *ctx, system_event_t *event)
{
 if (event->event_id == SYSTEM_EVENT_SCAN_DONE) {
 printf("Number of access points found: %d\n",
 event->event_info.scan_done.number);
 uint16_t apCount = event->event_info.scan_done.number;
 if (apCount == 0) {
 return ESP_OK;
 }
 wifi_ap_record_t *list =
 (wifi_ap_record_t *)malloc(sizeof(wifi_ap_record_t) * apCount);
 ESP_ERROR_CHECK(esp_wifi_scan_get_ap_records(&apCount, list));
 int i;
 for (i=0; i<apCount; i++) {
 char *authmode;
 switch(list[i].authmode) {
 case WIFI_AUTH_OPEN:
 authmode = "WIFI_AUTH_OPEN";
 break;
 case WIFI_AUTH_WEP:
 authmode = "WIFI_AUTH_WEP";
 break;
 case WIFI_AUTH_WPA_PSK:
 authmode = "WIFI_AUTH_WPA_PSK";
 break;
 case WIFI_AUTH_WPA2_PSK:
 authmode = "WIFI_AUTH_WPA2_PSK";
 break;
 case WIFI_AUTH_WPA_WPA2_PSK:
 authmode = "WIFI_AUTH_WPA_WPA2_PSK";
 break;
 default:
 authmode = "Unknown";
 break;
 }
 printf("ssid=%s, rssi=%d, authmode=%s\n",
 list[i].ssid, list[i].rssi, authmode);
 }
 free(list);
 }
 return ESP_OK;
}

int app_main(void)

Page 118

{
 nvs_flash_init();
 tcpip_adapter_init();
 ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 ESP_ERROR_CHECK(esp_wifi_start());

 // Let us test a WiFi scan ...
 wifi_scan_config_t scanConf = {
 .ssid = NULL,
 .bssid = NULL,
 .channel = 0,
 .show_hidden = 1
 };
 ESP_ERROR_CHECK(esp_wifi_scan_start(&scanConf, 0));

 return 0;
}

Using the Arduino libraries we can also make network scans. Here is an example:

int8_t count = WiFi.scanNetworks();
printf("Found %d networks\n", count);
for (uint8_t i=0; i<count; i++) {
 String ssid;
 uint8_t encryptionType;
 int32_t RSSI;
 uint8_t *BSSID;
 int32_t channel;
 WiFi.getNetworkInfo(i, ssid, encryptionType, RSSI, BSSID, channel);
 printf("ssid=%s\n", ssid.c_str());
}

See also:

• Handling WiFi events

• esp_wifi_scan_start

• esp_wifi_scan_stop

• esp_wifi_scan_get_ap_records

• esp_wifi_scan_get_ap_num

Handling WiFi events
During the course of operating as a WiFi device, certain events may occur that ESP32
needs to know about. These may be of importance or interest to the applications
running within it. Since we don't know when, or even if, any events will happen, we
can't have our application block waiting for them to occur. Instead what we should do is

Page 119

define a callback function that will be invoked should an event actually occur. The
function called esp_event_loop_init() does just that. It registers a function that will be
called when the ESP32 detects certain types of WiFi related events. The registered
function is invoked and passed a rich data structure that includes the type of event and
associated data corresponding to that event. The types of events that cause the
callback to occur are:

• We connected to an access point

• We disconnected from an access point

• The authorization mode changed

• A station connected to us when we are in Access Point mode

• A station disconnected from us when we are in Access Point mode

• A SSID scan completes

When the ESP32 WiFi environment operates, it publishes "events" when something at
the WiFi level occurs such as a new station connecting. We can register a callback
function that is invoked when an event is published. The signature of the callback
function is:

esp_err_t eventHandler(void *ctx, system_event_t *event) {
 // Handle event here ...
 return ESP_OK;
}

Typically, we need to also include the following:

• #include <esp_event.h>

• #include <esp_event_loop.h>

• #include <esp_wifi.h>

• #include <esp_err.h>

To register the callback function, we invoke:

esp_event_loop_init(eventHandler, NULL);

If we wish to subsequently change the event handler associated with our WiFi handling
we can call:

esp_event_loop_set_cb(eventHandler, NULL);

When the event handler is invoked, the event parameter is populated with details of the
event. The data type of this parameter is a "system_event_t" which contains:

Page 120

system_event_id_t event_id

system_event_info_t event_info

We should include "esp_event.h" to gain access to these functions and definitions. Let
us now look at the two properties passed to the event handler in the system_event_t
data structure. These properties are "event_id" and "event_info". At a high level, the
event_id describes what kind of event was detected while event_info contains the
specific details of the event based on the type identified in event_id.

• event_id – An enumeration type with the following potential values:

◦ SYSTEM_EVENT_WIFI_READY – ESP32 WiFi is ready. Although this is currently
listed as an event type, it is not actually used and may be removed from the
ESP-IDF at some future date. Don't use it in your applications … it will never
arrive.

◦ SYSTEM_EVENT_SCAN_DONE – Finished scanning for access points. The
scan_done data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_START – Started being a station.

◦ SYSTEM_EVENT_STA_STOP – Stopped being a station.

◦ SYSTEM_EVENT_STA_CONNECTED – Connected to an access point as a station.
The connected data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_DISCONNECTED – Disconnected from access point while
being a station. The disconnected data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_AUTHMODE_CHANGE – Authentication mode has changed.
The auth_change data field is valid to be accessed.

◦ SYSTEM_EVENT_STA_GOT_IP – Got an assigned IP address from the access
point that we connected to while being a station. The got_ip data field is
valid to be accessed.

◦ SYSTEM_EVENT_AP_START – Started being an access point.

◦ SYSTEM_EVENT_AP_STOP – Stopped being an access point.

◦ SYSTEM_EVENT_AP_STACONNECTED – A station connected to us while we are
being an access point. The sta_connected data field is valid to be accessed.

◦ SYSTEM_EVENT_AP_STADISCONNECTED – A station disconnected from us while we
are being an access point. The sta_disconnected data field is valid to be
accessed.

Page 121

◦ SYSTEM_EVENT_AP_PROBEREQRECVED – Received a probe request while we are
being an access point. The ap_probereqrecved data field is valid to be
accessed.

• event_info – This is a C language union of distinct data types that are keyed off
the event_id. The different structures contained within are:

Structure Field Event

system_event_sta_connected_t connected SYSTEM_EVENT_STA_CONNECTED

system_event_sta_disconnected_t disconnected SYSTEM_EVENT_STA_DISCONNECTED

system_event_sta_scan_done_t scan_done SYSTEM_EVENT_SCAN_DONE

system_event_sta_authmode_change_t auth_change SYSTEM_EVENT_STA_AUTHMODE_CHANGE

system_event_sta_got_ip_t got_ip SYSTEM_EVENT_STA_GOT_IP

system_event_ap_staconnected_t sta_connected SYSTEM_EVENT_AP_STACONNECTED

system_event_ao_stadisconnected_t sta_disconnected SYSTEM_EVENT_AP_STADISCONNECTED

system_event_ap_probe_req_rx_t ap_probereqrecved SYSTEM_EVENT_AP_PROBEREQRECVED

These data structures contain information pertinent to the event type received.

system_event_sta_connected_t

This data type is associated with the SYSTEM_EVENT_STA_CONNECT event.

uint8_t ssid[32]

uint8_t ssid_len

uint8_t bssid[6]

uint8_t channel

wifi_auth_mode_t authmode

The ssid is the WiFi network name to which we connected. The ssid_len is the
number of bytes in the ssid field that contain the name. The bssid is the MAC address
of the access point. The channel is the wireless channel used for the connection. The
authmode is the security authentication mode used during the connection.

system_event_sta_disconnected_t

This data type is associated with the SYSTEM_EVENT_STA_DISCONNECTED event.

Page 122

uint8_t ssid[32]

uint8_t ssid_len

uint8_t bssid[6]

uint8_t reason

The reason code is an indication of why we disconnected. Symbolics are defined for
each of the numeric reason codes to allow us to write more elegant and comprehensible
applications should we need to consider a reason code.:

• WIFI_REASON_UNSPECIFIED – 1

• WIFI_REASON_AUTH_EXPIRE – 2

• WIFI_REASON_AUTH_LEAVE – 3

• WIFI_REASON_ASSOC_EXPIRE – 4

• WIFI_REASON_ASSOC_TOOMANY – 5

• WIFI_REASON_NOT_AUTHED – 6

• WIFI_REASON_NOT_ASSOCED – 7

• WIFI_REASON_ASSOC_LEAVE – 8

• WIFI_REASON_ASSOC_NOT_AUTHED – 9

• WIFI_REASON_DISASSOC_PWRCAP_BAD – 10

• WIFI_REASON_DISASSOC_SUPCHAN_BAD – 11

• WIFI_REASON_IE_INVALID – 13

• WIFI_REASON_MIC_FAILURE – 14

• WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT – 15

• WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT – 16

• WIFI_REASON_IE_IN_4WAY_DIFFERS – 17

• WIFI_REASON_GROUP_CIPHER_INVALID – 18

• WIFI_REASON_PAIRWISE_CIPHER_INVALID – 19

• WIFI_REASON_AKMP_INVALID – 20

• WIFI_REASON_UNSUPP_RSN_IE_VERSION – 21

• WIFI_REASON_INVALID_RSN_IE_CAP – 22

Page 123

• WIFI_REASON_802_1X_AUTH_FAILED – 23

• WIFI_REASON_CIPHER_SUITE_REJECTED – 24

• WIFI_REASON_BEACON_TIMEOUT – 200

• WIFI_REASON_NO_AP_FOUND – 201

• WIFI_REASON_AUTH_FAIL – 202

• WIFI_REASON_ASSOC_FAIL – 203

• WIFI_REASON_HANDSHAKE_TIMEOUT – 204

system_event_sta_scan_done_t

This data type is associated with the SYSTEM_EVENT_SCAN_DONE event.

uint32_t status

uint8_t number

uint8_t scan_id

See also:

• Scanning for access points

• esp_wifi_scan_get_ap_records

system_event_authmode_change_t

This data type is associated with the SYSTEM_EVENT_STA_AUTHMODE_CHANGE event.

wifi_auth_mode_t old_mode

wifi_auth_mode_t new_mode

system_event_sta_got_ip_t

This data type is associated with the SYSTEM_EVENT_STA_GOT_IP event.

tcpip_adapter_ip_info_t ip_info

The ip_info element is an instance of a tcpip_adapter_ip_info_t which contains three
fields:

• ip -The IP address.

• netmask – The network mask.

Page 124

• gw – The gateway for communications.

All three of these fields are of ip4_addr_t which is a 32bit representation of an IP
address. During development, you might want to consider logging the IP address of the
device. You can do this using:

ESP_LOGD(tag, "Got an IP: " IPSTR, IP2STR(&event->event_info.got_ip.ip_info.ip));

system_event_ap_staconnected_t

This data type is associated with the SYSTEM_EVENT_AP_STACONNECTED event.

uint8_t mac[6]

uint8_t aid

system_event_ap_stadisconnected_t

This data type is associated with the SYSTEM_EVENT_AP_STADISCCONNECTED event.

uint8_t mac[6]

uint8_t aid

system_event_ap_probe_req_rx_t

This data type is associated with the SYSTEM_EVENT_AP_PROBREQRECVED event.

int rssi

uint8_t mac[6]

If we enable the correct logging levels, we can see the events arrive and their content.
For example:

D (2168) event: SYSTEM_EVENT_STA_CONNECTED, ssid:RASPI3, ssid_len:6,
bssid:00:00:13:80:3d:bd, channel:6, authmode:3
V (2168) event: enter default callback
V (2174) event: exit default callback

and

D (9036) event: SYSTEM_EVENT_STA_GOTIP, ip:192.168.5.62, mask:255.255.255.0,
gw:192.168.5.1
V (9036) event: enter default callback
I (9037) event: ip: 192.168.5.62, mask: 255.255.255.0, gw: 192.168.5.1
V (9043) event: exit default callback

Page 125

Station configuration
When we think of an ESP32 as a WiFi Station, we will realize that at any one time, it
can only be connected to one access point. Putting it another way, there is no meaning
in saying that the device is connected to two or more access points at the same time.

The identity of the access point to which we wish to be associated is set within a data
structure called wifi_sta_config_t.

The wifi_sta_config_t contains:

char ssid[32]

char password[64]

bool bssid_set

uint8_t bssid[6]

Contained within that structure are two very important fields called "ssid" and
"password". The ssid field is the SSID of the access point to which we will connect.
The password field is the clear text value of the password that will be used to
authenticate our device to the target access point to allow connection.

An example initialization for this structure might be:

wifi_config_t staConfig = {
 .sta = {
 .ssid="<access point name>",
 .password="<password>",
 .bssid_set=false
 }
};

Once we have populated an instance of this structure, we can instruct ESP32 about its
content using:

esp_wifi_set_config(WIFI_IF_STA, (wifi_config_t *)&staConfig);

We should previously have called esp_wifi_set_mode(). with either:

esp_wifi_set_mode(WIFI_MODE_STA)

or

esp_wifi_set_mode(WIFI_MODE_APSTA)

See also:

• esp_wifi_set_mode

• esp_wifi_set_config

Page 126

Starting up the WiFi environment
Since WiFi has states that it must go through, a question that may be asked is "When is
WiFi ready to be used?". If we imagine that an ESP32 boots from cold, the chances are
that we want to tell it to be either a station or an access point and then configure it with
parameters such as which access point to connect to (if it is a station) or what its own
access point identity should be (if it is going to be an access point). Given that these
are a sequence of steps, we actually don't want the ESP32 to execute on these tasks
until after we have performed all our setup. For example, if we boot an ESP32 and ask
it to be an access point, if it started being an access point immediately then it may not
yet know the details of the access point it should be or, worse, may transiently appear
as the wrong access point. As such, there is final command that we must learn which is
the instruction to the WiFi subsystem to start working. That command is
esp_wifi_start(). Prior to calling that, all we are doing is setting up the environment.
Only by calling esp_wifi_start() does the WiFi subsystem start doing any real work on
our behalf. If our mode is that of an access point, calling this function will start us being
an access point. If our mode is that of a station, now we are allowed to subsequently
connect as a station. There is a corresponding command called esp_wifi_stop() which
stops the WiFi subsystem.

See also:

• esp_wifi_start

• esp_wifi_stop

Connecting to an access point
Once the ESP32 has been set up with the station configuration details which includes
the SSID and password, we are ready to perform a connection to the target access
point. The function esp_wifi_connect() will form the connection. Realize that this is
not instantaneous and you should not assume that immediately following this command
you are connected. Nothing in the ESP32 blocks and as such neither does the call to
this function. Some time later, we will actually be connected. We will see two callback
events fired. The first is SYSTEM_EVENT_STA_CONNECTED indicating that we have
connected to the access point. The second event is SYSTEM_EVENT_STA_GOT_IP which
indicates that we have been assigned an IP address by the DHCP server. Only at that
point can we truly participate in communications. If we are using static IP addresses for
our device, then we will only see the connected event.

Should we disconnect from an access point, we will see a
SYSTEM_EVENT_STA_DISCONNECTED event. To disconnect from a previously connected
access point we issue the esp_wifi_disconnect() call.

Page 127

There is one further consideration associated with connecting to access points and that
is the idea of automatic connection. There is a boolean flag that is stored in flash that
indicates whether or not the ESP32 should attempt to automatically connect to the last
used access point. If set to true, then after the device is started and without you having
to code any API calls, it will attempt to connect to the last used access point. This is a
convenience that I prefer to switch off. Usually, I want control in my device to determine
when I connect. We can enable or disable the auto connect feature by making a call to
esp_wifi_set_auto_connect().

Here is a complete sample illustrating all the steps needed to connect to an access
point and be informed when we are ready to being work:

#include "freertos/FreeRTOS.h"
#include "esp_wifi.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"
#include "tcpip_adapter.h"

esp_err_t event_handler(void *ctx, system_event_t *event)
{
 if (event->event_id == SYSTEM_EVENT_STA_GOT_IP) {
 printf("Our IP address is " IPSTR "\n",
 IP2STR(&event->event_info.got_ip.ip_info.ip));
 printf("We have now connected to a station and can do things...\n")
 }
 return ESP_OK;
}

int app_main(void)
{
 nvs_flash_init();
 tcpip_adapter_init();
 ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 wifi_config_t sta_config = {
 .sta = {
 .ssid = "RASPI3",
 .password = "password",
 .bssid_set = 0
 }
 };
 ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &sta_config));
 ESP_ERROR_CHECK(esp_wifi_start());
 ESP_ERROR_CHECK(esp_wifi_connect());

 return 0;
}

Page 128

When we connect to an access point, our device is being a station. The connection to
the access point doesn't automatically mean that we now have an IP address. We still
have to request an allocated IP address from the DHCP server. This can take a few
seconds. In some cases, we can get away with the device requesting a specific IP
address. This results in a much faster connection time. If we do specify data, we also
need to supply DNS information should we need to connect to DNS servers for name
resolution.

Here is a fragment of logic that allocates us a specific IP address:

#include <lwip/sockets.h>

// The IP address that we want our device to have.
#define DEVICE_IP "192.168.1.99"

// The Gateway address where we wish to send packets.
// This will commonly be our access point.
#define DEVICE_GW "192.168.1.1"

// The netmask specification.
#define DEVICE_NETMASK "255.255.255.0"

// The identity of the access point to which we wish to connect.
#define AP_TARGET_SSID "RASPI3"

// The password we need to supply to the access point for authorization.
#define AP_TARGET_PASSWORD "password"

esp_err_t wifiEventHandler(void *ctx, system_event_t *event)
{
 return ESP_OK;
}

// Code fragment here ...
 nvs_flash_init();
 tcpip_adapter_init();

 tcpip_adapter_dhcpc_stop(TCPIP_ADAPTER_IF_STA); // Don't run a DHCP client
 tcpip_adapter_ip_info_t ipInfo;

 inet_pton(AF_INET, DEVICE_IP, &ipInfo.ip);
 inet_pton(AF_INET, DEVICE_GW, &ipInfo.gw);
 inet_pton(AF_INET, DEVICE_NETMASK, &ipInfo.netmask);
 tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_STA, &ipInfo);

 ESP_ERROR_CHECK(esp_event_loop_init(wifiEventHandler, NULL));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));

Page 129

 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 wifi_config_t sta_config = {
 .sta = {
 .ssid = AP_TARGET_SSID,
 .password = AP_TARGET_PASSWORD,
 .bssid_set = 0
 }
 };
 ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &sta_config));
 ESP_ERROR_CHECK(esp_wifi_start());
 ESP_ERROR_CHECK(esp_wifi_connect());

See also:

• Handling WiFi events

• esp_wifi_connect

• esp_wifi_disconnect

Being an access point
So far we have only considered the ESP32 as a WiFi station to an existing access point
but it also has the ability to be an access point to other WiFi devices (stations) including
other ESP32s.

In order to be an access point, we need to define the SSID that that allows other
devices to distinguish our network. This SSID can be flagged as hidden if we don't wish
it to be found in a scan. In addition, we will also have to supply the authentication mode
that will be used when a station wishes to connects with us. This is used to allow
authorized stations and disallow non-authorized ones. Only stations that know our
password will be allowed to connect. If we are using authentication, then we will also
have to choose a password that the connecting stations will have to know and supply to
successfully connect.

The first task in being an access point is to flag the ESP32 as such using the
esp_wifi_set_mode() function and pass in the flag that requests we be either a
dedicated access point or an access point and a station. This will be either:

esp_wifi_set_mode(WIFI_MODE_AP);

or

esp_wifi_set_mode(WIFI_MODE_APSTA);

Next we need to supply the configuration information. We do this by populating an
instance of wifi_ap_config_t. The wifi_ap_config_t contains:

• ssid – The WiFi ssid name upon which we will listen for connecting stations.

• ssid_len – The length in bytes of the ssid if not NULL terminated.

Page 130

• password – The password used for station authentication.

• channel – The channel we will use for networking.

• authmode – How we wish stations to authenticate (if at all). The choices are

◦ open

◦ wep

◦ wpa

◦ wpa2

◦ wpa_wpa2

• ssid_hidden – Should we broadcast our ssid.

• max_connection – The number of concurrent stations. The default and maximum
is 4.

• beacon_interval – Unknown. 100.

An example of initialization of this structure might be:

wifi_config_t apConfig = {
 .ap = {
 .ssid="<access point name>",
 .ssid_len=0,
 .password="<password>",
 .channel=0,
 .authmode=WIFI_AUTH_OPEN,
 .ssid_hidden=0,
 .max_connection=4,
 .beacon_interval=100
 }
};

With the structure populated, we call esp_wifi_set_config() … for example:

esp_wifi_set_config(WIFI_IF_AP, &apConfig);

Finally, we call esp_wifi_start().

Here is a snippet of code that can be used to setup and ESP32 as an access point:

When we become an access point, an ESP32 WiFi event is produced of type
SYSTEM_EVENT_AP_START. Note that there is no payload data associated with this event.

Once the ESP32 starts listening for station connects by being an access point, we are
going to want to validate that this works. You can use any device or system to scan and
connect. Personally, I use a Raspberry PI 3 for testing as it provides a nice Linux
environment and has a WiFi adapter build in. You can also choose to plug in a separate

Page 131

WiFi dongle into one of the extra USB ports. One of the first tools we want to run is
called "iwlist" which will perform a scan for us:

$ sudo iwlist wlan1 scan

In the results, we can look for our ESP32 … for example:

Cell 02 - Address: 18:FE:34:6A:94:EF
 ESSID:"ESP32"
 Protocol:IEEE 802.11bgn
 Mode:Master
 Frequency:2.412 GHz (Channel 1)
 Encryption key:off
 Bit Rates:150 Mb/s
 Quality=100/100 Signal level=100/100

One of the other tools available on that environment is called "wpa_cli" which provides
a wealth of options for testing WiFi. The recipe I use is to connect to an access point
from the command line is:

$ sudo wpa_cli
add_network
set_network <num> ssid "<SSID>"
set_network <num> key_mgmt NONE
enable_network <num>
status

You may have to run

select_network <num>
reconnect

or

reasociate

to connect to the target and you can run

disconnect

to disconnect from the access point.

ifname – show current interface

interface <name> - select current interface

To perform a scan run the command "scan". When complete, run "scan_results" to see
the list.

When a station connects, the ESP32 will raise the SYSTEM_EVENT_AP_STACONNECTED
event. When a station disconnects, we will see the SYSTEM_EVENT_AP_DISCONNECTED
event.

See also:

• man(8) – wpa_cli

Page 132

https://linux.die.net/man/8/wpa_cli

When a remote station connects to the ESP32 as an access point, we will see a debug
message written to UART1 that may look similar to:

station: f0:25:b7:ff:12:c5 join, AID = 1

This contains the MAC address of the new station joining the network. When the station
disconnects, we will see a corresponding debug log message that may be:

station: f0:25:b7:ff:12:c5 leave, AID = 1

From within the ESP32, we can determine how many stations are currently connected
with a call to wifi_softap_get_station_num(). If we wish to find the details of those
stations, we can call wifi_softap_get_station_info() which will return a linked list of
wifi_sta_list_t. We have to explicitly release the storage allocated by this call with an
invocation of wifi_softap_free_station_info().

Here is an example of a snippet of code that lists the details of the connected stations:

uint8 stationCount = wifi_softap_get_station_num();
os_printf("stationCount = %d\n", stationCount);
wifi_sta_list_t *stationInfo = wifi_softap_get_station_info();
if (stationInfo != NULL) {
 while (stationInfo != NULL) {
 os_printf("Station IP: %d.%d.%d.%d\n", IP2STR(&(stationInfo->ip)));
 stationInfo = STAILQ_NEXT(stationInfo, next);
 }
 wifi_softap_free_station_info();
}

When an ESP32 acts as an access point, this allows other devices to connect to it and
form a WiFi connection. However, it appears that two devices connected to the same
ESP32 acting as an access point can not directly communicate between each other.
For example, imagine two devices connecting to an ESP32 as an access point. They
may be allocated the IP addresses 192.168.4.2 and 192.168.4.3. We might imagine
that 192.168.4.2 could ping 192.168.4.3 and visa versa but that is not allowed. It
appears that they only direct network connection permitted is between the newly
connected stations and the access point (the ESP32) itself.

This seems to limit the applicability of the ESP32 as an access point. The primary
intent of the ESP32 as an access point is to allow mobile devices (eg. your phone) to
connect to the ESP32 and have a conversation with an application that runs upon it.

See also:

• esp_wifi_set_config

• esp_wifi_set_mode

Page 133

Working with connected stations
When our ESP32 is being an access point, we are saying that we wish to allow stations
to connect to it. This brings in the story of managing those stations. Common things
we might want to do are:

• Determine when a new station connects

• Determine when a previously connected station leaves

• List the currently connected stations

• Disconnect one or more currently connected stations

We can register an event handler for detecting new station connects and existing station
disconnects. The event handler will receive SYSTEM_EVENT_AP_STACONNECTED when a
station connects and SYSTEM_EVENT_AP_STADISCONNECTED what a station leaves.

We can get the list of currently connected stations using the
esp_wifi_get_station_list() function. This returns a linked list of stations. The
storage for this list is allocated for us and we should indicate that we are no longer in
need of it by calling esp_wifi_free_station_list() when done.

See also:

• Handling WiFi events

• esp_wifi_free_station_list

• esp_wifi_get_station_list

WiFi at boot time
The ESP32 can store WiFi start-up information in flash memory. This allows it to
perform its functions at start-up without having to ask the user for any special or
additional information. This capability is controlled by a function called
esp_wifi_set_auto connect() and its partner called esp_wifi_get_auto_connect().
The values of the settings used for an auto connect are those that are saved in flash
memory. These are the values set when we call esp_wifi_set_config() but only if we
have instructed the ESP32 to record those settings to flash. This is itself controlled by a
call to esp_wifi_set_storage().

See also:

• esp_wifi_set_auto_connect

• esp_wifi_get_auto_connect

• esp_wifi_set_storage

Page 134

The DHCP client
When the ESP32 connects to an access point as a station, it also runs a DHCP client to
connect to the DHCP server that it assumes is also available at the access point. From
there, the station is supplied its IP address, gateway address and netmask. There are
times however when we want to supply our own values for this data. We can do this by
calling tcpip_adapter_set_ip_info() during setup. The recipe is as follows:

tcpip_adapter_init();
tcpip_adapter_dhcpc_stop();
tcpip_adapter_set_ip_info();
esp_wifi_init();
esp_wifi_set_mode();
esp_wifi_set_config();
esp_wifi_start();
esp_wifi_config();

(Note that the parameters are omitted in the above).

The setup for calling tcpip_adapter_set_ip_info() can be as follows:

tcpip_adapter_ip_info_t ipInfo;
IP4_ADDR(&ipInfo.ip, 192,168,1,99);
IP4_ADDR(&ipInfo.gw, 192,168,1,1);
IP4_ADDR(&ipInfo.netmask, 255,255,255,0);
tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_STA, &ipInfo);

Alternative, using strings we have:

tcpip_adapter_ip_info_t ipInfo;
inet_pton(AF_INET, "192.168.1.99", &ipInfo.ip);
inet_pton(AF_INET, "192.168.1.1", &ipInfo.gw);
inet_pton(AF_INET, "255.255.255.0", &ipInfo.netmask);
tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_STA, &ipInfo);

See also:

• tcpip_adapter_set_ip_info

• tcpip_adapter_dhcpc_start

• tcpip_adapter_dhcpc_stop

• tcpip_adapter_dhcpc_get_status

• tcpip_adapter_dhcpc_option

• inet_pton

The DHCP server
When the ESP32 is performing the role of an access point, it is likely that you will want it
to also behave as a DHCP server so that connecting stations will be able to be
automatically assigned IP addresses and learn their subnet masks and gateways.

The DHCP server can be started and stopped within the device using the APIs called
wifi_softap_dhcps_start() and wifi_softap_dhcps_stop(). The current status

Page 135

(started or stopped) of the DHCP server can be found with a call to
wifi_softap_dhcps_status().

The default range of IP addresses offered by the DHCP server is 192.168.4.1 upwards.
The first address becomes assigned to the ESP8266 itself. It is important to realize that
this address range is not the same address range as your LAN where you may be
working. The ESP8266 has formed its own network address space and even though
they may appear with the same sorts of numbers (192.168.x.x) they are isolated and
independent networks. If you start an access point on the ESP8266 and connect to it
from your phone, don't be surprised when you try and ping it from your Internet
connected PC and don't get a response.

See also:

• Error: Reference source not found

Current IP Address, netmask and gateway
Should we need it, we can query the environment for the current IP address, netmask
and gateway. The values of these are commonly set for us by a DHCP server when we
connect to an access point. The function called tcpip_adapter_get_ip_info() returns
our current value. Since the ESP32 can have two IP interfaces (one for an access point
and one for a station), we supply which interface we wish to retrieve.

When we connect to an access point and have chosen to use DHCP, when we are
allocated an IP address, an event is generated that can be used as an indication that
we now have a valid IP address.

See also:

• Handling WiFi events
• Error: Reference source not found

• tcpip_adapter_get_ip_info

WiFi Protected Setup – WPS
The ESP8266 supports WiFi Protected Setup in station mode. This means that if the
access point supports it, the ESP8266 can connect to the access point without
presenting a password. Currently only the "push button mode" of connection is
implemented. Using this mechanism, a physical button is pressed on the access point
and, for a period of two minutes, any station in range can join the network using the
WPS protocols. An example of use would be the access point WPS button being
pressed and then the ESP8266 device calling wifi_wps_enable() and then
wifi_wps_start(). The ESP8266 would then connect to the network.

See also:

Page 136

• wifi_wps_enable
• wifi_wps_start
• wifi_set_wps_cb
• Simple Questions: What is WPS (WiFi Protected Setup)
• Wikipedia: WiFi Protected Setup

Designs for bootstrapping WiFi
Imagine that we have built a project using an ESP32 that wishes to be network
connected. In order for that to happen, we want the ESP32 to connect to an existing
access point. That's works, because the ESP32 can be a WiFi station. In order for the
ESP32 to connect to an access point, it needs to know two important items. It needs to
know which network to join (the SSID) and it will need to know the password to use to
connect to that network as most networks require authentication. And there is the
puzzle. If the ESP32 is brought to a physically new environment, how will it "know"
which network to connect with and what password to use? We should assume that the
ESP32 doesn't have a screen attached to it. If it did, we could prompt the user for the
information.

One solution is to have the ESP32 initially "be" an access point. If it were an access
point then we could use our phone to connect with it, ask it what WiFi networks it can
see, provide a password for the network and allow it to connect.

while (not done) {
 if (we know our ssid and password) {
 attempt to connect to the access point;
 if (we succeeded in the connection) {
 return;
 }
 }
 become an access point ourselves;
 listen for incoming browser requests;
 wait for an SSID/password pair to be entered;
}

We also need to handle the case where we think we have an SSID and password used
to connect to an access point but either those have changed or else we are in a foreign
location. In that case we must also fall back to being an access point and await new
instructions.

We can use non-volatile storage to save our SSID and password. We may wish to save
not just one SSID/password pair but perhaps save an ordered list. That way when we
teach our device how to connect to an access point and then later teach it how to
connect to another one, we might end up back at the first. For example, imagine using
an ESP32 at home with one network and the same ESP32 at work with a different
network.

Page 137

https://en.wikipedia.org/wiki/Wi-Fi_Protected_Setup
http://www.7tutorials.com/simple-questions-what-wps-wi-fi-protected-setup

We may also want to save static interface information if we either don't have or don't
want to use the services of a DHCP server when we start as a station.

See also:

• Non Volatile Storage

Working with TCP/IP
TCP/IP is the network protocol that is used on the Internet. It is the protocol that the
ESP32 natively understands and uses with WiFi as the transport. Books upon books
have already been written about TCP/IP and our goal is not to attempt to reproduce a
detailed discussion of how it works, however, there are some concepts that we will try
and capture.

First, there is the IP address. This is a 32bit value and should be unique to every device
connected to the Internet. A 32bit value can be thought of as four distinct 8bit values (4
x 8=32). Since we can represent an 8bit number as a decimal value between 0 and
255, we commonly represent IP addresses with the notation
<number>.<number>.<number>.<number> for example 173.194.64.102. These IP
addresses are not commonly entered in applications. Instead a textual name is typed
such as "google.com" … but don't be misled, these names are an illusion at the TCP/IP
level. All work is performed with 32bit IP addresses. There is a mapping system that
takes a name (such as "google.com") and retrieves its corresponding IP address. The
technology that does this is called the "Domain Name System" or DNS.

When we think of TCP/IP, there are actually three distinct protocols at play here. The
first is IP (Internet Protocol). This is the underlying transport layer datagram passing
protocol. Above the IP layer is TCP (Transmission Control Protocol) which provides the
illusion of a connection over the connectionless IP protocol. Finally there is UDP (User
Datagram Protocol). This too lives above the IP protocol and provides datagram
(connectionless) transmission between applications. When we say TCP/IP, we are not
just talking about TCP running over IP but are in fact using this as a shorthand for the
core protocols which are IP, TCP and UDP and additional related application level
protocols such as DNS, HTTP, FTP, Telnet and more.

The Lightweight IP Stack – lwip
If we think of TCP/IP as a protocol then we can break up our understanding of
networking into two distinct layers. One is the hardware layer that is responsible for
getting a stream of 1's and 0's from one place to another. Common implementations for
that include Ethernet, Token Ring and (yes … I'm dating myself now … dial-up
modems). These are characterized by physical wires from your devices. WiFi is itself a

Page 138

transport layer. It deals with using radio waves as the communication medium of 1's
and 0's between two points. The specification for WiFI is IEEE 802.11.

Once we can transmit and receive data, the next level is organizing the data over that
physical network and this is where TCP/IP comes into play. It provides the rules and
governance of data transmission, addressing, routing, protocol negotiations and more.
Typically, TCP/IP is implemented in software over the underlying physical transport
mechanism. Think about this a moment. Imagine I said to you that I have a "magic
box" and if you put something in that box, it will magically be transported to a different
box. That is the analogy of physical transport. The software that is TCP/IP adds
mechanisms above that. For example, imagine the box is only 6 inches wide. If you
want to send me something through our boxes, you have to chop it up and send it in
pieces. Your end of the box story handles that. My box will receive the parts and re-
assemble them for me. Parts may arrive in order and some parts may even get lost on
route and have to be re-sent from the originals. The hardware (the boxes) have no idea
how to achieve that. All they know is a piece of data in one end will hopefully arrive at
the other … but not guaranteed.

TCP/IP is a big protocol. It contains lots of parts. Fortunately it is well specified and
has been implemented by many vendors over the last 45 years. Some of the
implementations of the whole stack of TCP/IP parts have been written as open source
and are distributed and maintained by the community. What this means is that if one
has a new hardware layer, one can (in principle) lift an already written implementation of
TCP/IP, map it to your hardware, compile it for your environment and you are good to
go. This is actually much easier said than done … and fortunately for us, our friends at
Espressif have done the work for us.

One such open source implementation of a TCP/IP stack is called "The
LightweightIPStack" which is commonly referred to as "lwIP". This can be read about in
detail at its home page (see the references). As part of the distribution of the ESP-IDF,
we have libraries that provide an implementation lwIP. It is lwIP that provides the
ESP32 the following services:

• IP

• ICMP

• IGMP

• MLD

• ND

• UDP

Page 139

• TCP

• sockets API

• DNS

Again, the good news is that the vast majority of lwIP is of no importance to us, ESP32
application designers and developers. It is vitally important … but important to the
internal operation of ESP32 and not exposed to us as consumers.

See also:

• lwIP 2.0.0

TCP
A TCP connection is a bi-directional pipe through which data can flow in both directions.
Before the connection is established, one side is acting as a server. It is passively
listening for incoming connection requests. It will simply sit there for as long as needed
until a connection request arrives. The other side of the connection is responsible for
initiating the connection and it actively asks for a connection to be formed. Once the
connection has been constructed, both sides can send and receive data. In order for
the "client" to request a connection, it must know the address information on which the
server is listening. This address is composed of two distinct parts. The first part is the
IP address of the server and the second part is the "port number" for the specific
listener. If we think about a PC, you may have many applications running on it, each of
which can receive an incoming connection. Just knowing the IP address of your PC is
not sufficient to address a connection to the correct application. The combination of IP
address plus port number provides all the addressing necessary.

As an analogy to this, think of your cell phone. It is passively sitting there until someone
calls it. In our story your phone is the listener. The address that someone uses to form
a connection is your phone number which is comprised of an area code plus the
remainder. For example, a phone number of (817) 555-1234 will reach a particular
phone. However the area code of 817 is for Fort Worth in Texas … calling that by itself
is not sufficient to reach an individual … the full phone number is required.

No we will look at how an ESP32 can set itself up as a listener for an incoming TCP/IP
connection and this requires that we begin to understand the important "sockets" API.

TCP/IP Sockets
The sockets API is a programming interface for working with TCP/IP networking. It is
probably the most familiar API for network programming. Sockets programming is
familiar to programmers on Linux, Windows, Java and more.

Page 140

http://www.nongnu.org/lwip/2_0_0/index.html

TCP/IP network flows come in two flavors … connection oriented over TCP and
datagram oriented over UDP. The sockets API provides distinct patterns of calls for
both styles.

For TCP, a server is built by:

1. Creating a TCP socket

2. Associating a local port with the socket

3. Setting the socket to listen mode

4. Accepting a new connection from a client

5. Receive and send data

6. Close the client/server connection

7. Going back to step 4

For a TCP client, we build by:

1. Creating a TCP socket

2. Connecting to the TCP server

3. Sending data/receiving data

4. Close the connection

Now let us break these up into code fragments that we can analyze in more depth. The
header definitions for the sockets API can be found in <lwip/sockets.h>.

For both the client and the server applications, the task of creating a socket is the same.
It is an API call to the socket() function.

int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

The return from socket() is an integer handle that is used to refer to the socket.
Sockets have lots of state associated with them, however that state is internal to the
TCP/IP and sockets implementation and need not be exposed to the network
programmer. As such, there is no need to expose that data to the programmer. We can
think of calling socket() as asking the run-time to create and initialize all the data
necessary for a network communication. That data is owned by the run-time and we
are passed a "reference number" or handle that acts as a proxy to the data. When ever
we wish to subsequently perform work on that network connection, we pass back in that
handle that was previously issued to us and we can correlate back to the connection.

Page 141

This isolates and insulates the programmer from the guts of the implementation of
TCP/IP and leaves us with a useful abstraction.

When we are creating a server side socket, we want it to listen for incoming connection
requests. To do this, we need to tell the socket which TCP/IP port number it should be
listening upon. Note that we don't supply the port number a directly from an int/short
value. Instead we supply the value as returned by the htons() function. What this
function does is convert the number into what is called "network byte order". This is the
byte order that has been chosen by convention to be that used for transmitting unsigned
multi byte binary data over the internet. It's actual format is "big endian" which means
that if we take a number such as 9876 (decimal) then it is represented in binary as
00100110 10010100 or 0x26D4 in hex. For network byte order, we first transmit
00100110 (0x26) followed by 10010100 (0xD4). It is important to realize that the ESP32
is a little endian native architecture which means that we absolutely must transform 2
byte and 4 byte numbers into network byte order (big endian).

On a given device, only one application at a time can be using any given local port
number. If we want to associate a port number with an application, such as our server
application in this case, we perform a task called "binding" which binds (or assigns) the
port number to the socket which in turn is owned by the application.

struct sockaddr_in serverAddress;
serverAddress.sin_family = AF_INET;
serverAddress.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddress.sin_port = htons(portNumber);
bind(sock, (struct sockaddr *)&serverAddress, sizeof(serverAddress));

With the socket now associated with a local port number, we can request that the run-
time start listening for incoming connections. We do this by calling the listen() API.
Before calling listen(), connections from clients would have been rejected with an
indication to the client that there was nothing at the corresponding target address.
Once we call listen(), the server will start accepting incoming client connections. The
API looks like:

listen(sock, backlog)

The backlog is the number of connection requests that the run-time will listen for and
accept before they are handed off to the application for processing. The way to think
about this is imagine that you are the application and you can only do one thing at a
time. For example, you can only be talking to one person at a time on the phone. Now
imagine you have a secretary who is handling your incoming calls. When a call arrives
and you are not busy, the secretary hands off the call to you. Now imagine that you are
busy. At that time, the secretary answers the phone and asks the caller to wait. When

Page 142

you free up, she hands you the waiting call. Now let us assume that you are still busy
when yet another client calls. She also tells this caller to wait. We are starting to build a
queue of callers. And this is where the backlog concept comes into play. The backlog
instructs the run-time how many calls can be received and asked to wait. If more calls
arrive than our backlog will allow, the run-time rejects the call immediately. Not only
does this prevent run-away resource consumption at the server, it also can be used as
an indication to the caller that it may be better served trying elsewhere.

Now from a server perspective, we are about ready to do some work. A server
application can now block waiting for incoming client connections. The thinking is that a
server application's purpose in life is to handle client requests and when it doesn't have
an active client request, there isn't anything for it to do but wait for a request to arrive.
While that is certainly one model, it isn't necessarily the only model or even the best
model (in all cases). Normally we like our processors to be "utilized". Utilized means
that while it has productive work it can do, then it should do it. If the only thing our
program can do is service client calls, then the original model makes sense. However,
there are certain programs that if they don't have a client request to immediately
service, might spend time doing something else that is useful. We will come back to
that notion later on. For now, we will look at the accept() function call. When accept()
is called, one of two things will happen. If there is no client connection immediately
waiting for us, then we will block until such time in the future when a client connection
does arrive. At that time we will wake up and be handed the connection to the newly
arrived client. If on the other hand we called accept() and there was already a client
connection waiting for us, we will immediately be handed that connection and we carry
on. In both cases, we call accept() and are returned a connection to a client. The
distinction between the cases is whether or not we have to wait for a connection to
arrive.

The API call looks like:

struct sockaddr_in clientAddress;
socklen_t clientAddressLength = sizeof(clientAddress);
int clientSock = accept(sock, (struct sockaddr *)&clientAddress,
&clientAddressLength);

The return from accept() is a new socket (an integer handle) that represents the
connection between the requesting client and the server. It is vital to realize that this is
distinct from the server socket we created earlier which we bound to our server listening
port. That socket is still alive and well and exists to continue to service further client
connections. The newly returned socket is the connection for the conversation that was
initiated by this single client. Like all TCP connections, the conversation is symmetric

Page 143

and bi-directional. This means that there is now no longer the notion of a client and
server … both parties can send and receive as they would like at any time.

If we wish to create a socket client, the story is similar. Again we create a socket() but
this time there is no need for a bind()/listen()/accept() story. Instead we use the
connect() API to connect to the target TCP/IP endpoint.

For example:

struct sockaddr_in serverAddress;
serverAddress.sin_family = AF_INET;
inet_pton(AF_INET, "192.168.1.200", &serverAddress.sin_addr.s_addr);
serverAddress.sin_port = htons(9999);

int rc = connect(sock, (struct sockaddr *)&serverAddress, sizeof(struct sockaddr_in));

See also:

• Native byte order, endian and network byte order

• socket

• bind

• listen

• accept

• send

• recv

• connect

• Wikipedia – Berkeley Sockets

• Beej's Guide to Network Programming

Handling errors
Most of the sockets APIs return an int return code. If this code is < 0 then an error has
occurred.

The nature of the error can be found using the global int called "errno". However, in a
multitasking environment, working with global variables is not recommended. In the
sockets area, we can ask a socket for the last error it encountered using the following
code fragment:

int espx_last_socket_errno(int socket) {
 int ret = 0;
 u32_t optlen = sizeof(ret);
 getsockopt(socket, SOL_SOCKET, SO_ERROR, &ret, &optlen);
 return ret;
}

The meanings of the errors can be compared against constants. Here is a table of
constants used in the current FreeRTOS implementation:

Symbol Value Description

EPERM 1 Operation not permitted

Page 144

http://beej.us/guide/bgnet/
https://en.wikipedia.org/wiki/Berkeley_sockets

ENOENT 2 No such file or directory

ESRCH 3 No such process

EINTR 4 Interrupted system call

EIO 5 I/O error

ENXIO 6 No such device or address

E2BIG 7 Arg list too long

ENOEXEC 8 Exec format error

EBADF 9 Bad file number

ECHILD 10 No child processes

EAGAIN 11 Try again

ENOMEM 12 Out of memory

EACCES 13 Permission denied

EFAULT 14 Bad address

ENOTBLK 15 Block device required

EBUSY 16 Device or resource busy

EEXIST 17 File exists

EXDEV 18 Cross-device link

ENODEV 19 No such device

ENOTDIR 20 Not a directory

EISDIR 21 Is a directory

EINVAL 22 Invalid argument

ENFILE 23 File table overflow

EMFILE 24 Too many open files

ENOTTY 25 Not a typewriter

ETXTBSY 26 Text file busy

EFBIG 27 File too large

ENOSPC 28 No space left on device

ESPIPE 29 Illegal seek

EROFS 30 Read-only file system

EMLINK 31 Too many links

EPIPE 32 Broken pipe

EDOM 33 Math argument out of domain of func

ERANGE 34 Math result not representable

EDEADLK 35 Resource deadlock would occur

ENAMETOOLONG 36 File name too long

ENOLCK 37 No record locks available

Page 145

ENOSYS 38 Function not implemented

ENOTEMPTY 39 Directory not empty

ELOOP 40 Too many symbolic links encountered

EWOULDBLOCK EAGAIN 41 Operation would block

ENOMSG 42 No message of desired type

EIDRM 43 Identifier removed

ECHRNG 44 Channel number out of range

EL2NSYNC 45 Level 2 not synchronized

EL3HLT 46 Level 3 halted

EL3RST 47 Level 3 reset

ELNRNG 48 Link number out of range

EUNATCH 49 Protocol driver not attached

ENOCSI 50 No CSI structure available

EL2HLT 51 Level 2 halted

EBADE 52 Invalid exchange

EBADR 53 Invalid request descriptor

EXFULL 54 Exchange full

ENOANO 55 No anode

EBADRQC 56 Invalid request code

EBADSLT 57 Invalid slot

EBFONT 59 Bad font file format

ENOSTR 60 Device not a stream

ENODATA 61 No data available

ETIME 62 Timer expired

ENOSR 63 Out of streams resources

ENONET 64 Machine is not on the network

ENOPKG 65 Package not installed

EREMOTE 66 Object is remote

ENOLINK 67 Link has been severed

EADV 68 Advertise error

ESRMNT 69 Srmount error

ECOMM 70 Communication error on send

EPROTO 71 Protocol error

EMULTIHOP 72 Multihop attempted

EDOTDOT 73 RFS specific error

EBADMSG 74 Not a data message

EOVERFLOW 75 Value too large for defined data type

Page 146

ENOTUNIQ 76 Name not unique on network

EBADFD 77 File descriptor in bad state

EREMCHG 78 Remote address changed

ELIBACC 79 Can not access a needed shared library

ELIBBAD 80 Accessing a corrupted shared library

ELIBSCN 81 .lib section in a.out corrupted

ELIBMAX 82 Attempting to link in too many shared libraries

ELIBEXEC 83 Cannot exec a shared library directly

EILSEQ 84 Illegal byte sequence

ERESTART 85 Interrupted system call should be restarted

ESTRPIPE 86 Streams pipe error

EUSERS 87 Too many users

ENOTSOCK 88 Socket operation on non-socket

EDESTADDRREQ 89 Destination address required

EMSGSIZE 90 Message too long

EPROTOTYPE 91 Protocol wrong type for socket

ENOPROTOOPT 92 Protocol not available

EPROTONOSUPPORT 93 Protocol not supported

ESOCKTNOSUPPORT 94 Socket type not supported

EOPNOTSUPP 95 Operation not supported on transport endpoint

EPFNOSUPPORT 96 Protocol family not supported

EAFNOSUPPORT 97 Address family not supported by protocol

EADDRINUSE 98 Address already in use

EADDRNOTAVAIL 99 Cannot assign requested address

ENETDOWN 100 Network is down

ENETUNREACH 101 Network is unreachable

ENETRESET 102 Network dropped connection because of reset

ECONNABORTED 103 Software caused connection abort

ECONNRESET 104 Connection reset by peer

ENOBUFS 105 No buffer space available

EISCONN 106 Transport endpoint is already connected

ENOTCONN 107 Transport endpoint is not connected

ESHUTDOWN 108 Cannot send after transport endpoint shutdown

ETOOMANYREFS 109 Too many references: cannot splice

ETIMEDOUT 110 Connection timed out

ECONNREFUSED 111 Connection refused

Page 147

EHOSTDOWN 112 Host is down

EHOSTUNREACH 113 No route to host

EALREADY 114 Operation already in progress

EINPROGRESS 115 Operation now in progress

ESTALE 116 Stale NFS file handle

EUCLEAN 117 Structure needs cleaning

ENOTNAM 118 Not a XENIX named type file

ENAVAIL 119 No XENIX semaphores available

EISNAM 120 Is a named type file

EREMOTEIO 121 Remote I/O error

EDQUOT 122 Quota exceeded

ENOMEDIUM 123 No medium found

EMEDIUMTYPE 124 Wrong medium type

Configuration settings
Within the "menuconfig" there are some settings that relate to TCP/IP and can be found
within the lwIP settings. The settings are:

• Max number of open sockets – integer – CONFIG_LWIP_MAX_SOCKETS – This is the
number of concurrently open sockets. The default is 4 and the maximum
appears to be 16.

• Enable SO_REUSEADDR – boolean – LWIP_SO_REUSE –

Using select()
Imagine that we have multiple sockets each of which may be the source of incoming
data. If we try and read() data from a socket, we normally block until data is ready. If
we did this, then if data becomes available on another socket, we wouldn't know. An
alternative is to try and read data in a non-blocking fashion. This too would be useful
but would require that we test each socket in turn in a busy or polling fashion. This too
is not optimal. Ideally what we would like to do is block while watching multiple sockets
simultaneously and wake up when the first one has something useful for us to do.

See also:

• select

• The world of select()

Page 148

http://www.lowtek.com/sockets/select.html

Differences from "standard" sockets
Two header files that are commonly found in other sockets implementations are not part
of the ESP-IDF definition. They are:

• netinet/in.h

• arpa/inet.h

Despite not being present, no obvious issues have been found and it is assumed that
the content normally contained within has been distributed across other headers.

UDP/IP Sockets
If we think of TCP as forming a connection between two parties similar to a telephone
call, then UDP is like sending a letter through the postal system. If I were to send you a
letter, I would need to know your name and address. Your address is needed so that
the letter can be delivered to the correct house while your name ensure that it ends up
in your hands as opposed to someone else who may live with you. In TCP/IP terms, the
address is the IP address and the name is the port number.

With a telephone conversation, we can exchange as much or as little information as we
like. Sometimes I talk, sometimes you talk … but there is no maximum limit on how
much information we can exchange in one conversation. With a letter however, there
are only so many pages of paper that will fit in the envelopes I have at my disposal.

The notion of the mail analogy is how we might choose to think about UDP. The
acronym stands for User Datagram Protocol and it is the notion of the datagram that is
akin to the letter. A datagram is an array of bytes that are transmitted from the sender to
the receiver as a unit. The maximum size of a datagram using UDP is 64KBytes. No
connection need be setup between the two parties before data starts to flow. However,
there is a down side. The sender of the data will not be made aware of a receiver's
failure to retrieve the data. With TCP, we have handshaking between the two parties
that lets the sender know that the data was received and, if not, can automatically re-
transmit until it has been received or we decide to give up. With UDP, and just like a
letter, when we send a datagram, we lose sight of whether or not it actually arrives
safely at the destination.

Now is a good time to come back to IP addresses and port numbers. We should start to
be aware that on a PC, only one application can be listening upon any given port. For
example, if my application is listening on port 12345, then no other application can also
be listening on that same port … not your application nor another copy/instance of mine.
When an incoming connection or datagram arrives at a machine, it has arrived because

Page 149

the IP address of the sent data matches the IP address of the device at which it arrived.
We then route within the device based on port numbers. And here is where I want to
clarify a detail. We route within the machine based on the pair of both protocol and port
number.

So for example, if a request arrives at a machine for port 12345 over a TCP connection,
it is routed to the TCP application watching port 12345. If a request arrives at the same
machine for port 12345 over UDP, it is routed to the UDP application watching port
12345. What this means is that we can have two applications listening on the same
port but on different protocols. Putting this more formally, the allocation space for port
numbers is a function of the protocol and it is not allowed for two applications to
simultaneously reserve the same port within the same protocol allocation space.
Although I used the story of a PC running multiple applications, in our ESP32 the story
is similar even though we just run one application on the device. If your single
application should need to listen on multiple ports, don't try and use the same port with
the same protocol as the second function call will find the first one has already allocated
the port. This is a detail that I am happy for you to forget as you will rarely come across
it but I wanted to catch it here for completeness.

To program with UDP, once again we use sockets. To set up a socket server using UDP
again we call socket() to create a socket and again we call bind() to specify the port
number we wish to listen upon. There is no need for a call to listen(). When the
server is ready to receive an incoming request, we call recvfrom() which blocks until a
datagram is received. Once one arrives, we wake up and can process the request.
The request contains a return address and we can send a response using sendto()
should we wish.

On the client side, we create a socket() and then can invoke sendto(). The call to
sendto() takes the IP address and port of the target as parameters as well as the
payload data.

For example:

int socket_fd = socket(AF_INET, SOCK_DGRAM, 0);
sendto(socket_fd, data, size, 0, destAddr, destAddrLen);

• socket

• sendto

• recvfrom

TLS, SSL and security
So far we have been thinking about making sockets calls that form a network
connection and then sending and receiving data over that connection. However we
have a security problem. The data that flows over the wire is not encrypted. This

Page 150

means that if one were to "sniff" or otherwise examine the network data, we would see
the content of the data being transmitted. For example, if I send a password used for
authentication, if we were to examine the content of the data, we would be able to
determine the password I am using.

It actually isn't that difficult to sense the data being sent and received. Excellent tools
such as wireshark are used for debugging and can easily be used to examine the
content of the network packets or stream. Obviously we are already exchanging credit
card data, email and other sensitive information over the Internet so how is that done?

The answer is a concept called the "Secure Socket Layer" or SSL. SSL provides the
capability to encrypt the data before transmission such that only the intended recipient
can decrypt it. Conversely, any responses sent by the recipient are also encrypted such
that only we can decrypt the data. If someone were to capture or otherwise examine
the data being sent over the wire, there is no way for them to get back to the original
data content.

The way this works is through the concept of private keys. Imagine I think of a very
large random number (and by large I mean VERY large). We call this private number
my private key. Now imagine that associated with the private key is a corresponding

Page 151

number (the public key) that can be used to decrypt a message that was encoded using
the private key. Now imagine I want to correspond with a partner securely. I send a
request (unencrypted) to the partner and ask for his public key. He sends that back and
I send to him a copy of MY public key encrypted with his public key. Since only a
matching pair of public/private keys can be used to decrypt data, only the desired
recipient can decrypt the message at which point he will have a copy of my public key.
Now in the future I can send him messages encrypted with my private key and further
encrypted with his public key and he will be able to decode them with his copy of his
private key and my public key while he can send me encrypted messages encoded with
his private key which I can decode with my copy of his public key. By having
exchanged public keys, we are now good to continue exchanging data without fear that
it will be seen by anyone else.

All of this encryption of data happens outside and above the knowledge of TCP/IP
networking. TCP/IP provides the delivery of data but cares nothing about its content.
As such, and at a high level, if we wish to exchange secure data, we must perform the
encryption and decryption using algorithms and libraries that live outside of the sockets
API and use sockets as the transport for transmitting and receiving the encrypted data
that is fed into and received from the encryption algorithms.

When using mbed TLS, we need a large stack size. I don't yet know how small we can
get away with but I have been using 8000 bytes.

See also:

• mbed TLS

• mbed TLS home page

• mbed TLS tutorial

• mbed TLS API reference

mbedTLS app structure
Let us start to break down the structure of a TLS application that uses the mbedTLS
APIs.

First there is the notion of a network context that is initialized by a call to
mbedtls_net_init().

mbedtls_net_context server_fd;
mbedtls_net_init(&server_fd);

There is nothing more to explain here. The data that is initialized is "opaque" to us and
the invocation of this function is part of the rules.

next comes the initialization of the SSL context with a call to mbedtls_ssl_init().

Page 152

https://tls.mbed.org/api/
https://tls.mbed.org/kb/how-to/mbedtls-tutorial
https://tls.mbed.org/

mbedtls_ssl_context ssl;
mbedtls_ssl_init(&ssl);

Again, there is nothing more to explain here. The data is again opaque and this
function merely initializes it for us. Calling this function is also part of the rules.

Now we call mebtls_ssl_config_init().

mbedtls_ssl_config config;
mbedtls_ssl_config_init(&config);

These initializations repeat for other data types including:

mbedtls_ctr_drbg_context ctr_drbg;
mbedtls_ctr_drbg_init(&ctr_drbg);

mbedtls_entropy_context entropy;
mbedtls_entropy_init(&entropy);

mbedtls_x509_crt cacert;
mbedtls_x509_crt_init(&cacert);

SSL utilizes good random number generators. What is a "good" random number?
Since computers are deterministic devices, the generation of a random number is
performed through the execution of an algorithm and since algorithms are deterministic,
then a sequence of numbers generated by these functions might, in principle, be
predictable. A good random number generator is one where the sequence of numbers
produced is not at all easily predictable and generates values with no biases towards
their values with an equal probability of any number within a range being chosen.

We initialize the random number generator with a call to mbedtls_ctr_drbg_seed().

Note: We see the phrase "ctr_drbg" … that is an acronym for "Counter mode Deterministic Random Byte

Generator". It is an industry standard specification/algorithm for generating random numbers.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

With the setup under our belts, it is now time to start considering SSL based
communication. Since we are considering SSL over sockets, if we were not using TLS
sockets, we would perform a call to socket() to create a socket and then connect() to
connect to our partner. In the world of mbedtls, we call mbedtls_net_connect(). This
has the form:

mbedtls_net_connect(&server_fd, <hostname>, <port>, MBEDTLS_NET_PROTO_TCP);

Page 153

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

The hostname and port define where we are connecting to. Notice the first parameter.
This is the mbedtls_net_context structure that we initialized with a call to
mbedtls_net_init() previously. We should always check the return code to ensure that
the connection was successful.

Now we get to configure our SSL defaults with a call to
mbedtls_ssl_config_defaults(). For example:

mbedtls_ssl_config_defaults(
 &conf,
 MBEDTLS_SSL_IS_CLIENT,
 MBEDTLS_SSL_TRANSPORT_STREAM,
 MBED_SSL_PRESET_DEFAULT)

When we are communicating via SSL, we commonly wish to validate that the
credentials provided by our partner indicate that they are who they claim to be. This
process is called authentication. We can define what kind of authentication we wish to
perform by calling mbedtls_ssl_conf_authmode().

mbedtls_ssl_conf_authmode(&ssl, MBEDTLS_SSL_VERIFY_NONE)

Earlier we said that SSL is heavily dependent on a good random number generator.
Now we tell the environment which random number generator we wish to use:

mbedtls_ssl_conf_rng(&ssl, mbedtls_ctr_drbg_random, &ctr_drbg)

Next we do some more SSL context setup by calling mbedtls_ssl_set_hostname().

mbedtls_ssl_set_hostname(&ssl, "name")

Now we instruct the SSL environment which functions to use to send and receive data
by calling mbedtls_ssl_set_bio().

mbedtls_ssl_set_bio(&ssl, &server_fd, mbedtls_net_send, mbedtls_net_recv, NULL)

At this point, we have formed a connection to our partner and configured the SSL
environment. What remains is to actually read and write data. To write data we call
mbed_ssl_write().

mbedtls_ssl_write(&ssl, buf, len)

and to read data we call mbedtls_ssl_read().

Page 154

mbedtls_ssl_read(&ssl, buf, len)

See also:

• mbedtls_net_init

• mbedtls_ssl_init

• mbedtls_ssl_config_init

• mbedtls_net_connect

• mbedtls_ssl_config_defaults

• mbedtls_ssl_conf_authmode

• mbedtls_ssl_conf_rng

• mbedtls_ssl_set_hostname

• mbedtls_ssl_set_bio

• mbedtls_ssl_write

• mbedtls_ssl_read

mbedTLS Example
Here is a sample function that has been tested on an ESP32 to make an HTTPS call to
an HTTPS server to retrieve some results.

#include "mbedtls/platform.h"

#include "mbedtls/ctr_drbg.h"
#include "mbedtls/debug.h"
#include "mbedtls/entropy.h"
#include "mbedtls/error.h"
#include "mbedtls/net.h"
#include "mbedtls/ssl.h"
#include "esp_log.h"
#include "string.h"
#include "stdio.h"

#define SERVER_NAME "httpbin.org"
#define SERVER_PORT "443"
static char tag[] = "callhttps";

static char errortext[256];

static void my_debug(void *ctx, int level, const char *file, int line, const char *str) {
 ((void) level);
 ((void) ctx);
 printf("%s:%04d: %s", file, line, str);
}

void callhttps() {
 ESP_LOGD(tag, "--> callhttps\n");
 mbedtls_net_context server_fd;
 mbedtls_entropy_context entropy;
 mbedtls_ctr_drbg_context ctr_drbg;
 mbedtls_ssl_context ssl;
 mbedtls_ssl_config conf;
 mbedtls_x509_crt cacert;

 int ret;
 int len;
 char *pers = "ssl_client1";

Page 155

 unsigned char buf[1024];

 mbedtls_net_init(&server_fd);
 mbedtls_ssl_init(&ssl);
 mbedtls_ssl_config_init(&conf);
 mbedtls_x509_crt_init(&cacert);
 mbedtls_ctr_drbg_init(&ctr_drbg);
 mbedtls_entropy_init(&entropy);
 mbedtls_ssl_conf_dbg(&conf, my_debug, stdout);

 mbedtls_debug_set_threshold(2); // Log at error only
 ret = mbedtls_ctr_drbg_seed(
 &ctr_drbg,
 mbedtls_entropy_func, &entropy, (const unsigned char *) pers, strlen(pers));
 if (ret != 0) {
 ESP_LOGE(tag, " failed\n ! mbedtls_ctr_drbg_seed returned %d\n", ret);
 return;
 }

 ret = mbedtls_net_connect(&server_fd, SERVER_NAME, SERVER_PORT, MBEDTLS_NET_PROTO_TCP);
 if (ret != 0) {
 ESP_LOGE(tag, " failed\n ! mbedtls_net_connect returned %d\n\n", ret);
 return;
 }

 ret = mbedtls_ssl_config_defaults(
 &conf,
 MBEDTLS_SSL_IS_CLIENT,
 MBEDTLS_SSL_TRANSPORT_STREAM,
 MBEDTLS_SSL_PRESET_DEFAULT);
 if (ret != 0) {
 ESP_LOGE(tag, " failed\n ! mbedtls_ssl_config_defaults returned %d\n\n", ret);
 return;
 }

 mbedtls_ssl_conf_authmode(&conf, MBEDTLS_SSL_VERIFY_NONE);

 mbedtls_ssl_conf_rng(&conf, mbedtls_ctr_drbg_random, &ctr_drbg);

 ret = mbedtls_ssl_setup(&ssl, &conf);
 if (ret != 0) {
 mbedtls_strerror(ret, errortext, sizeof(errortext));
 ESP_LOGE(tag, "error from mbedtls_ssl_setup: %d - %x - %s\n", ret, ret, errortext);
 return;
 }

 ret = mbedtls_ssl_set_hostname(&ssl, "httpbin.org");
 if (ret != 0) {
 mbedtls_strerror(ret, errortext, sizeof(errortext));
 ESP_LOGE(tag, "error from mbedtls_ssl_set_hostname: %d - %x - %s\n", ret, ret, errortext);
 return;
 }

 mbedtls_ssl_set_bio(&ssl, &server_fd, mbedtls_net_send, mbedtls_net_recv, NULL);

 char *requestMessage = \
 "GET /ip HTTP/1.1\r\n" \
 "User-Agent: kolban\r\n" \
 "Host: httpbin.org\r\n" \
 "Accept-Language: en-us\r\n" \
 "Accept-Encoding: gzip, deflate\r\n" \
 "\r\n";
 sprintf((char *)buf, requestMessage);
 len = strlen((char *)buf);

 ret = mbedtls_ssl_write(&ssl, buf, len);
 if (ret < 0) {
 mbedtls_strerror(ret, errortext, sizeof(errortext));
 ESP_LOGE(tag, "error from write: %d -%x - %s\n", ret, ret, errortext);
 return;

Page 156

 }

 len = sizeof(buf);
 ret = mbedtls_ssl_read(&ssl, buf, len);
 if (ret < 0) {
 ESP_LOGE(tag, "error from read: %d\n", len);
 return;
 }

 printf("Result:\n%.*s\n", len, buf);

 mbedtls_net_free(&server_fd);
 mbedtls_ssl_free(&ssl);
 mbedtls_ssl_config_free(&conf);
 mbedtls_ctr_drbg_free(&ctr_drbg);
 mbedtls_entropy_free(&entropy);
 ESP_LOGV(tag, "All done");
}

Notes:

When debugging MBED in Curl set MBEDTLS_DEBUG to 1 in curl_config.h

OpenSSL
OpenSSL is a popular implementation of an SSL stack. In the ESP32 environment, the
selected stack for SSL/TLS is mbedTLS which is not the same as OpenSSL. As part of
the ESP-IDF, a mapping layer has been provided that exposes the OpenSSL API on top
of an mbedTLS implementation.

Name Service
On the Internet, server machines can be found by their Domain Name Service (DNS)
names. This is the service that resolves a human readable representation of a machine
such as "google.com" into the necessary IP address value (eg. 216.58.217.206). In
order for this transformation to happen, the ESP32 needs to know the IP address of one
or more DNS servers that it will then use to perform the name to IP address mapping. If
we are using DHCP then nothing else need be done as the DHCP server automatically
provides the DNS server addresses. However, if we should not be using DHCP (for
example we are using static IP addresses), then we need to instruct the ESP32 of the
locations of the DNS servers manually. We can do this using dns_setserver() function.
This takes an IP address as input along with which of the two possible DNS servers to
use. The ESP32 is configured to know the identity of up to two external name servers.
The reason for two is that if an attempt to reach the first one fails, we will utilize the
second one. We can retrieve our current DNS server identities using dns_getserver().

Google publicly makes available two name servers with the addresses of 8.8.8.8 and
8.8.4.4.

Page 157

Once we have define the name servers, we can look up the address of a host name
using the gethostbyname() function.

During development, we may wish to test a specific DNS server to validate that it can
resolve a host name. An excellent Linux tool to perform this task is "nslookup". It has
many options but for our purposes, we can supply it the host name to lookup and the
DNS server to use:

$ nslookup example.com 8.8.8.8
Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: example.com
Address: 93.184.216.34

See also:

• gethostbyname
• dns_getserver
• dns_setserver
• Wikipedia: Domain Name System
• Google: Public DNS

Multicast Domain Name Systems
On a local area network with dynamic devices coming and going, we may want one
device to find the IP address of another device so that they may interact with each
other. The problem though is that IP addresses can be dynamically allocated by a
DHCP server running on a WiFi access point. This means that the IP address of a
device is likely not going to be static. In addition, it is not a great usability story to refer
to devices by their IP addresses. What we need is some form of dynamic name service
for finding devices by name where their IP addresses aren't administrator configured.
This is where the Multicast Domain Name System (mDNS) comes into play.

At a high level, when a device wishes to find another device with a given name, it
broadcasts a request to all members of the network asking for a response from the
device that has that name. If a machine believes it has that identity, it responds with its
own broadcast which includes its name and IP address. Not only does this satisfy the
original request, but other machines on the network can see this interaction and cache
the response for themselves. This means that should they need to resolve the same
host in the future, they already have the answer.

Using the Multicast Domain Name System (mDNS) an ESP32 can attempt to resolve a
host name of a machine on the local network to its IP address. It does this by
broadcasting a packet asking for the machine with that identity to respond.

The name service demons are implemented by Bonjour and nss-mdns (Linux).

Page 158

https://developers.google.com/speed/public-dns/
https://en.wikipedia.org/wiki/Domain_Name_System

Normally, hosts located using this technique belong to a domain ending in ".local".

To determine if your PC is participating in mDNS you can examine whether or not it is
listening on UDP port 5353. This is the port used for mDNS communications.

See also:

• Wikipedia – Multicast DNS
• IETF RFC 6762: Multicast DNS
• Multicast DNS
• New DNS Technologies in the Lan
• Avahi – Implementation of mDNS … source project for Unix machines
• Adafruit – Bonjour (Zeroconf) Networking for Windows and Linux
• chrome.mdns – API description for Chrome API for mDNS
• Android – ZeroConf Browser

mDNS API programming
The ESP-IDF provides a set of rich APIs for programming mDNS on the ESP32.
Specifically, we can either advertise ourselves in mDNS or else query existing mDNS
information.

The attributes of an mDNS server entry appear to be:

• hostname – mdns_set_hostname()

• default instance – mdns_set_instance()

• service – mdns_service_add()

◦ type – _http, _ftp etc etc

◦ protocol – _tcp, _udp etc etc

◦ port – port number

• instance name for service – mdns_service_instance_set()

• TXT data for service – mdns_service_txt_set()

See also:

• mdns_set_hostname

• mdns_set_instance

• mdns_service_add

• mdns_service_instance_set

• mdns_service_port_set

Installing Bonjour
Launch the Bonjour installer:

Page 159

https://play.google.com/store/apps/details?id=com.melloware.zeroconf&hl=en
https://developer.chrome.com/apps/mdns
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux
http://www.avahi.org/
http://meetings.ripe.net/ripe-55/presentations/strotmann-mdns.pdf
http://www.multicastdns.org/
http://www.ietf.org/rfc/rfc6762.txt
https://en.wikipedia.org/wiki/Multicast_DNS

Page 160

If all has gone well, we will find a new Windows service running called "Bonjour
Service":

Page 161

There is also a Bonjour browser available here …

http://hobbyistsoftware.com/bonjourbrowser

Avahi
An implementation of Multicast DNS on Linux is called Avahi. Avahi runs as the systemd
daemon called "avahi-daemon". We can determine whether or not it is running with:

$ systemctl status avahi-daemon
● avahi-daemon.service - Avahi mDNS/DNS-SD Stack
 Loaded: loaded (/lib/systemd/system/avahi-daemon.service; enabled)
 Active: active (running) since Wed 2016-01-20 22:13:35 CST; 1 day 13h ago
 Main PID: 384 (avahi-daemon)
 Status: "avahi-daemon 0.6.31 starting up."
 CGroup: /system.slice/avahi-daemon.service
 ├─384 avahi-daemon: running [raspberrypi.local]
 └─426 avahi-daemon: chroot helper

The avahi-daemon utilizes a configuration file found at /etc/avahi/avahi-daemon.conf.
The default name that avahi advertizes itself as is the local hostname.

When host-name resolution is performed, the system file called /etc/nsswitch.conf is
used to determine the order of resolution. Specifically the hosts entry contains the
name resolution. An example would be:

hosts: files mdns4_minimal [NOTFOUND=return] dns

Page 162

http://hobbyistsoftware.com/bonjourbrowser

Which says "first look in /etc/hosts, then consult mDNS and then use full DNS". What
this means is that a device which advertizes itself with mDNS can be found via a lookup
of "<hostname>.local". For example, if I boot up a Linux machine which gets a dynamic
IP address through DHCP and the hostname of that machine is "chip1", then I can
reach it with a domain name address of "chip1.local". If the IP address of the device
changes, subsequent resolutions of the domain name will continue to correctly resolve.

Avahi tools are not installed by default but can be installed using the "avahi-utils"
package:

$ sudo apt-get install avahi-utils

To see the list of mDNS devices in your network, we can use the avahi-browse
command. For example:

$ avahi-browse -at
+ wlan1 IPv6 chip1 [ce:79:cf:21:db:95] Workstation local
+ wlan1 IPv4 chip1 [ce:79:cf:21:db:95] Workstation local
+ wlan0 IPv6 pizero [00:36:76:21:97:a3] Workstation local
+ wlan0 IPv6 raspi3 [b8:27:eb:9d:fc:60] Workstation local
+ wlan0 IPv6 chip1 [cc:79:cf:21:db:95] Workstation local
+ wlan0 IPv4 pizero [00:36:76:21:97:a3] Workstation local
+ wlan0 IPv4 raspi3 [b8:27:eb:9d:fc:60] Workstation local
+ wlan0 IPv4 chip1 [cc:79:cf:21:db:95] Workstation local
+ wlan0 IPv6 pizero Remote Disk Management
local
+ wlan0 IPv6 raspi3 Remote Disk Management
local
+ wlan0 IPv4 raspi3 Remote Disk Management
local
+ wlan0 IPv4 pizero Remote Disk Management
local
+ wlan0 IPv4 WDMyCloud Apple File Sharing local
+ wlan0 IPv4 WDMyCloud _wd-2go._tcp local
+ wlan0 IPv4 WDMyCloud Web Site local
+ wlan0 IPv4 Living Room _googlecast._tcp local
+ wlan0 IPv4 123456789 _teamviewer._tcp local

To access an mDNS advertized server from Microsoft Windows, you will need a service
similar to Apple's Bonjour installed. Bonjour is distributed as part of Apple's iTunes
product. Once installed, we should be able to access the published servers at their
<name>.local address. A partner windows tool called "Bonjour Browser" is available
which displays an mDNS listing of servers on windows.

See also:

• avahi home page

• man(1) – avahi-browse

Page 163

http://linux.die.net/man/1/avahi-browse
http://www.avahi.org/

• man(5) – avahi-daemon.conf

Working with SNTP
SNTP is the Simple Network Time Protocol and allows a device connected to the
Internet to learn the current time. In order to use this, you must know of at least one
time server located on the Internet. The US National Institute for Science and
Technology (NIST) maintains a number of these which can be found here:

• http://tf.nist.gov/tf-cgi/servers.cgi

Other time servers can be found all over the globe and I encourage you to Google
search for your nearest or country specific server.

Once you know the identity of a server by its host name or IP address, you can call
either of the functions called sntp_setservername() or sntp_setserver() to declare that
we wish to use that time server instance. The ESP32 can be configured with up to
three different time servers so that if one or two are not available, we might still get a
result.

The ESP32 must also be told the local timezone in which it is running. This is set with a
call to sntp_set_timezone() which takes the number of hours offset from UTC. For
example, I am in Texas and my timezone offset becomes "-5". Although this function is
present, I would suggest using the POSIX tzset() function instead.

With these configured, we can start the SNTP service on the ESP32 by calling
sntp_init(). This will cause the device to determine its current time by sending
packets over the network to the time servers and examining their responses. It is
important to note that immediately after calling sntp_init(), you will not yet know what
the current time may be. This is because it may take a few seconds for the ESP32 to
sends the time requests and get their responses and this will all happen asynchronously
to your current commands and won't complete till sometime later.

When ready, we can retrieve the current time with a call to
sntp_get_current_timestamp() which will return the number of seconds since the 1st of
January 1970 UTC. We can also call the function called sntp_get_real_time() which
will return a string representation of the time. While these functions obviously exist, I
would not recommend using them. Instead look at the POSIX alternatives which are
time() and asctime().

Here is an example of using SNTP to set the time:

ip_addr_t addr;
sntp_setoperatingmode(SNTP_OPMODE_POLL);

Page 164

http://tf.nist.gov/tf-cgi/servers.cgi
http://linux.die.net/man/5/avahi-daemon.conf

inet_pton(AF_INET, "129.6.15.28", &addr);
sntp_setserver(0, &addr);
sntp_init();

The time can be accessed from a variety of POSIX compliant functions including:

• asctime – Build a string representation of time.

• clock – Return processor time.

• ctime – Build a string representation of time.

• difftime – Calculate a time difference.

• gettimeofday – Retrieve the current time of day.

• gmtime – Produce a struct tm from a time_t.

• localtime – Produce a struct tm from a time_t.

• settimeofday – Set the current time.

• strftime – Format a time_t to a string.

• time – Get the current time as a time_t (seconds since epoch).

See also:

• SNTP API

• Timers and time

• asctime

• ctime

• gmtime

• localtime

• strftime
• IETF RFC5905: Network Time Protocol Version 4: Protocol and Algorithms Specification

Java Sockets
The sockets API is the defacto standard API for programming against TCP/IP. My
programming language of choice is Java and it has full support for sockets. What this
means is that I can write a Java based application that leverages sockets to
communicate with the ESP32. I can send and receive data through quite easily.

In Java, there are two primary classes that represents sockets, those are
java.net.Socket which represents a client application which will form a connection and
the second class is java.net.ServerSocket which represents a server that is listening
on a socket awaiting a client connection. Since the ESP32 can be either a client or a
server, both of these Java classes will come into play.

Page 165

https://tools.ietf.org/html/rfc5905

To connect to an ESP32 running as a server, we need to know the IP address of the
device and the port number on which it is listening. Once we know those, we can
create an instance of the Java client with:

Socket clientSocket = new Socket(ipAddress, port);

This will form a connection to the ESP32. Now we can ask for both an InputStream
from which to receive partner data and an OutputStream to which we can write data.

InputStream is = clientSocket.getInputStream();
OutputStream os = clientSocket.getOutputStream();

When we are finished with the connection, we should call close() to close the Java side
of the connection:

clientSocket.close();

It really is as simple as that. Here is an example application:

package kolban;

import java.io.OutputStream;
import java.net.Socket;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.DefaultParser;
import org.apache.commons.cli.Options;

public class SocketClient {
 private String hostname;
 private int port;

 public static void main(String[] args) {
 Options options = new Options();
 options.addOption("h", true, "hostname");
 options.addOption("p", true, "port");
 CommandLineParser parser = new DefaultParser();
 try {
 CommandLine cmd = parser.parse(options, args);

 SocketClient client = new SocketClient();
 client.hostname = cmd.getOptionValue("h");
 client.port = Integer.parseInt(cmd.getOptionValue("p"));
 client.run();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void run() {
 try {
 int SIZE = 65000;
 byte data[] = new byte[SIZE];
 for (int i = 0; i < SIZE; i++) {

Page 166

 data[i] = 'X';
 }
 Socket s1 = new Socket(hostname, port);
 OutputStream os = s1.getOutputStream();
 os.write(data);
 s1.close();
 System.out.println("Data sent!");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
} // End of class
// End of file

To configure a Java application as a socket server is just as easy. This time we create
an instance of the SocketServer class using:

SocketServer serverSocket = new SocketServer(port)

The port supplied is the port number on the machine on which the JVM is running that
will be the endpoint of remote client connection requests. Once we have a
ServerSocket instance, we need to wait for an incoming client connection. We do this
using the blocking API method called accept().

Socket partnerSocket = serverSocket.accept();

This call blocks until a client connect arrives. The returned partnerSocket is the
connected socket to the partner which can used in the same fashion as we previously
discussed for client connections. This means that we can request the InputStream and
OutputStream objects to read and write to and from the partner. Since Java is a multi-
threaded language, once we wake up from accept() we can pass off the received
partner socket to a new thread and repeat the accept() call for other parallel
connections. Remember to close() any partner socket connections you receive when
you are done with them.

So far, we have been talking about TCP oriented connections where once a connection
is opened it stays open until closed during which time either end can send or receive
independently from the other. Now we look at datagrams that use the UDP protocol.

The core class behind this is called DatagramSocket. Unlike TCP, the DatagramSocket
class is used both for clients and servers.

First, let us look at a client. If we wish to write a Java UDP client, we will create an
instance of a DatagramSocket using:

DatagramSocket clientSocket = new DatagramSocket();

Page 167

Next we will "connect" to the remote UDP partner. We will need to know the IP address
and port that the partner is listening upon. Although the API is called "connect", we
need to realize that no connection is formed. Datagrams are connectionless so what
we are actually doing is associating our client socket with the partner socket on the
other end so that when we actually wish to send data, we will know where to send it to.

clientSocket.connect(ipAddress, port);

Now we are ready to send a datagram using the send() method:

DatagramPacket data = new DatagramPacket(new byte[100], 100);
clientSocket.send(data);

To write a UDP listener that listens for incoming datagrams, we can use the following:

DatagramSocket serverSocket = new DatagramSocket(port);

The port here is the port number on the same machine as the JVM that will be used to
listen for incoming UDP connections.

To wait for an incoming datagram, call receive().

DatagramPacket data = new DatagramPacket(new byte[100], 100);
clientSocket.receive(data);

If you are going to use the Java Socket APIs, read the JavaDoc thoroughly for these
classes are there are many features and options that were not listed here.

See also:

• Java tutorial: All About Sockets
• JDK 8 JavaDoc

Bluetooth
The ESP32 has native Bluetooth support (version 4.2). This means that it can interact
with Bluetooth devices such as keyboards, mice and cell phones. Let us review what
Bluetooth means for us. Bluetooth is a wireless communication protocol/technology that
provides data transfer over a radio signal. Let us assume that ESP32 is one end of the
connection and any other Bluetooth device can be at the other. For security purposes,
arbitrary Bluetooth devices can't simply be "used" without some explicit authorization.
For example, it would be very wrong if I could bring my Bluetooth headset near your
phone and start listening to your calls. To achieve security, a process called "pairing"
needs to be performed. This achieves a level of trust between the two Bluetooth
devices such that they subsequently allow connection without having to be re-paired.

Page 168

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/tutorial/networking/sockets/

Bluetooth specification
Bluetooth is a specification for wireless communication between multiple electronic
devices. At present, there are two primary standards … these are Bluetooth (Classic)
and Bluetooth LE. The "LE" stands for Low Energy and is the specification for devices
that wish to be powered by batteries and yet have sufficient life span.

In the Bluetooth story, we have devices which are "masters" and devices which are
"slaves". A slave can only form a connection and communicate with a master while a
master can form concurrent connections with multiple slaves. One slave can not
directly communicate with another slave. Instead it must communicate with the master
and the master relay the request.

The simplest communication is one master and one slave but if we have multiple slaves
connected to the same master, the resulting "network" is termed a "piconet".

Each device that participates in the conversation has a unique address that is a 48 bit
value commonly written as 12 hex values (6 bytes). This address is known as the
"Bluetooth Device Address" and may be seen in other documentation abbreviated to
"BD_ADDR".

The encoding of a Bluetooth address is that the first 24 bits encode the organization
responsible for allocating the remaining address and the remaining 24 bits are the
address itself. However the full 48 bits are the complete identity of the device.

As well as having a unique address, each device can have a symbolic name to help us
meaningfully identify it. This is termed the display name. The display name is only a
mapping to a Bluetooth address and it is really the BD_ADDR address that is used to
distinguish one device from another. It is also important to note that there are no
uniqueness constraints on device names. Multiple devices may select the same device
name.

Let us assume that initially, we have two devices and neither of them know about the
other. What must now happen is a discovery process. One of them will broadcast an
"inquiry" request. Devices receiving the inquiry can respond with their own existence by
transmitting their own address and possibly additional information. It is common that
the response to an inquiry does not contain the display name of the responding device.
If the display name is needed, the inquirer can transmit a directed request now that it
knows the address of the responding device which will solicit the name as a further
response.

A device does not have to respond to an inquiry request. It has a property setting called
an "inquiry scan" that controls whether or not it responds to such. If the attribute is on,
then it will respond to an inquiry request and if off, then it will not respond. Think of the

Page 169

phrase "inquiry scan" as the device's choice as to whether it performs the action of
"scanning for inquires".

Once the two devices know each others addresses, a connection can be formed
between them through a process known as "paging". Again, a device does not have to
service a received connection request. It has a property setting called a "paging scan"
which controls this. If on, then a paging request causes a new connection to be formed.
If off, it will not accept a new connection request.

Once a connection is formed between the devices, that connection can be maintained in
a variety of states, the most common being active. However other states are available
and are used to save power when there is no active communication of data anticipated.

In order to permit devices to communicate with each other, there has to be an element
of security involved. We usually don't want arbitrary devices to be able to connect with
each other and share arbitrary information. To achieve this, a process called "bonding"
is enacted. Bonding is achieved through the notion of "pairing". In pairing, the devices
exchange their addresses, names and other data and generate keys that they share
with each other. Pairing typically requires an explicit interaction from the user to permit
the pairing to succeed. The user interaction can be as simple as "I approve this device"
with a button click or it can be richer with the entry of a pass-code to authenticate and
prove that one is who one claims to be.

The Bluetooth protocol provides support for different classes of power. This translates
directly into the signal strength of the radio. Remember that the more power used by
the radio, the heavier the drain on the power source. If the power source is batteries,
the more power used to transmit data, the shorter the life of the batteries.

At the lower levels, Bluetooth takes care of exchanging data between partners.
However, there is much more to Bluetooth than just simple data exchange. In order to
provide interoperability between devices built by multiple manufacturers, higher level
protocols called "profiles" have been defined. These profiles define "what" is
transmitted over Bluetooth for a given device function.

Some of the profiles we will come across include:

• HSP – Head Set Profile (eg. a Bluetooth ear piece).

• HFP – Hands Free Profile (eg. Bluetooth communication in a car).

• HID – Human Interface Device (eg. a keyboard or mouse).

• SPP – Serial Port Profile.

• A2DP – Advanced Audio Distribution profile (eg. connection to Bluetooth
speakers).

• AVRCP – Audio Visual Remote Control Profile.

Page 170

Knowing that these protocols exist, it is not sufficient that two Bluetooth devices are in
range of each other, they must also both support the same profile that is desired to be
used.

At a higher level than the connection are the transport protocols available to us. These
include:

• RFCOMM – Radio Frequency Communications Protocol. This protocol provides a
reliable stream oriented transmission. Loosely, you can compare it to TCP.

• L2CAP – Logical Link Control and Adaption Protocol. This is a packet oriented
protocol. RFCOMM builds on L2CAP.

• ACL – Asynchronous Connection oriented Logical protocol. L2CAP builds on
ACL.

• SCO – Voice quality audio protocol.

To allow multiple conversations to be processed in parallel, the concept of the "port" is
introduced. This is similar to a TCP/IP port number. L2CAP ports can be odd
numbered values between 1 and 32767. For RFCOMM, the port numbers are called
channels and are between 1 and 30. In the Bluetooth documentation, ports are referred
to as "Protocol Service Multiplexers" or "PSMs".

Certain port numbers used by L2CAP are designated as reserved for well defined
purposes.

See also:

• Introduction to Bluetooth Low Energy

Bluetooth UUIDs
A UUID is a 16 byte number (128 bits). They are commonly written in hexadecimal with
1 byte corresponding to 2 hex digits. The most common written format is 4-2-2-2-6
(bytes).

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

When one receives a UUID, it is the value of the UUID that is used to describe the
nature of the service or data. Each different type of service will have its own unique
UUID.

Page 171

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction

To reduce transmission overhead, the specification defines some well described
services. If one implements one of those services, then we don't need to transmit the
whole 128 bit UUID but can get away with less. A special UUID of the form:

XXXXXXXX-0000-1000-8000-00805F9B34FB

is available where only the first 4 bytes (32 bits) are needed to identify the type of
service and

0000XXXX-0000-1000-8000-00805F9B34FB

is available where only the first 2 bytes (16 bits) are needed to identity the type of
service.

We can generate a UUID using the uuidgen command.

Bluetooth GAP
The Generic Access Protocol (GAP). It is GAP that determine which devices can
interact with each other. In the GAP story there are primarily two classes of "things".
There is the central device and the peripheral device.

We can send advertising using the Advertising Data payload or the Scan Response
payload.

A peripheral device will constantly transmit its advertising payload which can contain up
to 31 bytes of data. The peripheral transmits its advertising data every advertising
interval period. The Advertising Data payload is present in all BT devices. If the central
receiver of the advertising data payload wishes, it can request a scan response and the
peripheral will send back a scan response payload.

When a peripheral is transmitting advertising data, we can think of it as being in the
mode of broadcasting. It is transmitting its data which may or may not be seen by a
corresponding central.

The concept of BLE advertising is powerful beyond just finding devices to form
subsequent connections. The advertising packets can contain data in their payload. If
the data being transmitted does not need to be secure (for example, the outside
temperature), then we have the core of an interesting solution in its own right. The
peripheral can simply broadcast its packets of data and the central can receive them
without the need to form a connection. The receiver can then examine the payload and
receive the data, as long as the data is small enough. In this story, the peripheral is
performing the role of a "broadcaster" while the central would be performing the role of
an "observer". When working in this mode, do realize that the data is flowing in only
one direction … from the publisher to the observer. If you need to send response back,
you will need to form a connection.

Page 172

The rate of advertising can be set to be a period between 20ms and 10.24seconds in
steps of 0.625ms. Thus we can transmit our advertising packets frequently or slowly.

See also:

• A BLE Advertising Primer

GAP Advertizing data
There is theory and there is practice and studying BLE gives us the opportunity for both.
Let us focus on the notion of a BLE peripheral broadcasting advertising messages. At a
high level it will look like:

The advertised data payload has a maximum size of 31 bytes. Each payload is
composed of one or more data structures where the format of each structure is:

Length Advertising Data Type Data ...

The Length is 1 byte in size and indicates how many bytes, following the length byte,
this record will be. The number of records in a payload is variable but, of course, the
total amount of data has to be 31 bytes or less. Either a length of 0 or an ignorable
structure type can be used.

Here is an example of a real payload that I received:

020105020A000319C1030302E0FF11094D4C452D3135202020202020202020

Now we can parse this as follows:

02 01 05 – advertising type 0x01

02 0a 00 – advertising type 0x0A

03 19 c1 03 – advertising type 0x19

03 02 e0 ff – advertising type 0x02

11 09 4d 4c 45 2d 31 35 20 20 20 20 20 20 20 20 20 – advertising type 09

Page 173

http://www.argenox.com/a-ble-advertising-primer/

Here is a simple routine that will step through the structures …

while(!finished) {
 length = *payload;
 payload++;
 if (length != 0) {
 ad_type = *payload;
 payload += length;
 ESP_LOGD(tag, "Type: 0x%.2x, length: %d", ad_type, length);
 }
 sizeConsumed += 1 + length;
 if (sizeConsumed >=31 || length == 0) {
 finished = 1;
 }
} // !finished

Now that we know how to see the structures and access them, the obvious question is
what do each of the structures "mean". For most, they are architected in the BLE
specification. Each structure (after the length) has a single byte that is the "advertising
data type". These single byte number codes are described here:

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

In our ESP32 environment, we have constant definitions for each:

• ESP_BLE_AD_TYPE_FLAG (0x01) – The advert contains a byte of flags that are
defined as following:

◦ Bit 0 – LE Limited Discoverable Mode

◦ Bit 1 – LE General Discoverable Mode

◦ Bit 2 – BR/EDR is NOT supported.

◦ Bit 3 – Indicates whether LE and BR/EDR Controller operates simultaneously

◦ Bit 4 – Indicates whether LE and BR/EDR Host operates simultaneously

◦ Bits 5-7 – Reserved.

• ESP_BLE_AD_TYPE_16SRV_PART (0x02) – Incomplete list of 16bit service UUIDs.

• ESP_BLE_AD_TYPE_16SRV_CMPL (0x03) – Complete list of 16 bit service UUIDs.

• ESP_BLE_AD_TYPE_32SRV_PART (0x04) – Incomplete list of 32bit service UUIDs.

• ESP_BLE_AD_TYPE_32SRV_CMPL (0x05) – Complete list of 32bit service UUIDs.

• ESP_BLE_AD_TYPE_128SRV_PART (0x06) – Incomplete list of 128bit service class
UUIDs.

• ESP_BLE_AD_TYPE_128SRV_CMPL (x07) – Complete list of 128bit service class
UUIDs.

• ESP_BLE_AD_TYPE_NAME_SHORT (0x08) – Shortened local name.

Page 174

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

• ESP_BLE_AD_TYPE_NAME_CMPL (0x09) – Complete local name.

• ESP_BLE_AD_TYPE_TX_PWR (0x0A) – Transmit power level.

• ESP_BLE_AD_TYPE_DEV_CLASS (0x0D)

• ESP_BLE_AD_TYPE_SM_TK (0x10)

• ESP_BLE_AD_TYPE_SM_OOB_FLAG (0x11)

• ESP_BLE_AD_TYPE_INT_RANGE (0x12)

• ESP_BLE_AD_TYPE_SOL_SRV_UUID (0x14)

• ESP_BLE_AD_TYPE_128SOL_SRV_UUID (0x15)

• ESP_BLE_AD_TYPE_SERVICE_DATA (0x16)

• ESP_BLE_AD_TYPE_PUBLIC_TARGET (0x17)

• ESP_BLE_AD_TYPE_RANDOM_TARGET (0x18)

• ESP_BLE_AD_TYPE_APPEARANCE (0x19) – It is likely this conforms to the
assigned numbers found here
https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml and

• ESP_BLE_AD_TYPE_ADV_INT (0x1A)

• ESP_BLE_AD_TYPE_32SOL_SRV_UUID (0x1B)

• ESP_BLE_AD_TYPE_32SERVICE_DATA (0x1C)

• ESP_BLE_AD_TYPE_128SERVICE_DATA (0x1D)

• ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE (0xFF) – Custom payload.

With this in mind, if we look at our sample data … we can see that it means:

02 01 05 – advertising type 0x01 – ESP_BLE_AD_TYPE_FLAG

02 0a 00 – advertising type 0x0A – ESP_BLE_AD_TYPE_TX_PWR

03 19 c1 03 – advertising type 0x19 – ESP_BLE_AD_TYPE_APPEARANCE

03 02 e0 ff – advertising type 0x02 – ESP_BLE_AD_TYPE_16SRV_PART

11 09 4d 4c 45 2d 31 35 20 20 20 20 20 20 20 20 20 – advertising type 0x09 –
ESP_BLE_AD_TYPE_NAME_CMPL

Now we can consult the specification and determine what the data part of each
advertising type means and we have our information.

Page 175

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml

Because examining the advertising data of a GAP message is so important and so
common, the ESP-IDF contains a very useful utility function that takes as an input the
advertisement data and looks for an advertising type structure within it of a defined type.
The function is called esp_ble_resolv_adv_data().

See also:

• esp_ble_resolve_adv_data

Advertisability – limited and general
Is "advertisability" even a real word? I think not … but it describes what we want to
cover. When we have a bluetooth peripheral, we somehow need to make it available to
be discovered by a bluetooth central in order for the central to make requests of the
peripheral. The way we achieve this is by making the peripheral visible by it
broadcasting its advertising packets. When a peripheral starts advertising, it can tag the
advertisement as either limited-discoverable or general-discoverable. The notion here
is that limited-discoverable devices have "recently" been enabled to start broadcasting
while "general-discoverable" devices usually broadcast continuously. "So what" you
may ask? Well, think of a user looking for a device. It is not uncommon for a new
device to be added by pressing some button on it to start it broadcasting so that it can
be found and paired. We want this new device to show up higher in the list of found
devices than others … and this can be achieved by recognizing that a device which only
broadcasts for a limited period of time will enable its "limited-discoverable" flag and
provide a hint to the software running on the central that the device is likely going to be
the one the user is looking for.

Filtering devices
When we are looking for a device, we may find more devices than we want. Rather
than present all devices to the user, we can choose to filter the set of available devices
and hide the ones that we believe are not of interest. For example, if I am running a
heart-rate monitor application on my phone, I'm really only interested in devices that can
provide such information. My latest bluetooth headset or the outside temperature is not
what I'm looking for. What we want to do is filter the set of ALL found devices down to
only the ones that match some criteria of interest to us. In order for that to happen,
each device must not only advertise its existence, but also supply information that can
be used to include or eliminate it from selection.

Performing a scan
There isn't much value in generating advertising data if no-one is listening. In BLE the
act of listening for advertising data is called "scanning". To perform a scan in the ESP32
we perform the following tasks:

Page 176

1. We register a callback function to handle the received data.

2. We define the parameters for how we would like the scan to be performed.

3. We ask the ESP32 to start scanning.

Translating these into ESP32 APIs we have esp_ble_gap_register_callback() to
register our GAP event callback function to be invoked when events arrive.

We have the esp_ble_gap_set_scan_params() to setup how we wish the scanning to be
performed.

We have esp_ble_gap_start_scanning() to initiate a scan request.

If we need to interrupt our scanning before the requested duration of scanning has
completed, we can call esp_ble_gap_stop_scanning().

The function registered when we call esp_ble_gap_register_callback() is where the
majority of our logic will happen. The parameter to this registration function is itself a C
function which the following signature:

void gap_event_handler(
 esp_gap_ble_cb_event_t event,
 esp_ble_gap_cb_param_t *param)

The param is a union of structures.

Event Type Data Property

ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT adv_data_cmpl

ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT adv_data_raw_cmpl

ESP_GAP_BLE_ADV_START_COMPLETE_EVT adv_start_cmpl

ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT scan_param_cmpl

ESP_GAP_BLE_SCAN_RESULT_EVT scan_rst

ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT scan_rsp_data_raw_cmpl

ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT scan_rsp_data_cmpl

ESP_GAP_BLE_SCAN_START_COMPLETE_EVT scan_start_cmpl

The event parameter defines the type of event we have received. Event types include:

• ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT – Raw advertising data operation
complete.

• ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT – Called when advertising data set is
complete. Structure parameter is called scan_rsp_data_cmpl.

Page 177

◦ esp_bt_status_t status – The status of the event.

• ESP_GAP_BLE_ADV_START_COMPLETE_EVT – Called when advertising scan startup is
complete. The parameter is a property called scan_start_cmpl which contains:

◦ esp_bt_status_t status – The status of the event.

• ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT – Called when scan parameters set
complete. Structure parameter is called scan_param_cmpl.

◦ esp_bt_status_t status

• ESP_GAP_BLE_SCAN_RESULT_EVT – The param is an instance of
esp_ble_gap_cb_param_t. Called when one scan result is ready. The structure
parameter is called scan_rst.

◦ esp_gap_search_evt_t search_evt – Choices are:

▪ ESP_GAP_SEARCH_INQ_RES_EVT – We have received a search result.

▪ ESP_GAP_SEARCH_INQ_CMPL_EVT – The search is complete.

▪ ESP_GAP_SEARCH_DISC_RES_EVT

▪ ESP_GAP_SEARCH_DISC_BLE_RES_EVT

▪ ESP_GAP_SEARCH_DISC_CMPL_EVT

▪ ESP_GAP_SEARCH_DI_DISC_CMPL_EVT

▪ ESP_GAP_SEARCH_SEARCH_CANCEL_CMPL_EVT

◦ esp_bd_addr_t bda – The address of the device. 6 bytes of data.

◦ esp_bt_dev_type_t dev_type – One of:

▪ ESP_BT_DEVICE_TYPE_BREDR

▪ ESP_BT_DEVICE_TYPE_BLE

▪ ESP_BT_DEVICE_TYPE_DUMO

◦ esp_ble_addr_type_t ble_addr_type – One of

▪ BLE_ADDR_TYPE_PUBLIC

▪ BLE_ADDR_TYPE_RANDOM

▪ BLE_ADDR_TYPE_RPA_PUBLIC

▪ BLE_ADDR_TYPE_RPA_RANDOM

◦ esp_ble_evt_type_t ble_evt_type – One of

▪ ESP_BLE_EVT_CONN_ADV

Page 178

▪ ESP_BLE_EVT_CONN_DIR_ADV

▪ ESP_BLE_EVT_DISC_ADV

▪ ESP_BLE_EVT_NON_CONN_ADV

▪ ESP_BLE_EVT_SCAN_RSP

◦ int rssi – The signal strength.

◦ uint8_t ble_adv[ESP_BLE_ADV_DATA_LEN_MAX] – The advertised data.

◦ int flag – Flags

▪ bit 0 – Limited Discoverable

▪ bit 1 – General Discoverable

▪ bit 2 – BR/EDR not supported

▪ bit 3 – Simultaneous LE and BR/EDR (Controller)

▪ bit 4 – Simultaneous LE and BR/EDR (Host)

◦ int num_resps – The number of responses received. This is valid when the
search_evt type is ESP_GAP_SEARCH_INQ_CMPL_EVT.

◦ uint8_t adv_data_len

◦ uint8_t scan_rsp_len

• ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT – ???.

• ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT – Called when the scan
response data set is complete. Structure parameter is called:
scan_rsp_data_cmpl.

◦ esp_bt_status_t status

• ESP_GAP_BLE_SCAN_START_COMPLETE_EVT – ???.

A typical series of events received might be:

• ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT

• ESP_GAP_BLE_SCAN_START_COMPLETE_EVT

• ESP_GAP_BLE_SCAN_RESULT_EVT – ESP_GAP_SEARCH_INQ_RES_EVT

• …

• ESP_GAP_BLE_SCAN_RESULT_EVT – ESP_GAP_SEARCH_INQ_CMPL_EVT

See also:

Page 179

• esp_ble_gap_register_callback

• esp_ble_gap_set_scan_params

• esp_ble_gap_start_scanning

• esp_ble_gap_stop_scanning

Performing advertising
If our ESP32 is going to be a peripheral, then it will be advertising its existence. The
ESP-IDF provides some APIs to achieve that task. At a high level:

1. Call esp_ble_gap_config_adv_data() to specify the content of our periodic
advertisement.

2. Call esp_ble_gap_start_advertising() to initiate the periodic advertisement.

While superficially simple, we need to consider all the distinct parameters that are
available to us … and there are many.

We will start with the esp_ble_gap_config_adv_data(). This is where we specify the
content of the advertisement payload. An example structure would be:

static esp_ble_adv_data_t test_adv_data;
test_adv_data.set_scan_rsp = false,
test_adv_data.include_name = true,
test_adv_data.include_txpower = true,
test_adv_data.min_interval = 0x20,
test_adv_data.max_interval = 0x40,
test_adv_data.appearance = 0x00,
test_adv_data.manufacturer_len = 0,
test_adv_data.p_manufacturer_data = NULL,
test_adv_data.service_data_len = 0,
test_adv_data.p_service_data = NULL,
test_adv_data.service_uuid_len = 32,
test_adv_data.p_service_uuid = test_service_uuid128,
test_adv_data.flag = 0x2,
};

Once we have started advertising, we can check the published information using:

$ sudo hcitool lescan

See also:

• esp_ble_gap_config_adv_data

• esp_ble_gap_start_advertising

• esp_ble_gap_stop_advertising

Page 180

Bluetooth GATT
The Generic Attribute Protocol (strangely called GATT) provides a mechanism for
passing data in a standard form. GATT is always present in BLE. Think of GATT as a
way to send and receive data that is "remembered" at the GATT server (while it is
running). A client can explicitly request the values of data items as well as receive
pushed asynchronous notifications as events when something interesting happens at
the GATT server.

In this model of an attribute, each attribute consists of a row in the table. The "handle"
property of the attribute forms its key. It is important to note that a handle is not the
same as a row number. Handles need not be consecutive. However, no two attributes
can have the same handle value. How the server internally manages the attributes is
not part of the specification and is left to the BLE run-time designers.

At the high level of the protocol there is the concept of a service. The service is the
grouping of functionally related attributes. Each service has its own UUID. Within a
service are characteristics where a characteristic is a property of that service. Each
characteristic type is identified by its own UUID value. In addition a characteristic
contains a value, properties, security and may also include descriptors.

Within the specification of GATT we have the notion of two roles … namely that of a
client and that of a server. A GATT server is commonly a passive entity that waits for
requests from GATT clients and services them as they arrive.

Page 181

When a GATT client starts, it assumes little about the GATT server and first performs an
inquiry upon the server to determine its characteristics.

Every BLE device must include the capability to be a GATT server.

Before we talk more about GATT, let us first talk about ATT. ATT is the Attribute Protocol
and serves as the underpinnings for GATT. Think of a logical server that maintains a set
of attributes. We define an attribute as consisting of:

• handle – A 16 bit number representing the key/identity of the attribute.

• type – 128 bit UUID describing the type of the attribute.

• permissions – Permissions on the attribute. The permissions can be:

◦ None

◦ Read

◦ Write

◦ Read/Write

• value – The value of the attribute. Can be up to 512 bytes.

Loosely, we can think of the attributes as being in a table form:

handle1 type1 permissions1 value1

handle2 type2 permissions2 value2

handle3 type3 permissions3 value3

handle... type... permissions... value...

The GATT server manages attributes that can be read by or written from a GATT client.
How these attributes are stored by the GATT server internally is not defined in the
specification and left to the implementers to choose.

This story of raw attributes is further specified in the GATT protocol by the notion of
services and characteristics.

Think of a service a logical description that a GATT server is prepared to do something
that is well defined. If it claims to provide a service, then it must adhere to the contract
described by that service. This contract is defined by a set of characteristics and the set
of those make up the service.

See also:

• Generic Attribute Profile (GATT)

• generic attributes (gatt) and the generic attribute profile

• GATT-Based specifications

Page 182

https://www.bluetooth.com/specifications/adopted-specifications#gattprofile
https://www.bluetooth.com/specifications/generic-attributes-overview
https://developer.bluetooth.org/TechnologyOverview/pages/gatt.aspx

• GATT services – Assigned numbers

• GATT delarations – Assigned number

• GATT characteristics – Assigned numbers

• gatttool

GATT Characteristic
Working on the notion that in the underlying story everything is an attribute, let us
explain the concept of characteristics in terms of attributes.

Each characteristic is declared as:

<handle> UUID (0x2803) Read only • properties – 1 byte
• value handle – 2 bytes
• characteristic UUID – 2, 4 or 16 bytes

The properties are a bit field including:

• broadcast – Characteristic value can be in advertising packets.

• read – Client may read the characteristic value.

• write – Client may write the characteristic value and send a response.

• write without response – Client may write the characteristic value with no
response.

• notify – Value notification available.

• indicate – Value indication available.

• signed write command – ???

Being a GATT client
From the ESP32 perspective, to be a GATT client we perform:

1. Register a callback to receive GATT events using
esp_ble_gattc_register_callback().

2. Call esp_ble_gattc_app_register() to register this application.

3. Open a connection to the GATT server using esp_ble_gattc_open().

4. When an open event arrives, execute a search using
esp_ble_gattc_search_service().

When we call esp_ble_gattc_open() we are requesting to open a GATT connection to a
specific device. This request is non-blocking and will execute in the background.

Page 183

https://www.bluetooth.com/specifications/gatt/characteristics
https://www.bluetooth.com/specifications/gatt/declarations
https://www.bluetooth.com/specifications/gatt/services

Eventually we will receive a GATT event indicating the outcome. The event type will be
ESP_GATTC_OPEN_EVT.

As part of the response data from the ESP_GATTC_OPEN_EVT we will receive a connection
identifier (conn_id). This conn_id can be loosely thought of as a socket to the partner
device.

Once we have formed a connection to the partner device, we can ask it about the
services that it offers. We do this by calling esp_ble_gattc_search_service() function.
Like other BLE mechanisms, this is an asynchronous operation that results in a series
of GATT events being generated. For each service possessed by the device, an
ESP_GATTC_SEARCH_RES_EVT is fired and finally, when we have seen all the services, we
get an ESP_GATTC_SEARCH_CMPL_EVT. This is illustrated in the following diagram:

Page 184

For each of the services we get back we can start to invoke those services on the
device.

See also:

• esp_ble_gattc_register_callback

• esp_ble_gattc_app_register

• esp_ble_gattc_open

• esp_ble_gattc_search_service

• GATT Services

Being a GATT Server
The high level of being a GATT server is:

esp_bt_controller_init()
esp_bt_controller_enable()
esp_bluedroid_init()
esp_bluedroid_enable()
esp_ble_gatts_register_callback()
esp_ble_gap_register_callback()
esp_ble_gatts_app_register()

The call to esp_ble_gatts_app_register() registers our application. This passes
control back to the BLE subsystem and, when ready, will call back the GATT server
event handler with an event type of ESP_GATTS_REG_EVT. When we receive that, we then
do the next part of the setup:

esp_ble_gap_set_device_name()
esp_ble_gap_config_adv_data()
esp_ble_gatts_create_service()

To test that all is working, we can run the hcitool from a Linux system:

$ sudo hcitool lescan
24:0A:C4:00:00:96 MYDEVICE

See also:

• esp_ble_gatts_register_callback

• esp_ble_gap_register_callback

• esp_ble_gap_set_device_name

• esp_ble_gap_config_adv_data

• esp_ble_gatts_app_register

• esp_ble_gatts_create_service

Notifications and indications
We might not want a BLE client to continuously poll a BLE server to read a
characteristic value to determine if and when it changes. There are two primary down-
sides to this. The first is that if we assume that in the majority of cases there will have

Page 185

https://www.bluetooth.com/specifications/gatt/services

been no change, we are wasting energy asking for a value, waking up the server and
being told it hasn't changed. Instead what we want is an interrupt mechanism. This is
where notifications and indications come into play. When a client connects to the
server, the server can push notifications that a value has changed to the client. This
way the client doesn't have to do any work except when it is informed that the value
changed. No radio transmissions are occurring until the value changes.

This takes us to the second down-side of polling. If we are polling, we are presumably
waiting between polls. In that case we have a latency between when a value does
change and when the peer is notified. This latency is reduced in the notification story.

A notification is a "fire and forget" story. The server that is informed that its value
changes notifies its peer without ever knowing that the peer received (or did not receive)
the notification. Similar to notifications is the concept of an indication. Like a
notification, nothing is transmitted to the peer until the value is flagged as having
changed … however, unlike notification, an indication will result in an acknowledgment
that the partner received the update.

Associated with polling and notification is the Client Characteristic Descriptor with UUID
0x2902. This contains a couple of flags. One for notification and one for indication. A
server which is able to generate notifications or indications for a given characteristic
should have this descriptor associated with it. Before actually performing a notification
or indication, the server should check the bits in the flags before performing the
operation. The client will update the bits if it desires to have notifications or indications
performed. It is presumed that this protocol is in place to prevent a server expending
radio transmission energy when a notification would be produced but a client isn't
interested in receiving at this time.

GATT XML descriptions
The GATT service, characteristic, descriptors and declaration descriptions are available
as XML documents.

See also:

• GATT XML

Service Discovery Protocol
When a client application wishes to request that a connection be established, the client
needs to know the port number on which the server is listening. In TCP/IP land, this is
achieved by having the client and the server share the implicit knowledge of the port
number to use. In Bluetooth, extra functions have been made available. Specifically,
there is a service available called the Service Discovery Protocol or "SDP". At the
server, when a service is offered, the port number of that service is registered to the
local SDP. When a client now wishes to use the target service, it first requests endpoint
information from the SDP running on the server. The SDP returns the endpoint

Page 186

https://www.bluetooth.com/specifications/gatt

information and the client now has all the information it needs to create a direct
connection to the desired target service. The unit of information managed by the SDP
server is called a "service record" or "SDP record".

A command line interface tool called sdptool is available to examine a Bluetooth
device's SDP data. A simple command is:

$ sdptool browse <Bluetooth Address>

This returns a series of records of the form:

• Service Name

• Service Description

• Service Provider

• Service RecHandler

• Service Class ID List

• Protocol Descriptor List

• Profile Descriptor List

• Language Base Attr List

See also:

• man(1) – sdptool

ESP32 and Bluetooth
Logic appears to be:

esp_bt_controller_init()
esp_bt_controller_enable(ESP_BT_MODE_BTDM)
esp_bluedroid_init()
esp_bluedroid_enable()
esp_ble_gap_register_callback()
esp_ble_gattc_register_callback()
esp_ble_gattc_app_register()
esp_ble_gap_set_scan_params()
esp_ble_gap_start_scanning(20)

Page 187

http://linux.die.net/man/1/sdptool
http://linux.die.net/man/1/sdptool
http://linux.die.net/man/1/sdptool

GATT Server – Read request
When a partner requests that a characteristic be read, an ESP_GATTS_READ_EVT is
received. This should send a response using the esp_ble_gatts_send_response()
function.

We can test this with gatttool

$ sudo gatttool --device=<deviceAddr> --interactive
??> connect
??> char-read-uuid <charUUID>
handle: 0x???? value: ??

Page 188

See also:

• ESP_GATTS_READ_EVT

• esp_ble_gatts_send_response

Debugging ESP32 Bluetooth
The ESP32 bluetooth implementation is built upon an environment called Bluedroid.
The reason this becomes important is that for full understanding of the ESP32
Bluetooth environment, we need to understand the Bluedroid environment as well. For
example, the art of getting lower level diagnostics drops us down to the Bluedroid APIs.
For example:

#include <gatt_api.h> // bluedroid include
…
GATT_SetTraceLevel(6);

will switch on GATT level tracing.

Bluetooth C Programming in Linux
Within the C / Linux environment we have an implementation of the API stack called
"BlueZ". The BlueZ implementation supports RFCOMM, L2CAP, SCO and HCI.

In order to perform Bluetooth programming we must install the package called
"libbluetooth-dev" using:

$ sudo apt-get install libbluetooth-dev

When compiling, we need to link with libbluetooth.

See also:

• An Introduction to Bluetooth Programming

hci_get_route
Retrieve a handle to the specified Bluetooth device or the first available if NULL is
supplied.

int hci_get_route(bdaddr_t *bdaddr)

hci_open_dev
Open the specified device and get a handle to that device. The returned value is a
socket.

int hci_open_dev(int dev_id)

Page 189

https://people.csail.mit.edu/albert/bluez-intro/index.html

If the return is -1 then an error was encountered and the details of the error can be
found in errno.

hci_inquiry

int hci_inquiry(
int dev_id,
int len,
int max_rsp,
const uint8_t *lap,
inquiry_info **ii,
long flags)

where:

• dev_id – the device id of the adapter as retruned by hci_get_route.

• len – The duration of the scan * 1.28 seconds.

• max_rsp – The maximum number of responses we are willing to accept.

• lap – may be NULL

• ii – Pointer to an array of inquiry_info structures to be populated. The storage
must exist and be at least of size max_rsp * sizeof(inquiry_info).

• flags

◦ 0 – Cached results allowed

◦ IREQ_CACHE_FLUSH – Any cached values are discarded and only new
responses will be used.

The inquiry_info is a struct containing:

• bdaddr_t bdaddr

• uint8_t pscan_rep_mode

• uint8_t pscan_period_mode

• uint8_t pscan_mode

• uint8_t dev_class[3] – The device class is encoded in the assigned numbers –
baseband.

• uint16_t clock_offset

See also:

• Assigned numbers – baseband

Page 190

https://www.bluetooth.com/specifications/assigned-numbers/baseband
https://www.bluetooth.com/specifications/assigned-numbers/baseband
https://www.bluetooth.com/specifications/assigned-numbers/baseband

hci_read_remote_name
Retrieve the display name of a specified device.

int hci_read_remote_name(
int hci_sock,
const baddr_t *addr,
int len,
char *name,
int timeout

)

• len – the size of the name buffer to hold the display name.

• name – a buffer to hold the display name.

• timeout – Maximum number of milliseconds to wait before giving up.

On return, a value of 0 indicates success.

str2ba
Convert a string representation of a Bluetooth address into an address.

str2ba(const char *str, bdaddr_t *ba)

Where str is the string representation of the Bluetooth address and ba is a pointer to a
bdaddr_t structure to hold the resulting address.

ba2str
Convert a Bluetooth address to a string. The string buffer must be at least 18 bytes
long.

ba2str(const bdaddr_t *ba, char *str)

The ba is a pointer to a bdaddr_t structure while str is the buffer to be populated with
the string representation.

sdp_connect()

sdp_service_search_attr_req()

sdp_record_register()

Page 191

Bluetooth Audio
Bluetooth speakers and headphones are common so a natural question would be how
to get sound out of them from the Pi. The answer is to install an application called
PulseAudio.

$ sudo apt-get install pulseaudio pulseaudio-module-bluetooth

The Bluetooth profile we want to work with is called A2DP (Advanced Audio Distribution
Profile).

Bluetooth RFCOMM
A serial protocol is available via Bluetooth and is called "RFCOMM" for "Radio
Frequency Communication".

When programming with C, we want to create a socket using:

int s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

A socket address structure for Bluetooth RFCOMM is a struct called sockaddr_rc which
contains:

• sa_family rc_family – This will always be AF_BLUETOOTH.

• bdaddr_t rc_bdaddr – The address of the device to which we wish to connect or
listen upon. If any local Bluetooth adapter will suffice when we are a server, we
can supply BDADDR_ANY.

• uint8_t rc_channel – The channel to which we wish to connect.

To be a client of an RFCOMM server, we would use:

#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>

int main(int argc, char *argv[])
{
 if (argc != 2) {
 printf("Usage: %s bdaddr\n", argv[0]);
 return 0;
 }

 struct sockaddr_rc addr = {0};
 int s, status;
 char *dest = argv[1];

 s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

Page 192

 addr.rc_family = AF_BLUETOOTH;
 addr.rc_channel = 1;
 str2ba(dest, &addr.rc_bdaddr);

 status = connect(s,(struct sockaddr *)&addr, sizeof(addr));
 if(status == 0) {
 status = send(s, "hello!", 6, 0);
 }

 if(status < 0) {
 perror("connect");
 }

 close(s);
 return 0;
}

while to be a server we would use:

#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/rfcomm.h>

int main(int argc, char **argv)
{
 struct sockaddr_rc loc_addr = { 0 }, rem_addr = { 0 };
 char buf[1024] = { 0 };
 int s, client, bytes_read;
 socklen_t opt = sizeof(rem_addr);

 // allocate socket
 s = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

 // bind socket to port 1 of the first available
 // local bluetooth adapter
 loc_addr.rc_family = AF_BLUETOOTH;
 loc_addr.rc_bdaddr = *BDADDR_ANY;
 loc_addr.rc_channel = (uint8_t) 1;
 bind(s, (struct sockaddr *)&loc_addr, sizeof(loc_addr));

 // put socket into listening mode
 listen(s, 1);

 // accept one connection
 client = accept(s, (struct sockaddr *)&rem_addr, &opt);

 ba2str(&rem_addr.rc_bdaddr, buf);
 fprintf(stderr, "accepted connection from %s\n", buf);
 memset(buf, 0, sizeof(buf));

Page 193

 // read data from the client
 bytes_read = read(client, buf, sizeof(buf));
 if (bytes_read > 0) {
 printf("received [%s]\n", buf);
 }

 // close connection
 close(client);
 close(s);
 return 0;
}

See also:

• RFCOMM with TS 07.10

• man(1) – rfcomm

• An Introduction to Bluetooth Programming

Bluetooth tools

l2ping
In TCP/IP networking, we have a tool called ping which sends an ICMP packet over the
network to which the partner responds. We can use this command to determine the
"liveness" of the partner as well as get the round trip response times. For Bluetooth, we
have a similar tool called "l2ping". This command sends a L2CAP echo request to the
partner and waits for the response.

At the highest level, we use:

$ sudo l2ping <bd_addr>

where bd_addr is the address of the target device. Here is an example output:

$ sudo l2ping 00:1A:7D:DA:71:13
Ping: 00:1A:7D:DA:71:13 from B8:27:EB:62:03:9F (data size 44) ...
44 bytes from 00:1A:7D:DA:71:13 id 0 time 11.32ms
44 bytes from 00:1A:7D:DA:71:13 id 1 time 66.06ms
44 bytes from 00:1A:7D:DA:71:13 id 2 time 19.84ms
44 bytes from 00:1A:7D:DA:71:13 id 3 time 52.38ms

As of 05/2016, running the l2ping command on current Raspbian ends after about 5
seconds of pinging with a message:

Send failed: Connection reset by peer

Current thinking is that this is caused by a deliberate kernel timeout of L2CAP requests
that don't result in a connection. The theory believed to be that to save battery life in
real Bluetooth devices, if a connection isn't established in the timeout period, don't
bother to keep trying and, presumably, waste power resources.

The l2ping command is delivered as part of the "bluez" package.

Page 194

https://people.csail.mit.edu/albert/bluez-intro/index.html
http://linux.die.net/man/1/rfcomm
http://linux.die.net/man/1/rfcomm
http://linux.die.net/man/1/rfcomm
https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx

See also:

• man(1) – l2ping

rfcomm
See also:

• man(1) – rfcomm

bluetoothctl
One of the primary tools for working with Bluetooth is called bluetoothctl. Oddly, this
command seems to have only the bare bones of a man page (shame).

One should run bluetoothctl as root using:

$ sudo bluetoothctl

If you fail to run it as root, it will just silently sit there until you interrupt it. This command
line tool has the following commands:

• list – List available controllers

• show [ctrl] – Controller information

• select <ctrl> – Select default controller

• devices – List available devices

• paired-devices – List paired devices

• power <on/off> – Set controller power

• pairable <on/off> – Set controller pairable mode

• discoverable <on/off> – Set controller discoverable mode

• agent <on/off/capability> – Enable/disable agent with given capability

• default-agent – Set agent as the default one

• advertize <on/off/capability>

• scan <on/off> – Scan for devices

• info <dev> – Device information

• pair <dev> – Pair with device

• trust <dev> – Trust device

• untrust <dev> – Untrust device

Page 195

http://linux.die.net/man/1/rfcomm
http://linux.die.net/man/1/l2ping
http://linux.die.net/man/1/l2ping
http://linux.die.net/man/1/l2ping

• block <dev> – Block device

• unblock <dev> – Unblock device

• remove <dev> – Remove device

• connect <dev> – Connect device

• disconnect <dev> – Disconnect device

• list-attributes <dev> – List the attributes on the device.

• set-alias <alias>

• select-attribute <attribute>

• attribute-info [attribute]

• read – Read the value of the currently selected attribute.

• write

• notify <on/off> - Enable or disable notification for the currently selected
attribute.

• register-profile

• unregister-profile

• version – Display version

• quit – Quit program

See also:

hciconfig
As mentioned, HCI is the "Host-Controller Interface" which is the layer of
communication between the higher level protocols of bluetooth and the bluetooth lower
level controller. The "hciconfig" command allows us to execute commands through
this logical interface.

Running hciconfig by itself will list all the bluetooth devices found on the computer:

$ hciconfig
hci0: Type: BR/EDR Bus: UART

BD Address: B8:27:EB:62:03:9F ACL MTU: 1021:8 SCO MTU: 64:1
UP RUNNING PSCAN
RX bytes:19100 acl:150 sco:0 events:457 errors:0
TX bytes:7952 acl:150 sco:0 commands:184 errors:0

Each bluetooth device has a logical identifier of the form "hciX" where the devices are
numbered 0, 1, 2 … etc.

Page 196

To refer to a specific device, most of the commands that we issue through hciconfig
will take the hciX device identifier to target the correct instance.

Some of the more interesting commands we can perform with hciconfig include:

• Getting and setting the devices display name property

• Enabling/disabling page support

• Enabling/disabling scan inquiry support

The hciconfig command is supplied as part of the "bluez" package.

Some useful commands include:

Start LE broadcasting connectable undirected advertising

$ sudo hciconfig hci0 leadv 0

Start LE broadcasting non-connectable undirected advertising

$ sudo hciconfig hci0 leadv 3

Stop LE broadcasting

$ sudo hciconfig hci0 noleadv

See also:

• hcitool

• man(8) – hciconfig

hcidump
This tool is installed through:

$ sudo apt-get install bluez-hcidump

The tool appears to dump the commands sent through the host/controller interface.

Try running with:

$ sudo hcidump -x -R

to see low-level data.

hcitool
The hcitool is delivered as part of the "bluez" package on Linux.

We can issue raw commands through the HCI using:

hcitool cmd <OGF> <OCF>

Page 197

http://manpages.ubuntu.com/manpages/precise/man8/hciconfig.8.html
http://manpages.ubuntu.com/manpages/precise/man8/hciconfig.8.html
http://manpages.ubuntu.com/manpages/precise/man8/hciconfig.8.html

Where the combination of the two bytes <OGF> and <OCF> define the command to
run. For LE controller commands, the <OGF> is 0x08.

To scan for bluetooth LE devices, use:

$ sudo hcitool lescan

We can start advertising packets. See BT Spec 4.2 Vol 2, Part E 7.8.7

Using:

$ sudo hcitool cmd 0x08 0x0008 <Length> <Content>
$ hciconfig hci0 leadv 0

See also:

• man(1) – hcitool

• hciconfig

gatttool
Interact with a BLE device at the GATT level. In order to interact with a BLE device at
the gatt level, we need its device address. Using "hictool lescan" is a good way to get
the address. Typically the program is run with:

$ sudo gatttool --device=<Address> --interactive

This will return a command prompt that starts with the partner device address:

[FF:FF:45:19:14:80][LE]>

The sub-commands available to us include:

connect [address [address type]] Connect to a remote device
disconnect Disconnect from a remote device
primary [UUID] Primary Service Discovery
included [start hnd [end hnd]] Find Included Services
characteristics [start hnd [end hnd [UUID]]] Characteristics Discovery
char-desc [start hnd] [end hnd] Characteristics Descriptor Discovery
char-read-hnd <handle> Characteristics Value/Descriptor Read
by
 handle
char-read-uuid <UUID> [start hnd] [end hnd] Characteristics Value/Descriptor Read
by UUID
char-write-req <handle> <new value> Characteristic Value Write (Write
Request)
char-write-cmd <handle> <new value> Characteristic Value Write (No
response)
sec-level [low | medium | high] Set security level. Default: low
mtu <value> Exchange MTU for GATT/ATT

Once connected, we can interrogate the device about its primary function by running the
"primary" command:

[FF:FF:45:19:14:80][LE]> primary
attr handle: 0x0001, end grp handle: 0x0005 uuid: 00001800-0000-1000-8000-00805f9b34fb

Page 198

http://linux.die.net/man/1/hcitool
http://linux.die.net/man/1/hcitool
http://linux.die.net/man/1/hcitool

attr handle: 0x0006, end grp handle: 0x0008 uuid: 0000180f-0000-1000-8000-00805f9b34fb
attr handle: 0x0009, end grp handle: 0x000b uuid: 00001802-0000-1000-8000-00805f9b34fb
attr handle: 0x000c, end grp handle: 0x000e uuid: 0000ffe0-0000-1000-8000-00805f9b34fb

Notice specifically the UUIDs. These correspond to the assigned numbers of the GATT
specifications. Contrast this with the output of "bluetoothctl info" which shows the
following:

[bluetooth]# info FF:FF:45:19:14:80
Device FF:FF:45:19:14:80

Alias: FF-FF-45-19-14-80
Appearance: 0x03c1
Icon: input-keyboard
Paired: no
Trusted: no
Blocked: no
Connected: yes
LegacyPairing: no
UUID: Generic Access Profile (00001800-0000-1000-8000-00805f9b34fb)
UUID: Immediate Alert (00001802-0000-1000-8000-00805f9b34fb)
UUID: Battery Service (0000180f-0000-1000-8000-00805f9b34fb)
UUID: Unknown (0000ffe0-0000-1000-8000-00805f9b34fb)

For example, 0x...1802… is the Immediate Alert service.

Looking back at the gatttool output, for each of the services, we see a "handle range".
This describes the handles to the characteristics offered by that service. From the
handles, we can ask the device what characteristics these represent:

[FF:FF:45:19:14:80][LE]> char-desc 0x0009 0x000b
handle: 0x0009, uuid: 00002800-0000-1000-8000-00805f9b34fb
handle: 0x000a, uuid: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x000b, uuid: 00002a06-0000-1000-8000-00805f9b34fb

The UUIDs of the declarations and characteristics can then be examine in the assigned-
numbers lists.

For example

• 0x...2800… – GATT Primary Service Declaration

• 0x...2803 … – GATT Characteristic Declaration

• 0x...2A06... – Alert Level

See also:

• Bluetooth GATT

• man(1) – gatttool

Page 199

http://manpages.ubuntu.com/manpages/wily/man1/gatttool.1.html
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.alert_level.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.attribute.gatt.characteristic_declaration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.attribute.gatt.primary_service_declaration.xml
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239390&_ga=1.143747766.2067379180.1470374616

Bluetooth examples

The iTag peripheral
The iTag is a cheap little thingy ($2-$4 on eBay) that is a bluetooth device. Its purpose
is to form a connection with a bluetooth master. If the connection is subsequently lost,
the device starts beeping. In addition, the device can receive a "ping" from the master
to instruct it to immediately start beeping. In all these cases, it acts as a useful device
to help you locate it should it get lost. Now imagine connecting it to your keys, pet, kid
or other loose-able thing and now we have a potential of either being notified that it is
out of range or else it will beep to say "help me".

This makes a great device for testing the ESP32's ability to work as a BLE master.

If we run a BLE scan and listen for advertising packets, we will find that it shows up.
From there we can get its bluetooth address. For example, when I ran an ESP32 to
look for devices, the ESP32 found my tag with the address "FF:FF:45:14:80". Once the
ESP32 found the address, I was the able to issue an open request to it which
succeeded. Once I had an open connection, I issued a search request upon it and four
services were returned. These were:

• UUID: 0x1800

• UUID: 0x1802

• UUID: 0x180f

• UUID: 0xffe0

Since these were 16bit UUIDs, that is the indication that they are specified by the
bluetooth special interest group (SIG). A search at the GATT services web page found
the first three:

• UUID: 0x1800 – Generic Access

• UUID: 0x1802 – Immediate Alert

• UUID: 0x180f – Battery Service

Page 200

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.battery_service.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.immediate_alert.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.generic_access.xml

Great … this is starting to make sense. Now we can drill down into the characteristics
for each service. From the bluetooth specs, the characteristics possible are:

• UUID: 0x1800 – Generic Access

◦ UUID: 0x2a00 – Device Name

◦ UUID: 0x2a01 – Appearance

◦ UUID: 0x2a02 – Peripheral Privacy Flag

◦ UUID: 0x2a03 – Reconnection Address

◦ UUID: 0x2a04 – Peripheral Preferred Connection Parameters

• UUID: 0x1802 – Immediate Alert

◦ UUID: 0x2a06 – Alert Level

• UUID: 0x180f – Battery Service

◦ UUID: 0x2a19 – Battery Level

When we actually performed a characteristics query, what was returned were:

• UUID: 0x1800 – Generic Access

◦ UUID: 0x2a00 – Device Name

◦ UUID: 0x2a01 – Appearance

• UUID: 0x1802 – Immediate Alert

◦ UUID: 0x2a06 – Alert Level

• UUID: 0x180f – Battery Service

◦ UUID: 0x2a19 – Battery Level

Close enough to what we expected.

Smart Watch / The TW64 Band
The TW64 watch/band can be found on eBay for about $9. Performing an eBay search
using "TW64" will turn up many.

Page 201

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.battery_level.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.battery_service.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.alert_level.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.immediate_alert.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.device_name.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.generic_access.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.battery_level.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.battery_service.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.alert_level.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.immediate_alert.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.peripheral_preferred_connection_parameters.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.reconnection_address.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.peripheral_privacy_flag.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.device_name.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.generic_access.xml

We start by running a BLE scan:

$ sudo hcitool lescan

Which came back with:

LE Scan ...
A4:C1:38:77:1A:19 KeepBand
A4:C1:38:77:1A:19 (unknown)

And now we know the device address. Of course, each instance will vary.

next we can connect to the device and ask it about itself:

$ sudo gatttool --device=A4:C1:38:77:1A:19 --interactive
> connect
> primary
attr handle: 0x0001, end grp handle: 0x0007 uuid: 00001800-0000-1000-8000-00805f9b34fb
attr handle: 0x0008, end grp handle: 0x000b uuid: 00010203-0405-0607-0809-0a0b0c0d1911
attr handle: 0x000c, end grp handle: 0x0011 uuid: 66880000-0000-1000-8000-008012563489

and similarly, we can also run:

$ sudo bluetoothctl
info A4:C1:38:77:1A:19
Device A4:C1:38:77:1A:19

Name: KeepBand
Alias: KeepBand
Appearance: 0x0180
Paired: no
Trusted: no
Blocked: no
Connected: no
LegacyPairing: no
UUID: Human Interface Device (00001812-0000-1000-8000-00805f9b34fb)
UUID: Battery Service (0000180f-0000-1000-8000-00805f9b34fb)

Interestingly, notice the distinction in services offered.

A search at the GATT services web page found:

• UUID: 0x1800 – Generic Access

Page 202

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.generic_access.xml

• UUID: 0x180f – Battery Service

• UUID: 0x1812 – Human Interface Device

Again using gattool, we can ask for the description of characteristics:

char-desc
handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
handle: 0x0002, uuid: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
handle: 0x0004, uuid: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
handle: 0x0006, uuid: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x0007, uuid: 00002a04-0000-1000-8000-00805f9b34fb
handle: 0x0008, uuid: 00002800-0000-1000-8000-00805f9b34fb
handle: 0x0009, uuid: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x000a, uuid: 00010203-0405-0607-0809-0a0b0c0d2b12
handle: 0x000b, uuid: 00002901-0000-1000-8000-00805f9b34fb
handle: 0x000c, uuid: 00002800-0000-1000-8000-00805f9b34fb
handle: 0x000d, uuid: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x000e, uuid: 66880001-0000-1000-8000-008012563489
handle: 0x000f, uuid: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x0010, uuid: 66880002-0000-1000-8000-008012563489
handle: 0x0011, uuid: 00002902-0000-1000-8000-00805f9b34fb

Web Bluetooth
Consider a browser. This is a software application that runs on your desktop or phone
that retrieves web page descriptions from remote web servers and displays them. In
addition, you can usually interact with those pages. This much we all know.

Now also consider that a browser can also download JavaScript which runs within the
context of the browser. Typically, this JavaScript is client side code that works with the
visualization of the browser to provide enhanced user interaction. Again, this we know.

But here is what may be new to you. There is a specification in the works that would
allow a browser to interact with external Bluetooth devices that are in peripheral mode.
The browser would perform the role of the Bluetooth central. The JavaScript code
running within the browser would then be able to connect to, read from and write to
Bluetooth devices … and since this code is dynamically downloaded as JavaScript from
the Internet, we have effectively connected our BLE devices through to the Internet.

While interesting in principle, what practical use might we have for this capability?

First of all it allows the browser to perform a richer role as the UI presentation of your
applications. We are continually finding that browsers are becoming the common
denominator for many user interfaces. Many of these are internet enabled but just as
many are what are known as "single page applications" and may be loaded from HTML

Page 203

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.human_interface_device.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.battery_service.xml

and JavaScript that is local to where it is being executed. If the browser permits
connection to a BLE device then now we can visualize data upon it or send new data to
it.

At the highest level, calling navigator.requestDevice() returns a promise that resolves
to an instance of a BluetoothDevice. A parameter to the requestDevice() call is an
object of the form:

{
 filters:
 optionalServices:
 acceptAllDevices: <Boolean>
}

The structure seems to allow the following formats:

{
 filters: [
 {
 service: ["<UUID>"]
 }
]
}

or:

{
 filters: [
 {
 name: ["<DEVICE NAME>"]
 }
],
 optionalServices: ["<UUID>"]
}

or:

{
 acceptAllDevice: true,
 optionalServices: ["<UUID>"]
}

The Web Bluetooth specification allows for a browser to become a BLE Central
component and hence form connections to BLE Peripherals. When accessing
navigtaor.bluetooth.requestDevice(), this must be part of a user interaction (for
example a button press). This means that a user must explicitly and interactively
choose to connect to a BLE device. An arbitrary piece of JavaScript downloaded in a
web page does not have the capability to scan your BLE environment. This restriction
is deliberate for security purposes.

Page 204

A dialog is then shown asking the user for permission to connect to a device. The
return from the requestDevice() call is an instance of BluetoothDevice which contains:

{
 id: <String> // An id for the device. Can be used for equality comparison.
 name: <String> // Human readable name for the device.
 gatt: <BluetoothRemoteGATTServer>
 ongattserverdisconnect: <function>
 <others>
}

Notice in particular the field called gatt that is an instance of
BluetoothRemoteGATTServer.

The BluetoothRemoteGATTServer contains:

{
 device: <BleutoothDevice>,
 connected: <boolean>,
 connect: <function>, // Return a promise returning a BluetoothRemoteGATTServer
 disconnect: <function>,
 getPrimaryService: <function>, // Return a BluetoothRemoteGATTService
 getPrimaryServices: <function> // Return a promise for the remote GATT services
(BluetoothRemoteGATTService) on this device. Must be connected first.
}

• device (BluetoothDevice) – Reference to the Bluetooth device.

• connected (boolean) – Are we connected to the GATT server?

Page 205

• connect (function) – Connect to the GATT server.

• disconnect (function) – Disconnect from the GATT Server.

• getPrimaryService (function) – Get the primary service. The input to the
function is a service UUID and the return is a BluetoothRemoteGATTService.
Typically, the UUID has to be explicitly permitted in the optionalServices field of
the requestDevice() call.

• getPrimaryServices (function) – Get the array of primary services.

Notice the connect() function. This allows us to connect from our browser to the BLE
peripheral. Once done, we can start to work with the services.

A service is described by the BluetoothRemoteGATTService object.

{
 isPrimary: <Boolean>
 uuid: <String>
 getCharacteristic: <function>
 getCharacteristics: <function>
}

• isPrimary (Boolean) – True if this is a primary service.

• uuid (String) – UUID of the service.

• getCharacteristic (function) – A promise to return a
BluetoothGATTCharacteristic. A UUID for a characteristic is required.

• getCharacteristics (function) – A promise to return an array of
BluetoothGATTCharacteristic.

A characteristic is described by the BluetoothRemoteGATTCharacteristic object.

{
 oncharacteristicvaluechanged: <function>
 properties: <BluetoothCharacteristicProperties>
 service: <BluetoothRemoteGATTService>
 uuid: <String>
 value: <DataView>,
 getDescriptor: <function>
 getDescriptors: <function>
 readValue: <function>
 startNotifications: <function>
 stopNotifiications: <function>
 writeValue: <function>
}

• oncharacteristicvaluechanged (function) – A function that you can specify that
will be invoked when the value of the characteristic is changed.

Page 206

• properties (BluetoothCharacteristicProperties) – An object that defines the
properties of this characteristic.

• service (BluetoothRemoteGATTService) – A reference to the service that owns
this characteristic.

• uuid (UUID) – The UUID of this characteristic.

• value – The value … may be null.

• getDescriptor

• getDescriptors

• readValue (function) – A function which, if available and called, will return a
promise for a DataView. This DataView will contain the value of the characteristic.

• startNotifications (function) – Call to start notification events. Returns a
promise.

• stopNotifications (function) – Call to stop notification events. Returns a
promise.

• writeValue

The BluetoothCharacteristicProperties is an object that defines the core properties
of the characteristic. It contains:

{
 authenticatedSignedWrite: <boolean>,
 broadcast: <boolean>,
 indicate: <boolean>,
 notify: <boolean>,
 read: <boolean>,
 reliableWrites: <boolean>,
 writeableAuxiliaries: <boolean>,
 write: <boolean>,
 writeWithoutResponse: <boolean>
}

• authenticatedSignedWrites (boolean)

• broadcast (boolean)

• indicate (boolean) – Can we be indicated of a value change?

• notify (boolean) – Can we be notified of a value change?

• read (boolean) – Can we read the value?

• reliableWrites (boolean)

Page 207

• writeableAuxiliaries (boolean)

• write (boolean) – Can we write the value?

• writeWithoutResponse (boolean)

Once we have the BleutoothRemoteGATTCharacteristic, the fun can start.

First, we need to be cognizant of the values contained in the properties of this object.
The properties declare what we are and are not permitted to do. For example, if the
read property is true, then we are allowed to invoke readValue(). If the value of the
property if false, then we may not invoke readValue(). Putting it simpler, just because
there is a function that appears to be available, doesn't mean that we can sensibly
invoke it.

We can register to be notified when a value changes:

var handlerFunc = function(event) {
 ...
}
characteristic.addEventListener("characteristicvaluechanged", handlerFunc);

The event object passed into the callback handler function has a target property which
will be the instance of the BluetoothRemoteGATTCharacteristic. We can read the value
property from this to get the current value. The value is an instance of a DataView. A
DataView is a buffer of bytes from which we can read either bytes or numeric values.
Should we want a string representation, the following is a useful little algorithm:

Page 208

function dataViewToString(dataview) {
 var result = "";
 for (var i=dataview.byteOffset; i<dataview.byteLength; i++) {
 result += String.fromCharCode(dataview.getInt8(i));
 }
 return result;
}

To run a Web browser with Web Bluetooth on a Linux environment, some OS
prerequisites are required including:

• Kernel 3.19+

• Bluez 5.41+

Both of these are satisfied with Ubuntu 17.04 or better.

In chrome, we can examine the Bluetooth information that is found using:

chrome://bluetooth-internals

We can start trace using:

google-chrome --enable-logging=stderr --vmodule=*bluetooth*=9 --enable-experimental-
web-platform-features

Note: When working with Web Bluetooth, the use of "arrow functions" and "promises"
can come in very handy.

Imagine a place where a function reference might be supplied. For example:

function myFunction(functionRef) {
 functionRef(value);
}

In the above, the parameter to myFunction must itself be a function. A typical call might
be:

myFunction(function(myValue) {
 // do something with myValue
});

The concept of the Arrow Function is an alternate declaration style. The equivalent to
the above would be:

myFunction((myValue)=>{
 // do something with myValue
});

If there is only one parameter, we can shorten further by eliminating the parenthesis:

Page 209

myFunction(myValue =>{
 // do something with myValue
});

See also:

• Web Bluetooth Community

• Github: WebBluetoothCG/web-bluetooth

• Web Bluetooth Specification

• Interact with Bluetooth devices on the Web

• Google – Web-Bluetooth

• Logging Web Bluetooth – Chrome

• MDN – BluetoothDevice

• MDN – BluetoothRemoteGATTCharacteristic

• MDN – BluetoothRemoteG ATT Server

• MDN – BluetoothRemoteGATTService

• MDN – DataView

• Arrow functions

The Physical Web
Have a mobile device browser "see" BLE devices that become available to launch web
pages.

Hardware interfacing
When working with an ESP32 we will quickly recognize that it has a lot of capabilities for
interacting with a variety of hardware devices. These may be through GPIO, SPI, I2C,
Serial or other techniques. In this section we start to examine these distinct techniques
and look at each one in turn.

To interface your ESP32 to hardware, you will be delving down into the hardware levels
and attaching devices to the pins of your ESP32. Since there are many modules
available, you will want to become familiar with the specifics of the modules you are
working with as physical pin locations may differ from one manufacturer to another.

See also:

• Modules

GPIOs
GPIO or General Purpose Input / Output is the ability to drive external pins of the
ESP32 to a signal level of "1" or "0" under application control. We can also choose to
read the signal level that may be present on the pin.

When we think of a GPIO we must realize that at any one time, each pin instance has
two operational modes. It can either be an input or an output. When it is an input, we

Page 210

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
https://developer.mozilla.org/en-US/docs/BluetoothRemoteGATTService
https://developer.mozilla.org/en-US/docs/Web/API/BluetoothRemoteGATTServer
https://developer.mozilla.org/en-US/docs/Web/API/BluetoothRemoteGATTServer
https://developer.mozilla.org/en-US/docs/Web/API/BluetoothRemoteGATTServer
https://developer.mozilla.org/en-US/docs/Web/API/BluetoothRemoteGATTCharacteristic
https://developer.mozilla.org/en-US/docs/Web/API/BluetoothDevice
https://www.chromium.org/developers/how-tos/file-web-bluetooth-bugs
https://groups.google.com/a/chromium.org/forum/#!forum/web-bluetooth
https://developers.google.com/web/updates/2015/07/interact-with-ble-devices-on-the-web
https://webbluetoothcg.github.io/web-bluetooth/
https://github.com/WebBluetoothCG/web-bluetooth
https://www.w3.org/community/web-bluetooth/

can read a value from it and determine the logic level of the signal present at the
physical pin. When it is an output, we can write a logic level to it and that will appear as
a physical output.

Another vital consideration when working with GPIOs is the voltage level. The ESP32 is
a 3.3V device. You need to be extremely cautious if you are working with 5V (or above)
partner MCUs or sensors. Unfortunately devices like the Arduino are typically 5V as are
USB → UART converters and many sensors. This means you are as likely as not to be
working in a mixed voltage environment. Under no circumstances should you think you
can power or connect to the ESP32 with a direct voltage of more than 3.3V. Obviously,
you can convert higher voltages down to 3.3V but never try and connect a greater
voltage directly. Another subtler consideration is when using GPIOs for signal input and
supply greater than 3.3V as a high signal value. I strongly suggest not doing that.
Some folks may claim you can "get away with it" and if you experiment it may (seem) to
work but you are taking an unnecessary risk for no obviously good reason. If it works …
then it will work till it doesn't at which point it will be too late and you may cook your
device.

It is also important to realize that the maximum amount of current you should anticipate
drawing from an output GPIO is 12mA.

Because accidents happen when building GPIO based circuits, I recommend buying
more ESP32 instances than you need. That way if you do happen to find yourself
needing a second (or third or fourth) you will have them at your disposal.

To use the GPIO functions supplied by the ESP-IDF, we must include "driver/gpio.h".

Next we must call gpio_pad_select_gpio() to specify that the function of a given pin
should be that of GPIO as opposed to some other function.

There are 34 distinct GPIOs available on the ESP32. They are identified as:

• GPIO_NUM_0 – GPIO_NUM_19

• GPIO_NUM_21 – GPIO_NUM_23

• GPIO_NUM_25 – GPIO_NUM_27

• GPIO_NUM_32 – GPIO_NUM_39

The ones that are omitted are 20, 24, 28, 29, 30 and 31.

Note that GPIO_NUM_34 – GPIO_NUM_39 are input mode only. You can not use these pins
for signal output. Also, pins 6, 7, 8, 9, 10 and 11 are used to interact with the SPI flash
chip … you can not use those for other purposes.

Page 211

The data type called gpio_num_t is a C language enumeration with values
corresponding to these names. It is recommended to use these values rather than
attempt to use numeric values.

When we want to use a GPIO we need to be cognizant of whether we are using it as a
signal input or a signal output. Think of this as the direction setting. We can set the
direction with a call to gpio_set_direction(). For example, to set a pin as output we
might call:

gpio_set_direction(GPIO_NUM_17, GPIO_MODE_OUTPUT);

while to set it as input we might call:

gpio_set_direction(GPIO_NUM_17, GPIO_MODE_INPUT);

If we have set our GPIO as output, we can now set its signal value to be either 1 or 0.
We do that by calling gpio_set_level().

Here is an example that toggles a GPIO on and off once a second:

gpio_pad_select_gpio(GPIO_NUM_17);
gpio_set_direction(GPIO_NUM_17, GPIO_MODE_OUTPUT);
while(1) {
 printf("Off\n");
 gpio_set_level(GPIO_NUM_17, 0);
 vTaskDelay(1000 / portTICK_RATE_MS);

 printf("On\n");
 gpio_set_level(GPIO_NUM_17, 1);
 vTaskDelay(1000 / portTICK_RATE_MS);
}

When we run this and examine the output on a logic analyzer, all is as desired:

As an alternative to setting all the attributes of individual pins, we can set the attributes
of one or more pins via a single call using the gpio_config() function. This takes a
structure called gpio_config_t as input and sets the direction, pull up, pull down and
interrupt settings of all the pins supplied in a bit mask. For example:

gpio_config_t gpioConfig;
gpioConfig.pin_bit_mask = (1 << 16) | (1 << 17);
gpioConfig.mode = GPIO_MODE_OUTPUT;
gpioConfig.pull_up_en = GPIO_PULLUP_DISABLE;
gpioConfig.pull_down_en = GPIO_PULLDOWN_ENABLE;
gpioConfig.intr_type = GPIO_INTR_DISABLE;
gpio_config(&gpioConfig);

Page 212

See also:

• gpio_pad_select_gpio

• gpio_set_direction

• gpio_set_level

• gpio_config

Pull up and pull down settings
We commonly think of an input GPIO pin as having either a high or low signal supplied
to it. This means that it is connected to +ve or ground. But what if it is connected to
neither? In this case, the pin is considered to be in a floating state. There are times
where we wish to define an unconnected pin as logically being high or low. An
unconnected pin that is to be considered high is termed "pulled up" while an
unconnected pin that is to be considered low is termed "pulled down". This comes from
the physical hardware practice of attaching resistors to pull up or pull down the signal
when it otherwise would be floating.

In the ESP32 SDK, we can define a GPIO as being pulled-up or pulled-down by using
the gpio_set_pull_mode() function. This function takes as input the pin number we
wish to set and the pull mode associated with that pin.

For example:

gpio_set_pull_mode(21, GPIO_PULLUP_ONLY);

See also:

• gpio_set_pull_mode

GPIO Interrupt handling
If we consider that the signal on a pin can move from high to low or from low to high,
such a change might be something our application would be interested in knowing. To
determine when such a change happens, we can continually poll the value to detect a
transition change. However this in not the best solution for a number of reasons. First,
we have to busily perform checking to see whether a value has changed. Secondly,
there will be a latency from the time the event happens to the time when we check.
Thirdly, it is possible to completely miss a signal change if the duration of the change is
short. For example, if we check the value of a pin and find it high and then immediately
after it goes low and then high again, the next time we poll we will still see the pin high
and never have known that it was ever low for a short period.

The solution to all these problems is the notion of an interrupt. An interrupt is similar to
your doorbell at your house. Without a door bell (or listening for someone knocking)
you would have to periodically check to see if there is anyone at the door. This wastes

Page 213

your time for the majority of instances where there is no-one there and also makes sure
that when there is someone there, you attend to them in a timely fashion.

In the land of ESP32s, we can define an interrupt callback function that will be called
when a pin changes its signal value. We can also define what constitutes a reason for
invoking the callback. We can configure the callback handler (technically called an
interrupt handler) on a pin by pin basis.

First, let us consider the interrupt callback function. This is registered with a call to
gpio_isr_register() which takes a callback handler that is invoked when an interrupt
occurs on any GPIO pin occurs. Within the callback handler, we can then ask for the
interrupt flag status with:

uint32_t gpio_intr_status = READ_PERI_REG(GPIO_STATUS_REG); // 0-31
uint32_t gpio_intr_status_h = READ_PERI_REG(GPIO_STATUS1_REG); // 31-39

Alternative, we can use the GPIO global variable which is a pre-mapped structure and
access:

• GPIO.status_w1tc – Flags for GPIO0 to GPIO31

• GPIO.status1_w1tc.val – Flags for GPIO32 to GPIO39

We can enable or disable interrupt handling on a GPIO by GPIO basis by calling
gpio_intr_enable().

To enable an interrupt for a specific pin, we use the function called
gpio_set_intr_type(). This allows us to set the reason that an interrupt might occur.
The reasons include:

• Disable – don't call an interrupt on a signal change.

• PosEdge – Call the interrupt handler on a change from low to high.

• NegEdge – Call the interrupt handler on a change from high to low.

Page 214

• AnyEdge – Call the interrupt handler on either a change from low to high or a
change from high to low.

• Hi – Call the interrupt handler while the signal is high.

• Lo – Call the interrupt handler while the signal is low.

The interrupt handler can be flagged to be loaded into instruction RAM at compilation
time. The default is that the generated code can live in flash. By flagging it up front as
living in instruction RAM, it will always be there and ready to immediately be executed.

For example:

void IRAM_ATTR my_gpio_isr_handle(void *arg) {
 ...
}

A second implementation of interrupt handling is also provided that allows us to register
a callback function associated with any given pin. This alleviates us from having to
write switch code in a common interrupt handler. Think of it as a high level set of
convenience functions.

Here is an example interrupt processor:

Page 215

static char tag[] = "test_intr";
static QueueHandle_t q1;

#define TEST_GPIO (25)
static void handler(void *args) {
 gpio_num_t gpio;
 gpio = TEST_GPIO;
 xQueueSendToBackFromISR(q1, &gpio, NULL);
}

void test1_task(void *ignore) {
 ESP_LOGD(tag, ">> test1_task");
 gpio_num_t gpio;
 q1 = xQueueCreate(10, sizeof(gpio_num_t));

 gpio_config_t gpioConfig;
 gpioConfig.pin_bit_mask = GPIO_SEL_25;
 gpioConfig.mode = GPIO_MODE_INPUT;
 gpioConfig.pull_up_en = GPIO_PULLUP_DISABLE;
 gpioConfig.pull_down_en = GPIO_PULLDOWN_ENABLE;
 gpioConfig.intr_type = GPIO_INTR_POSEDGE;
 gpio_config(&gpioConfig);

 gpio_install_isr_service(0);
 gpio_isr_handler_add(TEST_GPIO, handler, NULL);
 while(1) {
 ESP_LOGD(tag, "Waiting on queue");
 BaseType_t rc = xQueueReceive(q1, &gpio, portMAX_DELAY);
 ESP_LOGD(tag, "Woke from queue wait: %d", rc);
 }
 vTaskDelete(NULL);
}

See also:

• Interrupt Service Routines – ISRs

• gpio_install_isr_service

• gpio_isr_handler_add

• gpio_isr_handler_remove

• gpio_isr_register

• gpio_intr_enable

• gpio_intr_disable

• gpio_set_intr_type

• gpio_intr_enable

• gpio_intr_disable

Expanding the number of available GPIOs
Although the ESP devices only have a limited number of GPIO pins, that needn't be a
restriction for us. We have the capability to expand the number of GPIOs available to
us through some relatively inexpensive integrated circuits.

Page 216

PCF8574
One of the available GPIO expanders is called the PCF8574. (The PFC8574A is the
same but has a different set of addresses).

This is an I2C device and hence works over only two wires. Using this IC we supply a 3
bit address (000-111) that is used to select the slave address of the device. Since each
address has 8 IOs and we can have up to 8 devices, this means a total of 64 additional
pins.

It appears that the device will use a pull-up resistor for a high and bring the pin to
ground for low. This means that we can't use the pins for a high current source but can
for low.

Here is the pin diagram for the device:

Here is a description of the pins:

Symbol Pin Description

A0-A2 1, 2, 3 Addressing

P0-P7 4, 5, 6, 7, 9, 10, 11, 12 Bi directional I/O

INT 13 Interrupt output

SCL 14 Serial Clock Line

SDA 15 Serial Data Line

VDD 16 Supply Voltage (2.5V – 6V)

Vss (Ground) 8 Ground

The address that the slave device can be found upon is configurable via the A0-A2 pins.
It appears at the following address:

PCF8574

Page 217

0 1 0 0 A2 A1 A0

PCF8574A

0 1 1 1 A2 A1 A0

The pins A0-A2 must not float.

This results in the following table:

A2 A1 A0 Address
PCF8574

Address
PCF8574A

0 0 0 0x20 0x38

0 0 1 0x21 0x39

0 1 0 0x22 0x3a

0 1 1 0x23 0x3b

1 0 0 0x24 0x3c

1 0 1 0x25 0x3d

1 1 0 0x26 0x3e

1 1 1 0x27 0x3f

Here is an Arduino example program that drives LEDs to create a Cylon effect.

#include <Wire.h>
#include <Ticker.h>
// SDA - Yellow – 4
// CLK - White – 5

#define SDA_PIN 4
#define CLK_PIN 5

Ticker ticker;
int counter = 0;
int dir = 1;

void timerCB() {
 Wire.beginTransmission(0x20);
 Wire.write(~((uint8_t)1<<counter));
 Wire.endTransmission();
 counter += dir;
 if (counter == 8) {
 counter = 6;
 dir = -1;
 } else if (counter == -1) {
 counter = 1;
 dir = 1;
 }
}

Page 218

void setup()
{
 Wire.begin(SDA_PIN,CLK_PIN);
 ticker.attach(0.1, timerCB);
}

void loop()
{
}

The corresponding circuit is:

And on a breadboard:

Page 219

See also:

• 8BIT IO EXPANDER (PCF8574)
• Datasheet – NXP

• YouTube – ESP32 Technical Tutorial: PCF8574 GPIO Extender
• Product page – TI
• Working with I2C

MCP23017
The MCP23017 from Microchip is a 16 bit input/output port expander that uses the I2C
interface. The device can operate from 1.8V to 5.5V. The going price for an instance of
one of these on eBay is about $1. The device has 16 GPIO pins that can be set as
input or output controlled in two banks (ports). We can read or write the values of one
bank at a time meaning that if we want to write all 16 bits, this would be two I2C
operations and the same for reading. The device is also capable of generating
interrupts for input signal detection. If we imagine a 100KHz clock rate, then to switch a
bit on or off (and we can do these in groups of 8) then that would be 3 bytes of data plus
acknowledgments … ~30 bits … which would imply a maximum switching rate of about
0.3ms. The MCP23017 can operate at a variety of speeds including 100KHz and
400KHz.

The pin interface is:

Page 220

http://www.ti.com/product/pcf8574
https://www.youtube.com/watch?v=8z0DMMDjdiA
https://www.youtube.com/watch?v=8z0DMMDjdiA
http://www.nxp.com/documents/data_sheet/PCF8574.pdf
http://hackaday.com/2008/12/27/parts-8bit-io-expander-pcf8574/

Pin Label Description

1 GPB0 Bi-directional I/O

2 GBP1 Bi-directional I/O

3 GBP2 Bi-directional I/O

4 GBP3 Bi-directional I/O

5 GBP4 Bi-directional I/O

6 GBP5 Bi-directional I/O

7 GBP6 Bi-directional I/O

8 GBP7 Bi-directional I/O

9 VDD Power (3.3V – 5V)

10 VSS Ground

11 NC Not connected

12 SCL Serial clock input

13 SDA Serial data input/output

14 NC Not connected

15 A0 Address pin

16 A1 Address pin

17 A2 Address pin

18 RESET Hardware reset

19 INTB Interrupt output for port B

20 INTA Interrupt output for port A

21 GPA0 Bi-directional I/O

22 GPA1 Bi-directional I/O

23 GPA2 Bi-directional I/O

24 GPA3 Bi-directional I/O

25 GPA4 Bi-directional I/O

26 GPA5 Bi-directional I/O

27 GPA6 Bi-directional I/O

28 GPA7 Bi-directional I/O

The I2C address of the device is 7 bits given by

6 5 4 3 2 1 0

0 1 0 0 A2 A1 A0

And hence has addresses in the range 0x20 – 0x27.

Page 221

The register addresses are:

Page 222

Register
address

Name Description

0x00 IODIRA Direction control for port A:
• 1 – input
• 0 – output

0x01 IODIRB Direction control for port B:
• 1 – input
• 0 – output

0x02 IPOLA Polarity inversion for input for port A:
• 1 – inverted
• 0 – as-is

0x03 IPOLB Polarity inversion for input for port B:
• 1 – inverted
• 0 – as-is

0x04 GPINTENA Interrupt enable for a change for port A:
• 1 – Enable input pin for interrupt on change event
• 0 – Disable input pin for interrupt on change event

0x05 GPINTENB Interrupt enable for a change for port B:
• 1 – Enable input pin for interrupt on change event
• 0 – Disable input pin for interrupt on change event

0x06 DEFVALA Default values for interrupt change comparison for port A.

0x07 DEFVALB Default values for interrupt change comparison for port B.

0x08 INTCONA Interrupt control for port A:
• 1 – Compare the value on the pin to the value in DEFVALA
• 0 – Compare the value on the pin to its previous value

0x09 INTCONB Interrupt control for port B:
• 1 – Compare the value on the pin to the value in DEFVALB
• 0 – Compare the value on the pin to its previous value

0x0a IOCON Same register as 0x0b

Page 223

Bit Label Description

7 BANK Register mapping:
• Registers in banks
• Registers sequential

6 MIRROR Interrupt pin mapping:
• 1 – INT pins connected
• 0 – INT pins separate. INTA is associated

with port A and INTB is associated with port
B

5 SEQOP Sequential operation mode:
• 1 – Sequential operation disabled
• 0 – Sequential operation enabled

4 DISSLW Slew rate control

3 HAEN Hardware address enable

2 ODR Open drain output for INT

1 INTPOL Polarity of INT output:
• 1 – Active high
• 0 – Active low

0 N/A Not used. Set as 0.

0x0b IOCON Same register as 0x0a

0x0c GPPUA Pull up control for Port A:
• 1 – Pull-up via a 100K resistor
• 0 – Pull-up disabled

0x0d GPPUB Pull up control for Port B:
• 1 – Pull-up via a 100K resistor
• 0 – Pull-up disabled

0x0e INTFA Interrupt flags for Port A:
• 1 – Pin caused an interrupt
• 0 – No interrupt detected

0x0f INTFB Interrupt flags for Port B:
• 1 – Pin caused an interrupt
• 0 – No interrupt detected

0x10 INTCAPA Values of GPIO when interrupt occurred on port A:
• 1 – Pin was high
• 0 – Pin was low

0x11 INTCAPB Values of GPIO when interrupt occurred on port B:
• 1 – Pin was high
• 0 – Pin was low

0x12 GPIOA Read – Reads the values on port A

0x13 GPIOB Read – Reads the values on port B

0x14 OLATA

0x15 OLATB

Page 224

See also:

• Data sheet

• Github: code fragment

• Github: telanoc/esp32_generic_i2c_rw

Interrupt Service Routines – ISRs
Imagine that you have written an ESP32 application in C. As you write that application,
you make assumptions about what will happen. Imagine you write:

statement A;
statement B;
statement C;

Your assumption is that the program will perform statement A and then move on to
statement B and then move on to statement C. In addition, if you have variables that
are defined, unless the statements change those variables, you expect them to have the
same values at the start as at the end. These are assumption that you should be able
accept as true.

Page 225

https://github.com/telanoc/esp32_generic_i2c_rw
https://github.com/nkolban/esp32-snippets/tree/master/hardware/expanders/mcp23017
http://ww1.microchip.com/downloads/en/DeviceDoc/21952b.pdf

With an ESP32, we are programming a lot closer to the hardware than in some other
environments. When working with hardware, events may happen externally to the
ESP32 that require our attention. A GPIO might transition its signal level or new
network packet arrive or serial data appear. In each of these cases (and more) it might
be necessary to interrupt what ever we may be doing at the time and handle that event.
To achieve this, we have access to what are called "Interrupt Service Routines" or ISRs.
These are commonly C functions that we provide references to that may be invoked at
almost anytime. They may be invoked between C statements or even during C
statements. The state of the currently running program is saved and a "context switch"
occurs causing the ISR to run. In order to maintain sanity, when you write an ISR there
are rules that you absolutely must follow.

First an ISR must be as short as possible. Remember, when you jump into an ISR the
ISR has no knowledge of what you were doing when the interrupt occurred. You may
have been doing something that was time critical and you have to get back to as quickly
as you can. You most certainly must never perform any activity which might be
blocking.

Next, you must assume little about the state of the environment. You can't assume
values of variables that you don't own and you absolutely must not change variable
values that you don't own. Never mind being risky, trying to debug problems that show
up once in ever 1000 runs because the timing was "just right" is a nightmare to be
avoided.

You should never invoke something that might result in another interrupt being
generate. This can result in a never ending loop where an ISR causes an immediate
interrupt which is processed when you return from the ISR which then goes on and on.

With these limitations in mind, what then can you do? The answer is to design a
solution that correctly anticipates and handles interrupt requests. There is no one
formula that fits all but generally, if you can respond to the interrupt immediately with
little or no side effects, then it is safe to do so. For example if an interrupt signals that a
GPIO pin has changed value, you might update a memory location that is defined to
reflect the "current" state of the pin and then immediately return. If you have to perform
extended processing, then consider writing a message to a queue or unlocking a
semaphore and then again, immediately returning. Since the ESP32 employs
FreeRTOS which provides a preemptive task scheduler, you can have tasks that run in
the background that "wake up" when events occur. These wake-ups need to be
decoupled from the ISR and a queue or semaphore is a great way to achieve that. The
following APIs are safe in ISR routines:

• xTaskResumeFromISR()

• xTaskNotifyGiveFromISR()

Page 226

• xTaskNotifyAndQueryFromISR()

• xTaskNotifyFromISR()

• xQueueSendFromISR()

• xQueueSendToBackFromISR()

• xQueueSendToFrontFromISR()

• xQueueReceiveFromISR()

• uxQueueMessagesWaitingFromISR()

• xQueueOverwriteFromISR()

• xQueuePeekFromISR()

• xQueueIsQueueFullFromISR()

• xQueueIsQueueEmptyFromISR()

• xQueueSelectFromSetFromISR()

• xSemaphoreTakeFromISR()

• xSemaphoreGiveFromISR()

• xTimerStartFromISR()

• xTimerStopFromISR()

• xTimerChangePeriodFromISR()

• xTimerResetFromISR()

• xTimerPendFunctionCallFromISR()

• xEventGroupSetBitsFromISR()

• xEventGroupClearBitsFromISR()

• xEventGroupGetBitsFromISR()

Working with I2C
The I2C interface is a serial interface technology for accessing devices. It has two
signal lines called SDA (Serial Data) and SCL (Serial Clock). The ESP32 can act as a
master and the devices connected downstream act as slaves. Up to 127 distinct slaves
are theoretically attachable. Each slave device has a unique address and the master
decides which slave is to receive data or be allowed to speak next. In addition, the
ESP32 can also be a slave device communicating with an external master.

Page 227

All the slaves connected use an "open drain" connection to the bus. This means that
when they connect, their attachment is either open circuit or ground as an output.
Because of this it is impossible for there to be an electrical conflict as it would be
impossible for one device to assert a high signal while another tried to assert a low
signal. The presence of a logical high signal occurs when the current slave device goes
open circuit. This means that we need pull-up resistors on the lines such that when no-
one is actively asserting a low signal, they are pulled-up to a logical high signal. A
resistor value of 4.7KΩ is recommended.

The start of a transmission is indicated when the SCL is left high and SDA is pulled low.
This informs all the slave devices that an address is about to be issued. When the
address is seen by all the slaves, only one of them should match and the other devices
ignore the request.

The address of a slave follows the initial start indication and is comprised of 7 bits with
most significant bit first. Following the 7 bit address is a final 8th bit that indicates
whether this is a read or a write request. A value of 1 indicates a read from the slave
while a value of 0 indicates a write from the master.

On the SDA line, immediately after the 8 bits of address, comes the acknowledgment
bit. This bit is not transmitted from the master to the slave but is instead transmitted
from the slave to the master. Be sure you understand that as when looking at diagrams
showing data on the SDA wire, those diagrams typically do not show the origination of
the data, only their sequence. The turn around time from the last bit of the 8 bit
address/direction data sent from the master to the acknowledgment bit sent from the
slave happens without missing any clock cycles so has to be fast. A value of 0 in the
acknowledgment states that the slave has received the data. A value of 1 in the
acknowledgment states that no-one is responding or the slave is not present.

Following this addressing frame comes the data frame or frames. For a master write
request, the master will send 8 bits of data and expect a single bit of acknowledgment.

Page 228

For a read from the slave, the slave will send 9 bits of data (8 data bits and an
acknowledgment).

The master will finally send an end of communication (or stop) indication which is a
transition to high on the clock with NO corresponding transition to low and then a
transition from low to high on the SDA line.

See also:

• I2C Bus
• Sparkfun – Tutorial: I2C

Using the ESP-IDF I2C driver
The ESP-IDF provides an I2C driver that allows us to control I2C functions from a C
program at a high level without having to resort to low level register manipulation.
Within the ESP32, the I2C functions are baked into the hardware of the IC and the
drivers make working with I2C significantly simpler. The ESP32 can provide the
services of both an I2C master controller as well as the ability to be an I2C slave. There
are two independent I2C ports so we can participate in two I2C buses simultaneously …
either as two masters, two slaves or one master and one slave. Or, obviously, if we only
need one bus, we can just ignore the other. The two ports are named I2C_NUM_0 and
I2C_NUM_1. Before we can use an I2C port, we need to configure it.

In many ICs, the pin numbers exposed for I2C are fixed. This is not the case in the
ESP32. Arbitrary exposed pins can be used for I2C. Since I2C is a "two wire" bus with
one wire for clock and the other for data, for each I2C port we want to use we have to
select two pins for these purposes. One pin will be the "scl" (clock) pin and the other
will be the "sda" (data) pin.

To use I2C, we must configure the I2C environment. This involves a call to
i2c_param_config(). This function takes two parameters. The first is the I2C port we
are going to configure and the second is a structure containing the details of the
configuration. Within this structure we have the following fields:

• mode – The mode that we are configuring this I2C port. This is where we define
the I2C participation of the ESP32 as either a master or a slave. The choices we
can supply here are either I2C_MODE_MASTER or I2C_MODE_SLAVE.

• sda_io_num, scl_io_num – These two fields define the pin number we will use for
data and clock. Again, there are no fixed/pre-defined pin numbers.

• sda_pullup_en, scl_pullup_en – These two fields define whether the pins
selected for data and clock will be pulled-up to a default of high.

Page 229

https://learn.sparkfun.com/tutorials/i2c
http://www.i2c-bus.org/

• clk_speed – This field defines the clock speed of the bus when it is a master. A
value of 100000 is normal for an I2C standard mode 100KHz bus but the ESP32
also supports the I2C fast mode 400KHz bus.

Here is an example:

i2c_config_t conf;
conf.mode = I2C_MODE_MASTER;
conf.sda_io_num = 25;
conf.scl_io_num = 26;
conf.sda_pullup_en = GPIO_PULLUP_ENABLE;
conf.scl_pullup_en = GPIO_PULLUP_ENABLE;
conf.master.clk_speed = 100000;
i2c_param_config(I2C_NUM_0, &conf);

After we have configured how we want our I2C bus to behave, we can enable it by
actually installing the driver. We do this with a call to i2c_driver_install(). When
calling this function we name the port, whether we are a master or a slave and, if we are
a slave what buffer sizes to use.

For example, when being a master:

i2c_driver_install(I2C_NUM_0, I2C_MODE_MASTER, 0, 0, 0);

Once we have initialized the I2C environment, we can now start thinking of the
permutations of actions that we wish to perform. If we are an I2C master, then we can
perform a write operation to an identified slave or perform a read operation to an
identified slave.

First let us refresh ourselves on the notion of slave addresses. A slave address is
typically 7 bits of address plus 1 bit flag of whether this is a read or write operation.

Address (7 bits) Read or Write

Add 6 Add 5 Add 4 Add 3 Add 2 Add 1 Add 0 R/W

A read operation is a "1" and a write is a "0". These are defined as the constants
I2C_MASTER_READ and I2C_MASTER_WRITE so we don't have to remember these values. If
we want to read from a device at address 0x12 … then our transmitted I2C address
would be (0x12 << 1) | I2C_MASTER_READ while if we wished to write to a device at
address 0x12, our transmitted I2C address would be (0x12 << 1) | I2C_MASTER_READ.

To send a command, we build the structure of that command then ask for it to be
transmitted. We start by creating a command handle using i2c_cmd_link_create().
Next we declare that the command starts with an I2C start request by calling
i2c_master_start(cmd). Now we can associate the data we wish to send with that

Page 230

command by calling i2c_master_write_byte() and/or i2c_master_write(). Next, we
indicate that the command population has been completed. Now we can actually ask
the ESP32 to perform the command with a call to i2c_master_cmd_begin(). This API
causes all the commands buffered to be transmitted. After calling
i2c_master_cmd_begin(), we should release the command handle and create a new
one for the next transmission.

Here are some examples. Imagine we want to send the byte 0x34 to the slave at
address 0x12:

i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (0x12 << 1) | I2C_MASTER_WRITE, 1 /* expect ack */);
i2c_master_write_byte(cmd, 0x34, 1);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000/portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd);

When working with I2C, I recommend that once you have attached the devices to your
I2C bus then run an I2C scanner to ensure that they are responding properly. If we
think about an I2C slave devices, when the master starts a transaction and transmits
the address of the slave, the slave will respond with a positive acknowledgment …
assuming it is present to respond. If there is no such slave with that address, there
obviously won't be such a response. As such, if we walk through each of the possible
I2C addresses and start a transactions merely to see if we get a response, we can build
a map of which slaves are present and which are not. An example ESP-IDF program
that just does that can be found here:

https://github.com/nkolban/esp32-snippets/blob/master/i2c/scanner/i2cscanner.c

An example output might be:

 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

See also:

• i2c_cmd_link_create

• i2c_cmd_link_delete

• i2c_master_start

• i2c_master_stop

• i2c_master_cmd_begin

Page 231

https://github.com/nkolban/esp32-snippets/blob/master/i2c/scanner/i2cscanner.c

• i2c_master_write

• i2c_master_write_byte

• i2c_driver_install

• i2c_param_config

Using Arduino I2C libraries
The Arduino libraries provide an interface to I2C. At a high level we request a handle
that we use to communicate as an I2C master to a connected I2C slave. We use the
i2cInit() method to obtain such a handle. The handle is an instance of a pointer to an
i2c_t piece of data.

See also:

• i2cInit

• Arduino Wire Library

Common I2C devices
The following is a partial list of some of the more popular I2C based devices.

Device Description Address

ADS1015 Analog to Digital

DS1307 Real Time Clock 0x68

BH1750FVI Light level sensor 0x23

HMC5883L Compass 0x1E

MCP4725 Digital to Analog

MCP23017 GPIO extender 0x20-0x27

MPU6050 Accelerometer / Gyroscope 0x68

MPU6500 Accelerometer / Gyroscope

MPU9255 Accelerometer / Gyroscope / Compass

PCA9685 PWM controller

PCF8574 GPIO extender 0x20-0x27

TEA5767 FM Radio

See also:

• Compass – HMC5883L (aka GY-271) (aka CJ-M49)

• Ambient light level sensor – BH1750FVI

• MCP23017

• Accelerometer and Gyroscope – MPU-6050 (aka GY-521)

• Real time clocks

Page 232

https://www.arduino.cc/en/Reference/Wire

Working with SPI – Serial Peripheral Interface
SPI is a bus protocol that will allow an ESP32 to communicate with peripheral devices
or ICs that comply with the SPI protocol. Logically, it looks as follows:

Within the protocol, one device (typically the ESP32) acts as the bus "master" and all
the other devices act as bus "slaves". What this means is that the communication is
between the master and one individual slave at a time. The slave devices don't
communicate with each other. The value of a bus is that we can attach multiple devices
to the ESP32 (the master) using only a few wires as opposed to having to have multiple
wires out to each individual device.

Within the SPI protocol there are primarily three connections (wires) to each device.

The first is called the "clock" line. This is an outbound signal from the master which is
used to synchronize activities between all the participants. It is usually a regular
high/low equally spaced train of signals. The frequency of the clock defines the speed
of transmission across the bus. When the clock transitions from high to low or low to
high, this is an indication in the SPI protocol that the slave device should either send or
receive data.

The next line we will look at is a data line that is exclusively written by the master and
read by the slaves. The line is called the "Master Out / Slave In" which is an excellent
description of its purpose. Commonly this is abbreviated to MOSI. The master serially
streams data outbound down this line and the slave receives the data. The data bits on
the line are synchronized with the clock line so that the slave knows when the next bit is
ready to be read.

The third line is also a data line that is exclusively written by a slave and read by the
master. The line is intelligently called "Master In / Slave Out" and abbreviated to

Page 233

"MISO". Again, the clock line is used to indicate when the slave should transitions its
output bits.

If there were only one device to which the master were communicating, these three
lines would be sufficient … however that isn't much of a bus. If we have multiple
devices, the obvious problem is how does one slave know that it is being talked to as
opposed to some potentially distinct slave? The answer is that each slave has a unique
input line called the "Slave Select". Normally the slave select has one value (eg. high)
and only when the master drives the slave select to the other value (eg. low) does that
slave know that it is being addressed. The rules state that a slave should only respond
(receive or transmit) on the bus when its slave select line indicates that it is to do so.

While a device is active because it is selected by the master, it can simultaneously read
data from the MOSI line while concurrently writing data to the master through the MISO
line. Focusing on a single master/slave interaction, the story looks like:

Since this is a serial protocol and we will receive data in bytes, we need to be cognizant
of whether or not data will arrive LSB first or MSB first. There will be an option to
control this.

For the clock, we will be latching data and we will need to know what edges and
settings are important. There will be a clock mode option to control this. In SPI there
are two attributes called phase and polarity. Phase (CPHA) is whether we are latching

data on high or low and Polarity (CPOL) is whether high or low means that the clock is

idle.

Page 234

CPOL=0 means clock is default low, CPOL=1 means clock is default high.

When CPOL=0, then the following are the values for CPHA

CPHA=0 means data is captured on clock rising edge, CPHA=1 means data is captured on
clock falling edge.

When CPOL=1, then the following are the values for CPHA

CPHA=0 means data is captured on clock falling edge, CPHA=1 means data is captured on
clock rising edge.

SPI wraps these two flags into four defined and named modes:

Mode Clock Polarity – CPOL Clock Phase – CPHA

SPI_MODE0 0 (Clock default low) 0

SPI_MODE1 0 (Clock default low) 1

SPI_MODE2 1 (Clock default high) 0

SPI_MODE3 1 (Clock default high) 1

The default for most purposes will be MODE0.

Also for the clock, what speed are we will need to know what speed the data is to be
moved. There will be a clock control speed option to control this.

Using the ESP-IDF SPI driver
Unlike other devices and processors on the market, the ESP32 doesn't dictate that a
fixed set of pins must be used for the CLK, MOSI and MISO functions. Instead the pins
that you select will perform these functions. Should you be designing PCBs this opens
up many more levels of flexibility as it simplifies connectivity and link routing.

Because the ESP32 doesn't limit you to just one SPI bus, the utilization of SPI on
ESP32 is architected into a set of discrete steps.

1. We initialize a bus defining its nature.

2. We describe a device to the ESP32 that is attached to a configured bus. From
this we get a handle that refers to that device.

3. We communicate with a device using its handle reference.

We use the notion of a transaction to describe the ESP32 interacting as a master with a
slave peripheral.

Page 235

We can imagine there being the following actions performed:

• A command is sent

• An address is sent

• Data is read from the slave and simultaneously data is written to the slave

The command and address actions are optional and can be omitted resulting in only the
parallel send and receive of data.

The following illustrates the relationships between some of the logical components we
will be working with from an SPI driver perspective. The Bus definition identifies the
pins used for a bus for MOSI, MISO and CLK. Next we define a logical device and the
characteristics of that device on the bus. Notice that the clock speed of the bus is an
attribute of the device definition. When I first tried to understand this it confused me.
Surely a bus has a clock speed that is the same for all devices? In the ESP32 we have
more flexibility that ever before. The ESP32 can communicate with distinct devices
using different bus speeds as a function of the currently selected device. For example,
if we are talking with device "A", we may use a clock speed of 100KHz however if we
are talking with device "B", we can use a different clock speed. Since only one device
at a time has is active because of its slave selection, the other devices can ignore the
clock rate (and other data lines) and hence speed of clock is not a consideration for a
device that is not selected.

To use the SPI driver, we start by calling spi_bus_initialize(). Here we identify the
pins on the ESP32 that are to be used for SPI functions such as CLK, MISO and MOSI.

Page 236

Next we call spi_bus_add_device() to tell the ESP32 about an external SPI device.
This includes optionally nominating a pin for the slave selection (CS) as well as a clock
speed for communications with that device. Calling spi_bus_add_device() populates a
handle for us that we can subsequently use to refer to that device.

Once done, the ESP32 and external SPI device have a relationship and it is now
possible for them to interact. We can either queue transactions using the call to
spi_device_queue_trans() and subsequently querying their results with a call to
spi_device_get_trans_result() or we can synchronously interact with the SPI device
using a call to spi_device_transmit().

Putting this all together, here is a sample that transmits a few bytes over a bus:

#include <driver/spi_master.h>
void test_spi_task(void *ignore) {
 ESP_LOGD(tag, ">> test_spi_task");

 spi_bus_config_t bus_config;
 bus_config.sclk_io_num = clkPin; // CLK
 bus_config.mosi_io_num = mosiPin; // MOSI
 bus_config.miso_io_num = misoPin; // MISO
 bus_config.quadwp_io_num = -1; // Not used
 bus_config.quadhd_io_num = -1; // Not used
 ESP_LOGI(tag, "... Initializing bus.");
 ESP_ERROR_CHECK(spi_bus_initialize(HSPI_HOST, &bus_config, 1));

 spi_device_handle_t handle;
 spi_device_interface_config_t dev_config;
 dev_config.address_bits = 0;
 dev_config.command_bits = 0;
 dev_config.dummy_bits = 0;
 dev_config.mode = 0;
 dev_config.duty_cycle_pos = 0;
 dev_config.cs_ena_posttrans = 0;
 dev_config.cs_ena_pretrans = 0;
 dev_config.clock_speed_hz = 10000;
 dev_config.spics_io_num = csPin;
 dev_config.flags = 0;
 dev_config.queue_size = 1;
 dev_config.pre_cb = NULL;
 dev_config.post_cb = NULL;
 ESP_LOGI(tag, "... Adding device bus.");
 ESP_ERROR_CHECK(spi_bus_add_device(HSPI_HOST, &dev_config, &handle));

 char data[3];
 spi_transaction_t trans_desc;
 trans_desc.address = 0;
 trans_desc.command = 0;

Page 237

 trans_desc.flags = 0;
 trans_desc.length = 3 * 8;
 trans_desc.rxlength = 0;
 trans_desc.tx_buffer = data;
 trans_desc.rx_buffer = data;

 data[0] = 0x12;
 data[1] = 0x34;
 data[2] = 0x56;

 ESP_LOGI(tag, "... Transmitting.");
 ESP_ERROR_CHECK(spi_device_transmit(handle, &trans_desc));

 ESP_LOGI(tag, "... Removing device.");
 ESP_ERROR_CHECK(spi_bus_remove_device(handle));

 ESP_LOGI(tag, "... Freeing bus.");
 ESP_ERROR_CHECK(spi_bus_free(HSPI_HOST));

 ESP_LOGD(tag, "<< test_spi_task");
 vTaskDelete(NULL);
}

If we then examine the result in the output of a logic analyzer we find:

See also:

• spi_bus_initialize

• spi_bus_add_device

• spi_device_transmit

• spi_device_queue_trans

• spi_device_get_trans_result

The Arduino Hardware Abstraction Layer SPI
The Arduino hardware abstraction layer for SPI provides a high level API for working
with SPI. On an ESP32 there are multiple SPI peripherals so we need to always

Page 238

identify which one we are working with. The identity of an SPI instance is contained
within an "spi_t" instance. We get a pointer to one of these by calling "spiStartBus".

The pins on an ESP32 that can be used for SPI can be dynamically mapped.
Remember that a single SPI instance can have up to 4 pins … these are SCK, MOSI, MISO
and SS. For the three SPI interfaces supplied by ESP32, the following are suggestions
with native support:

SPI MOSI MISO CLK SS

HSPI 13 12 14 15

VSPI 23 19 18 5

FSPI 8 7 6 11

Of these three, the FSPI bus should not be used for applications as it is used internally
by ESP32.

The following diagram illustrates the default pin numbers for SPI for VSPI and HSPI …
but please realize that these are only defaults and can be re-mapped as needed.

Page 239

Once we have the SPI instance, we call spiAttachMOSI(), spiAttachMISO(),
spiAttachCLK() and spiAttachSS() to set the corresponding pin mappings. Passing a
pin value of -1 uses the default otherwise the explicit pin number supplied is used.

Once we have an SPI instance and attached the pins, we can start sending and
receiving data.

spi_t *spi = spiStartBus(VSPI, 1000000, SPI_MODE0, SPI_MSBFIRST);
spiAttachSCK(spi, sckPin);
spiAttachMISO(spi, misoPin);
spiAttachMOSI(spi, mosiPin);
spiAttachSS(spi, 0, ssPin);//if you want hardware SS
spiEnableSSPins(spi, 1 << 0);//activate SS for CS0
spiSSEnable(spi);

//transfer some data
const char * data = "hello spi";
uint8_t out[strlen(data)];
spiTransferBytes(spi, (uint8_t *)data, out, strlen(data));
//out now contains the response from the slave

See also:

• spiStartBus

• spiAttachMISO

• spiAttachMOSI

• spiAttachSCK

• spiAttachSS

Common SPI devices
Now that we know about the existence of SPI, we might ask ourselves what kinds of
peripheral devices are available for use? Here is a short list of some of the more
interesting ones I have come across:

Device Description

MAX7219/MAX7221 7 segment or 8x8 matrix LED controller.

MCP3208 12 bit Analog to Digital

Nokia 5110 / PCD8544 84x48 pixel LCD

SSD1306 128x64 OLED display

ST7735 128x128 display

TJCTM24024-SPI 320x240 TFT display

MFRC522 RFID

nRF24L01 Communications device

Page 240

Working with UART/serial
The goal of a data bus is to move information from one place to another. In our digital
electronics world, the unit of information is a bit … a value of 1 or 0. Typically we group
these bits into a larger unit called a byte which a sequence 8 bits. These 8 bits can
represent a numeric value from 0 to 255.

Now let us suppose we have a CPU (eg. an ESP32) and a remote device which wants a
piece of data that the ESP32 has. For example, we'll keep it simple, assume it is some
kind of smart light bulb where a value of 0 means dark and a value of 255 means full
luminance. How do we transmit our data from the ESP32 to the device? One way
would be to have 8 parallel wires between the ESP32 and the device and we would
simultaneously set each of the digital values on the wires to the 8 bits of our value. That
works great … but it has two draw backs. The first is that it means that we have to use
thick cables carrying 8 separate discrete strands. It also limits us to only 8 bits of data.
What if we want to send 24 bits of data such as the luminescence for red, green and
blue?

The data bus we are considering here is known as a parallel bus because we are
sending data in parallel. However in our story, we are going to talk about a serial bus.

Imagine if you will that that you can sense a remote value of either "1" or "0". Imagine
you are miles away from your friend and you have a pair of binoculars. You can look
through them and see that he has a flag pole whether the flag can either be all the way
up or all the way down (he is so far away that you can't properly distinguish a flag in the
middle of the pole and you aren't sure if it is all the way up or all the way down … so you
can only see the presence of absence of the flag). Can you use that to communicate?

The answer is yes … but it takes a little work.

Let's imagine you and your friend agree on a timing rate … lets say "10 seconds". What
that means is that you will look through your binoculars every 10 seconds and write
down whether the flag is high or low. You will ignore any other measurements. Your
friend will also know that rate and won't change the flag any quicker or any slower than

Page 241

once every 10 seconds (we'll assume he can magically change the flag from low to high
or high to low instantly).

You both start and you read the following flag values:

• 0 – up

• 10 – up

• 20 – down

• 30 – up

• 40 – down

• 50 – up

• 60 – up

• 70 – down

This would correspond to the value 01101011. Ta da!! You have now transmitted 8 bits
of data from one place to another … simply by agreeing the rate of change. This rate
of change is called the "baud rate" and is how many bits per second can be transmitted.
In our story we transmitted 1 bit every 10 seconds … and hence had a baud rate of 0.1.
In the electronics world where we can sense at extremely high speeds, typical baud
rates are 9600, 4800, 19200, 38400, 57600 and115200. As we see, we can send data
very quickly. The primary requirement is that the baud rate used between a sender and
a receiver be agreed upon. Our story won't work if they think that they are transmitting
at different rates.

The next part of our story is knowing when we are done. We could keep looking
through our binoculars and writing down the flag position every 10 seconds … but how
much data is our friend sending? This is where the bit count comes into the story.
Again, we agree how many bits constitute a unit of transmission. Typically this is 8 bits
corresponding to a byte but the protocol allows us to agree on a transmission of 5, 6, 7,
8 or 9 bits per transmission.

If you are following the story, there is another puzzle we have to consider … and that is
when do we start recording data? If I am going to sample the data once every period,
when does that period start? The answer to that one is that every transmission of a unit
of data starts with the signal high and when it goes low, that indicates that we have
agreed that will be the start of the transmission period. Since we have the start
indicated from a transition from high to low, then at the end of the last transmission, the
signal must be left high … and that's where a stop bit comes into play. An additional but
of data is added at the end which drives the line high.

Page 242

There are three hardware supported serial interfaces on the ESP32 known as UART0,
UART1 and UART2. Like all peripherals, the pins for the UARTs can be logically
mapped to any of the available pins on the ESP32. However, the UARTs can also have
direct access which marginally improves performance. The pin mapping table for this
hardware assistance is as follows

UART RX IO TX IO CTS RTS

UART0 GPIO3 GPIO1 N/A N/A

UART1 GPIO9 GPIO10 GPIO6 GPIO11

UART2 GPIO16 GPIO17 GPIO8 GPIO7

Having said that, the UART drivers that I recommend to use don't have this level of
optimization built into them and as a result, you are pretty much free to use any pins you
choose.

There is low level hardware serial support and higher level driver support. I recommend
the driver level be used wherever possible.

The driver APIs are included through the inclusion of "driver/uart.h".

We start by populating a uart_config_t structure instance. This provides the core
settings for a UART we want to use. An example might be:

uart_config_t myUartConfig;
myUartConfig.baud_rate = UART_BITRATE_115200;
myUartConfig.data_bits = UART_DATA_8_BITS;
myUartConfig.parity = UART_PARITY_DISABLE;
myUartConfig.stop_bits = UART_STOP_BITS_1;
myUartConfig.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
myUartConfig.rx_flow_ctrl_thresh = 120;

Once populated, we can set the parameter of the UART with a call to
uart_param_config().

Next we define the pins we wish to associate with our UART using uart_set_pin(). For
example:

uart_set_pin(uartNum, 21, 22, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);

We can now initialize a driver using:

uart_driver_install(uartNum, 2048, 0, 10, NULL, 0);

Page 243

One of the options we can specify when initializing a driver is to supply a FreeRTOS
queue handle. If we supply this, then events that are detected by the UART are then
posted onto the queue. We can have tasks that are blocked watching the queue ready
to process incoming events when they arrive. This allows us to perform UART data
processing asynchronously. If we don't want to use a queue, we specify NULL for the
queue parameter.

To write data to the UART we use the uart_write_bytes() function.

See also:

• UART driver API

• UART low level APIs

• uart_param_config

• uart_driver_install

• uart_write_bytes

• Wikipedia – UART

• Serial Communication

Using the VFS component with serial
The ESP32 virtual file system (VFS) component provides an interface to UART. To use
this, we initialize with a call to esp_vfs_dev_uart_register(). Following this we can
perform file I/O operations against the VFS file system at the following paths:

• /dev/uart/0 – UART0

• /dev/uart/1 – UART1

• /dev/uart/2 – UART2

Currently we can open, close, read and write to the device.

See also:

• esp_vfs_dev_uart_register

I2S Bus
The Inter-IC Sound (I2S) bus is a serial link protocol specifically for sound data. The
protocol utilizes three lines. These are:

• SCK – Serial Clock line.

• WS – Word Select line. Indicates the channel being transmitted. 0 – channel 1
(left), 1 – channel 2 (right).

• SD – Serial Data line.

See also:

• I2S APIs

Page 244

https://learn.sparkfun.com/tutorials/serial-communication
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

• I2S bus specification

• Wikipedia: I2S

I2S – Camera
The I2S component is also capable of performing additional functions beyond the basic
I2S. I'm not sure if this type of function is related to an I2S standards … it may be that
the Espressif designers needed a place to "host" this function and the I2S component
seemed the closest.

When we think of a video camera, we should consider that it has a number of concepts
that are common to most camera. First there are the concepts of horizontal and vertical
sync signals. These are signals that indicate when a complete scan line has been
received (or a new one is about to be received) and also an indication when a complete
"image" of information has been received (or is about to be received). Then there is the
data itself. If we think of an image as being composed of pixels and each pixel being
represented by 16 bits of information, then we quickly see that there is a lot of
information to be received. For example, if a row in an image is 320 pixels and each
pixel is 16 bits then one row is 5120 bits. If an image is 240 rows then a complete
image would be 1228800 bits (153,600 bytes). That's a lot of data. If we used a serial
bus that could read at 400Kbps, that would be about 3 images (frames) per second.
That's not great. One solution would be to use a faster serial bus … but that may not be
possible. The solution in the ESP32 is to use a wider data bus. A camera such as the
OV7670 exposes an 8 bit data bus allowing us to transfer 8 bits at a time. This would
give us a factor of 8 speed improvement or about 24 images per second which is
usually fast enough.

The I2S support for cameras allows us to grab these 8 bits of bus data and using direct
memory access, stuff them directly in RAM with minimal expense.

I2S – LCD

I2S – DMA
Direct Memory Access is the ability to receive parallel incoming data over a parallel data
bus and place it directly in RAM without intervention of application CPU instructions.

Page 245

https://en.wikipedia.org/wiki/I%C2%B2S
https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf

A clock signal is presented to the ESP32 along with up to 16 bits of incoming data from
a bus. The pins for both the clock and the data are configurable. When the clock
transitions, this is an indication that a new piece of data is available and it is
automatically read by the ESP32. Upon reading the parallel data bits, the ESP32
places the read data in RAM memory at the next location it is configured to write to and
then increments that pointer ready to begin again with the next byte cycle.

The I2S peripheral is the component that provides DMA support. There is quite a lot of
setup involved in this so buckle up.

The I2S DMA support is technically provided for inbound (to ESP32) camera data but
can be used for non video purposes. Video data requires a high bandwidth and a serial
protocol would not be sufficient. Camera modules typically have an 8 bit (or more) data
bus over which the data is received. The data is considered "valid" on the bus under
the following conditions:

• The VSYNC signal from the camera is high.

• The HSYNC signal from the camera is high.

• The HREF signal from the camera is high.

• The PCLK signal from the camera is high.

Since we just mentioned that the I2S DMA is primarily there for camera support we have
to take this into account when considering DMA by itself outside the context of cameras.
Specifically, we want to set the VSYNC, HSYNC and HREF signals to be permanently
high and use the PCLK signal as the clocking in of new data on the bus.

In the ESP32, pins are multiplexed meaning that almost any pin can serve almost any
purpose. This means we can map physical pins to their logical mappings. For our
discussion on DMA, we have the following logical pins:

Page 246

I2S0I_DATA_IN0_IDX to I2S0I_DATA_IN15_IDX 16 bits of input data

I2S0I_V_SYNC_IDX VSYNC logical pin

I2S0I_H_SYNC_IDX HSYNC logical pin

I2S0I_H_ENABLE_IDX HREF logical pin

I2S0I_WS_IN_IDX PCLK logical pin

We can use the ESP-IDF function called gpio_matrix_in() to map from physical pins to
their logical counterparts. There are two "special" but "logical" pins known as 0x30 and
0x38. Specifying a pin of 0x30 means a constant low value while a pin of 0x38 means a
constant high value.

By experimentation:

When we ask to read samples and we have enough buffer space to hold all the samples
in one buffer, we get an interrupt with:

IN_DONE=1, IN_DSCR_EMPTY=0, IN_DSCR_ERR=0, IN_ERR_EOF=0,
IN_SUC_EOF=1

and the descriptor holds

size=4092, length=2000, offset=0, sosf=1, eof=1

When we ask to read more samples than will fit in one buffer, we get an interrupt with

IN_DONE=1, IN_DSCR_EMPTY=0, IN_DSCR_ERR=0, IN_ERR_EOF=0,
IN_SUC_EOF=0

and the descriptor holds

size=4092, length=4092, offset=0, sosf=1, eof=0

Now we get to introduce the concept of a DMA buffer. The notion here is that DMA
wants to fill a memory buffer with data asynchronously retrieved from a data bus.
However, if all we are doing is stuffing the received data into RAM without processing it,
that is going to be of limited use. Ideally we want to not only receive data but process it
as it arrives. If we think about the alternative which would be to receive all the data we
need and then process it, we might find that we run out of RAM space. For example, if
we are processing an incoming video stream and are wanting to stream it out over the
network, we will usually want to stream what we have received during the last short
interval while at the same time accumulating the next interval. To that end we have a
series of DMA buffers that are chained together in list. Pictorially, what we then have is
the following:

Page 247

Data is arriving at a steady rate and a DMA buffer starts to fill. When the buffer fills, two
things happen. First we receive an interrupt telling us that a DMA buffer is now full and
ready for consumption. In addition (and instantaneously) newly arriving data starts to fill
the next buffer with no lost or missed data (in the analogy, we didn't spill any). We can
now start to consume the previously filled buffer without having to worry about what is
happening with the other buffers. When the next buffer fills, a new interrupt will be
generated.

It takes some thought to see the benefits of this story but now we can start to reason
about capacity and throughput. Let us imagine the simplest story which consists of two
buffers that we call BufferA and BufferB. Initially, BufferA starts to fill with data. When
BufferA fills, DMA switches to start filling BufferB and informs us via interrupt that
BufferA is full. We can now process the data in BufferA while concurrently, BufferB is
being filled with new data. When BufferB is full, DMA will have cycled around and will
now start filling BufferA again. For this story to work, we must be able to process a
buffer's worth of data in less time than it takes a buffer to be filled by DMA. Specifically,
if we are told that we can start processing BufferA, we had better have consumed all the
data we need from it quicker than DMA can fill BufferB because when BufferB has filled,
DMA will expect BufferA to be empty again.

If we can't process a buffer's worth of data faster than a buffer is filled, we probably want
to re-think our design or implementation … at a minimum, we will then find that we need
to maintain as many buffers as necessary to hold all the data we are expecting to
receive. Another strength of buffers is the notion that we may be able to get away with
processing buffer data if the average time to process a buffer is less than it takes to fill a
buffer. Here we will likely want to have more than two buffers. On average each time
we fill a buffer, by the time the next one is also filled, we will have consumed the original
data. However, if our processing of data is laggy or has other non-constant time
processing characteristics, then as long as we have sufficient buffers, we don't have to

Page 248

have consumed a buffers worth of data by the time the next one fills as long as on
average we have a sufficient processing rate.

Enough with the theory. Let us now consider the DMA implementation as found in the
ESP32. First we start with the data type called "lldesc_t". This cryptically named type
is a "linked list descriptor". Loosely, you can think of this as the buffer. The structure
contains a set of fields that (among others) are:

• buf – A pointer to a chunk of storage that will contain DMA received data.

• size – The size (in bytes) of the storage pointed to by buf.

• length – The number of bytes actually written by DMA into the buffer.

• next – The pointer to the next instance of an "lldesc_t" structure. This will be
the next buffer to be filled after this one has been filled. If this points to a
previous "lldesc_t" then we will have formed a circular chain. (Note: The field is
not actually called next but I wanted to keep this clean for our discussion … there
are more implementation details that are not pertinent to the story).

Hopefully, you are following the story so far … unfortunately though, things about to get
much more complex.

First, let us think about the implementation of lldesc_t. For reasons unknown to me,
the implementation has sized both size and length fields to be a maximum of 12 bits in
length. This means that the size of a buffer can be between 0 and 4095 bytes (2^12-1 =
4095 = 0b1111 1111 1111). Take this into account and ensure you configure your
lldesc_t instances correctly.

The DMA implementation does not write a byte at a time into the buffer. It wants to be
much more efficient than that and writing individual bytes as they are received wouldn't
give us the maximum rate we desire. The ESP32, being a 32 bit device, is able to move
32bits of data at a time. As such, the ESP32 writes a full 32 bits each time DMA writes
into the buffer. If we think about this a moment, we will find that the length of data used
in the buffer will thus be a multiple of 4 (32 bits = 4 bytes). This then further says that
the maximum buffer size can only be 4092 bytes. Why? Well 4092 is evenly divisible
by 4 and the next multiple up would be 4096 which is more than 12 bits in length and
hence is too large to hold in a 12 bit number.

Next let us think about the unit of DMA read data. DMA can read up to 16 parallel bits
of information at a time. But since DMA writes 32 bits of data to the buffer as a unit, it
must thus read two 16 bit values for each buffer write.

For many applications of the ESP32 we may not need to read a data bus that is 16 bits
wide. We may only need to work with a bus that is 8 bits wide. Unfortunately, the

Page 249

ESP32 DMA has no accommodation for this notion. We can tell the ESP32 to not
bother with the upper 8 pins of the 16 input pins and simply assume them to be 0,
however the ESP32 wishes to process 16 bit values only.

See also:

RMT – The Remote Peripheral
The primary purpose of this component of the ESP32 is to generate pulses sent via an
infrared LED. When you point your TV remote control at your TV and press a button, an
infrared LED at the front of your controller sends a sequence of pulses that are received
by the TV and decoded. Since an infrared LED can be either "on" or "off" at any given
time, the signal is encoded in the duration that the LED is either on or off.

A data item in the RMT represents one bit of information and is composed of a 16 bit
value.

level [15] period [14:0]

The level bit is either 1 or 0 describing the output signal while the period (15 bits in
length) is the duration in clock ticks for which that level will be sent. 15 bits give us a
range from 1-32767. A value of 0 for the period is used as an end marker. The normal
maximum number of bit records is 128 (or 256 bytes of record data).

The RMT has 8 distinct channels with each channel having 128 16 bit records. Should
we wish to send more than 128 records, we can extend a channel to use the channel
data of subsequent adjacent channels. For example, if we are using only channel 0
then the data available for it can be that of channel 0, channel 1 up to channel 7 giving
us a total of 1024 value records (1024 data items which means 1024 bits of data or
2048 bytes of data items).

There is also an interesting mechanism that involves the buffer for a channel wrapping
around. Imagine that we have a default buffer size of 128 * 16bit records. If we need to
send more than 128 records, we can pre-load a buffer with our first 128 values and set
the RMT transmitting. When it has transmitted the first 128 values, it will generate an
interrupt that can be used to re-fill the buffer with the new values and progress will
continue.

The hardware allocates 512 instances of 32 Bit records (512 * 32/8 = 2048 bytes)
which can be read and written by the RMT hardware in the CPU. Each 32 Bit record
contains two data items. Each channel has one block of 64 instances of 32 bit records

Page 250

associated with it which gives us 128 data items of wave form (1 transition is encoded in
16 bits).

Should we need a transmission that is greater than 128 data items, we can consume
the adjacent block which will give us a further 128 data items transitions. We can only
do this by using channel block for the next higher adjacent channel. We can actually
specify that we want to use ALL the channels for a single transmission giving us a
maximum transmit bit transition of 8 x 128 = 1024. Note that there is no wrap around.
So channel 0 can use the blocks of channel 0 through channel 7, channel 1 can use the
blocks of channel 1 through channel 7 … and channel 7 can only use its own memory
block.

To use the driver, one typically follows this recipe:

• Complete an rmt_config_t structure.

• Call rmt_config() passing in the rmt_config_t structure.

• Call rmt_driver_install() to install the driver.

• Build an array of records to send.

Page 251

• Call rmt_write_items() to send the stream.

Since RMT is all about setting signals for interval durations, there is a lot to be
discussed about time. First we must discuss the base clock. By default this runs at
80MHz. That means it ticks 80,000,000 times a second or 80,000 times a millisecond
or 80 times a microsecond or 0.08 times a nano second. Flipping this around, our
granularity of interval is 1/80,000,000 is 0.0000000125 seconds or 0.0000125
milliseconds or 0.0125 microseconds or 12.5 nanoseconds. I hope we agree, that's
pretty fast.

Since these are pretty small durations, we can "logically" slow our clock down for timing
purposes. The base clock speed is 80MHz but we can provide a divider which is an
integer value against which the base clock speed is divided to provide a new tick rate
that is used as the interval value for timings. The integer value is 8 bits so we can
divide between 1 and 255. At 255 we have are down to about 314KHz. Since the base
speed is 80, it seems to make sense to divide by 8, 80 or 160, giving rates of 10MHz,
1MHz and 500KHz.

The period range of a cycle is 15 bits giving us a value between 1 and 2^15 (32768).
For example, if we divide the base clock by 80 then the granularity unit becomes 1
microsecond so if we delay for 1000 units, we end up at 1msec.

When there is no current transmission, we can set the idle level to be enabled and
either high or low. This sets the output pin to this idle value when not in use.

Here is a sample RMT application:

#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <esp_log.h>
#include <driver/rmt.h>
#include "sdkconfig.h"

static char tag[] = "rmt_tests";
static void dumpStatus(rmt_channel_t channel) {
 bool loop_en;
 uint8_t div_cnt;
 uint8_t memNum;
 bool lowPowerMode;
 rmt_mem_owner_t owner;
 uint16_t idleThreshold;
 uint32_t status;
 rmt_source_clk_t srcClk;

 rmt_get_tx_loop_mode(channel, &loop_en);
 rmt_get_clk_div(channel, &div_cnt);
 rmt_get_mem_block_num(channel, &memNum);
 rmt_get_mem_pd(channel, &lowPowerMode);
 rmt_get_memory_owner(channel, &owner);
 rmt_get_rx_idle_thresh(channel, &idleThreshold);

Page 252

 rmt_get_status(channel, &status);
 rmt_get_source_clk(channel, &srcClk);

 ESP_LOGD(tag, "Status for RMT channel %d", channel);
 ESP_LOGD(tag, "- Loop enabled: %d", loop_en);
 ESP_LOGD(tag, "- Clock divisor: %d", div_cnt);
 ESP_LOGD(tag, "- Number of memory blocks: %d", memNum);
 ESP_LOGD(tag, "- Low power mode: %d", lowPowerMode);
 ESP_LOGD(tag, "- Memory owner: %s", owner==RMT_MEM_OWNER_TX?"TX":"RX");
 ESP_LOGD(tag, "- Idle threshold: %d", idleThreshold);
 ESP_LOGD(tag, "- Status: %d", status);
 ESP_LOGD(tag, "- Source clock: %s", srcClk==RMT_BASECLK_APB?"APB (80MHz)":"1MHz");
}

void runRmtTest() {
 ESP_LOGD(tag, ">> runRmtTest");

 rmt_config_t config;
 config.rmt_mode = RMT_MODE_TX;
 config.channel = RMT_CHANNEL_0;
 config.gpio_num = 21;
 config.mem_block_num = 1;
 config.tx_config.loop_en = 0;
 config.tx_config.carrier_en = 0;
 config.tx_config.idle_output_en = 1;
 config.tx_config.idle_level = 0;
 config.tx_config.carrier_duty_percent = 50;
 config.tx_config.carrier_freq_hz = 10000;
 config.tx_config.carrier_level = 1;
 config.clk_div = 80;

 ESP_ERROR_CHECK(rmt_config(&config));
 ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, 0));
 dumpStatus(config.channel);

 rmt_item32_t items[3];
 items[0].duration0 = 10000;
 items[0].level0 = 1;
 items[0].duration1 = 10000;
 items[0].level1 = 0;

 items[1].duration0 = 10000;
 items[1].level0 = 1;
 items[1].duration1 = 5000;
 items[1].level1 = 0;

 items[2].duration0 = 0;
 items[2].level0 = 1;
 items[2].duration1 = 0;
 items[2].level1 = 0;

 while(1) {
 ESP_ERROR_CHECK(rmt_write_items(config.channel, items,

Page 253

 3, /* Number of items */
 1 /* wait till done */));
 vTaskDelay(1000/portTICK_PERIOD_MS);
 }
 ESP_LOGD(tag, "<< runRmtTest");
}

So far we have discussed emitting a waveform of signals but there is a powerful second
capability of the RMT and this to be able to capture received waveforms that might be
arriving.

To use the RMT in receiver mode, we call rmt_config() specifying that the rmt_mode of
the given channel should be RMT_MODE_RX. Note that a channel can be only one of a
receiver or transmitter at any given time. Once a channel is configured to be a receiver,
it will start watching the input and be considered to be in its idle state. When it starts to
see transitions, it will begin recording their values and durations into RAM. It will
continue to do this until it no longer sees transitions for a period of time known as the
idle threshold at which time it will return to its idle state and write a termination record
into the output data. A termination record is simply a data item that has a duration of 0.
As an indicator that a signal train has been received, when it returns to idle state, an
RX_END interrupt is generated. There is also the ability to perform simple noise filtering.
Records of a duration less than a configurable threshold can be automatically removed.

To obtain the received data, we need to become familiar with the ring buffer functions.
These are supplied as part of the RTOS set of functions. Through the RMT APIs, we
can call rmt_get_ringbuf_handler() which returns an instance of RingbufHandle_t
which is a reference to a ring buffer who's buffer size is defined when we made the call
to rmt_driver_install(). Through this RingbufHandle_t we can then call
xRingbufferReceive() to get (with optional blocking) an array of rmt_item32_t records
that contains the received data. Once we are done with this, we call
vRingbufferReturnItem() to release the storage.

When working with RMT, measurement of times is crucial, after all that's the core of the
story. When we consider the data structure representing a value is 16 bits long with 1
bit used for the signal value, that leaves us 15 bits per measurement to encode the
value. The maximum value a 15 bit integer can have is 32767 (2^15 – 1). Let us put
this in perspective when looking at the following signal trace:

Page 254

If we focus on just the start, we see that the signal was low for a duration of d0 and then
high for a duration of d1. We measure duration in seconds and, of course we can
perform simple arithmetic to scale into milliseconds or microseconds with just
multiplication factors.

Now let us think of the duration returned by RMT as a 15 bit value. That duration is not
a direct measurement of time. It is actually a count of clock ticks. If you think of a wall
clock with a second hand, each tick represents one second … and hence one tick
indicates one second has passed. The clock rate of our ESP32 is 80MHz (80 million
ticks per second). That means that 1 tick is 1/80,000,000 of a second or 12.5 nano
seconds. Note that is nano seconds and not milli or micro seconds. So if 1 tick is 12.5
nano seconds, at 80MHz, the maximum duration that we can measure would be 15 bits
worth of data or 65535 * 12.5 ns = 819us. And in there is the problem. 819us is still
less than a millisecond and that is not much time at all. Many of the measurements we
care about might be far more than this … measurements in the 10s of milliseconds are
not uncommon. If the maximum measurement we can take is 819us what is our
solution?

One way would be to increase the number of bits available in the recorded data but
there is a better solution. We can "logically" use a slower clock. Imagine if the clock
didn't tick at 80MHz but instead ticked at 800KHz … a factor of 100 slower. This would
mean that 1 tick would be 1/800,000 of a second or 1.25 micro seconds. A
measurement of 65535 tick would now have a duration of 81.9 milliseconds … and that
is more usable. The downside of this is that we have reduced the granularity of a tick.
If we are measuring changes in signal which change faster than once every 1.25
microseconds, then we will miss some of the changes. However, for the vast majority of
purposes, we won't need that level of granularity. When we configure the RMT
peripheral, we can supply a "clock divider" which is an 8 bit value that allows us to
specify the divisor for our clock.

Imagine our clock divisor is CLK_DIV. The number of ticks in 10 micro seconds then
becomes:

TICK_10_US = 80,000,000 / CLK_DIV / 100,000

If we then are told by RMT that COUNT ticks have occurred, that would be:

COUNT * 10 / TICK_10_US microseconds

See also:

• Remote Control Peripheral – RMT

• rmt_config

• rmt_driver_install

• rmt_write_items

Page 255

• rmt_wait_tx_done

• xRingbufferReceive

• Ring buffer withing FreeRTOS

• Chapter 7 of ESP32 Technical Reference Manual – Remote Control Peripheral

Timers and time
The ESP32 leverages the FreeRTOS environment which provides the concept of a
clock tick. This isn't a real-clock (as in a CPU clock) but is instead a logical timer period
defined by the FreeRTOS. Currently, the default tick is one millisecond but this can be
changed in the make menuconfig options (but I wouldn't recommend it). There is a
constant called portTICK_PERIOD_MS that defines the duration (in milliseconds) of a
FreeRTOS clock tick.

Within our code, we may wish to delay for a period of time. We can use the
vTaskDelay() function. This function takes as input the number of FreeRTOS ticks to
sleep. We can convert from time to ticks using:

timeValInMillisecs/portTICK_PERIOD_MS

for example:

vTaskDelay(timeValInMillisecs/portTICK_PERIOD_MS)

Another aspect of working with time is time calculations and measurement. The
function system_get_time() returns a 32 bit unsigned integer (unit32_t) value which is
the microseconds since the device booted. This value will roll over after 71 minutes.

Note: system_get_time() is deprecated, use gettimeofday() instead.

When we use gettimeoday() we get back a struct timeval which contains two fields:

• tv_sec – The time in seconds

• tv_usec – The time in micro seconds

The reason that a structure is returned is that it might not be possible to accommodate
this value in a single number, especially on a 32bit system such as the ESP32. We may
need to perform arithmetic on these values … for example to measure the duration of
some activity, we might get the time before and the time after and subtract one from
another. A library of simple routines is provided here:

https://github.com/nkolban/esp32-snippets/tree/master/c-utils

called "c_timeutils.c" and "c_timeutils.h". The functions supplied include:

Page 256

https://github.com/nkolban/esp32-snippets/tree/master/c-utils

• struct timeval timeval_add(struct timeval *a, struct timeval *b) – Add
two struct timeval structures together resulting in the sum.

• void timeval_addMsecs(struct timeval *a, uint32_t msecs) – Add a specified
number of milliseconds to the timeval.

• uint32_t timeval_durationBeforeNow(struct timeval *a) – Return the number
of milliseconds since the past time.

• uint32_t timeval_durationFromNow(struct timeval *a) – Return the number
of milliseconds until the future time.

• struct timeval timeval_sub(struct timeval *a, struct timeval *b) –
Subtract one time vale from another.

• uint32_t timeval_toMsecs(struct timeval *a) – return the number of
milliseconds represented by the timeval.

Another useful function is one supplied by FreeRTOS called xTaskGetTickCount(). This
returns the number of clock ticks that have elapsed since FreeRTOS was started. We
can use this to measure elapsed time between distinct points.

What if we need a granularity of time smaller than a microsecond? Hopefully you won't
need this often … however some solutions such as working with the WS2812 LEDs do
in fact require ultra fine precision.

One possible solution is to drop down to assembly language programming. There is a
special register managed by the ESP32 which is called "ccount" which measures cycles
of operation. The value of this is incremented each time an operational cycle
completes.

The value of this register can be retrieved with the following C code:

static inline uint32_t getCycleCount() {
 uint32_t ccount;
 __asm__ __volatile__("rsr %0,ccount":"=a" (ccount));
 return ccount;
}

This fragment uses the in-line assembler to transform an assembly language statement
into its corresponding operational instruction.

A specialized function called xthal_get_ccount() provides a similar function.

Note: The following is disabled in EPS32 at this time.

Page 257

Another mechanism to suspend execution is a call to nanosleep(). This takes as input
a struct timespec that includes seconds and nanoseconds. Remember 1 second =
1000 milliseconds = 1000000 microseconds = 1000000000 nanoseconds.

If we need additional timer functions, the ESP32 provides four high resolution timers
that are divided into two groups of two.

For the most part, when we want our applications to perform tasks at certain times or
block for configurable amounts of time, the use of the FreeRTOS timers will be the best
solution.

After having looked at internal timing, let us now look at real-world or "wall clock" timing.
The ESP-IDF provides a rich assortment of POSIX based APIs for working with wall
clock times. There are two primary representations of a wall clock time those are
"time_t" which is basically a large integer. The value is the number of seconds that
have elapsed since the point of time known as the "epoch" which is midnight on the 1st
of January 1970 in GMT (near London England). Given a time_t value, we can
calculate the date and time. Thankfully, we don't have to worry about that complex
arithmetic as library functions are supplied for us.

The second data type we will consider is a structure called "struct tm". This structure
contains fields for all the useful date and time values such as the hour, minute and
second as well as year, month and day (and a few more). When we start to think about
wall clock time, a new consideration comes into play. If I look at my clock and it says
3:51pm I know what time it is. However, that is my "local" time sitting in Texas. If I
called a friend in London, he would say its 9:51pm. The reason for this is that the world
is divided into distinct time zones and the declaration of any given time is relative to the
time zone. If I tell my wife that the movie starts at 12:30pm, there is usually no
ambiguity as we are "local" to each other. However, if a friend in London sends me a
directory in a ZIP file and I look inside that directory, what time should I see the files as
having been modified? If he modified a file and immediately sent it to me, he would say
"I changed the file at 9:51pm" … is that what I should "see" when I look at the file? The
answer is no, I should see that he modified the file at "3:51pm" which would be my
equivalent local time.

Within an ESP32 environment, we can set an environment variable using the setenv()
API. The variable is called TZ and is used to define the local time zone in which the
ESP32 is operating. From a time zone string, the ESP32 can then perform the
additions or subtractions to determine the local time. Note that this is only possible if we
record the time stamp of some data relative to an agreed convention … and this is
where Universal Coordinated Time (UTC) comes into the picture. UTC is the GMT time
zone and is the value we get back from a call to time().

Page 258

Let us break down the available functions supplied by ESP-IDF for time manipulation:

• Get the current time as a time_t – time()

• Convert a time_t to a struct tm ignoring timezone – gmtime()

• Convert a time_t to a struct tm using the timezone – localtime()

• Convert a struct tm to a time_t – mktime()

• Convert a struct tm into a string – asctime()

• Convert a time_t into a string – ctime(). Basically a convenience function for
asctime(gmtime()).

See also:

• Working with SNTP

• system_get_time

• Hardware Timers

• gettimeofday

• Timers in FreeRTOS

• asctime

• ctime

• gmtime

• localtime

• mktime

• settimeofday

• time

• times

• tzset

• vTaskDelay

LEDC – Pulse Width Modulation – PWM
The idea behind pulse width modulation is that we can think of regular pulses of output
signals as encoding information in the duration of how long the signal is kept high. Let
us imagine that we have a period of 1Hz (one thing per second). Now let us assume
that we raise the output voltage to a level of 1 for ½ of a second at the start of the
period. This would give us a square wave which starts high, lasts for 500 milliseconds
and then drops low for the next 500 milliseconds.

Page 259

This repeats on into the future. The duration that the pulse is high relative to the period
as a whole allows us to encode an analog value onto digital signals. If the pulse is
100% high for the period then the encoded value would be 1.0. If the pulse is 100% low
for the period, then the encoded value would be 0.0. If the pulse is on for "n"
milliseconds (where n is less than 1000), then the encoded value would be n/1000.

Typically, the length of a period is not a second but much, much smaller allowing us to
output many differing values very quickly. The ratio of the "on" signal to the period is
called the "duty cycle". This encoding technique is called "Pulse Width Modulation" or
"PWM".

There are a variety of purposes for PWM. Some are output data encoders. One
commonly seen purpose is to control the brightness of an LED. If we apply maximum
voltage to an LED, it is maximally bright. If we apply ½ the voltage, it is about ½ the
brightness. By applying a fast period PWM signal to the input of an LED, the duty cycle
becomes the brightness of the LED. The way this works is that either full voltage or no
voltage is applied to the LED but because the period is so short, the "average" voltage
over time follows the duty cycle and even though the LED is flickering on or off, it is so
fast that our eyes can't detect it and all we see is the apparent brightness change.
Internet articles suggest a frequency of between 300 and 1000 Hz are good values for
LED dimming.

Now let us look at how the ESP32 provides PWM support. Within the ESP32 there is
hardware support for PWM supplied in a component called the "LEDC/PWM". It
supplies 8 channels of output each of which can be controlled independently from the
others. The ESP32 PWM functions are powerful but at first they can sound complex.
The reality is that they actually aren't that hard and the power and flexibility within them
is worth the learning. One just has to slow down and contemplate them for a bit.

First, understand that there are four distinct timers. Think of an individual timer as
"ticking along" counting up until it reaches a maximum number and then resets itself to
zero and the story repeats. The time between resets (i.e. how long it takes to count to
the maximum value) is the frequency value measured in Hz (things per second). For
example, if we specified a frequency of 1Hz, it would take 1 second to count from 0 to
the maximum value and then repeat. If we specified a frequency of 1000Hz (1000

Page 260

things per second), it would only take 1 millisecond to count from 0 to the maximum
value.

So what is this "maximum" value that I have been talking about? Each timer counts
upwards and we can define how many "bits" in a number before it resets. Our choices
when configuring a timer are 10, 11, 12, 13, 14 or 15 bits. These correspond to
maximum values of 1023, 2047, 4095, 8191, 16383 and 32767. Pause here and think
about the relationship between frequency and bit size of the counter. If we set our timer
to have a frequency of 1Hz and set our bit size to be 12 bits, then it will take 1 second
for our timer to count from 0 to 4095. If our bit size were 15 bits, it would take 1 second
for our timer to count from 0 to 32767. It is important to realize that the frequency is
how long it takes to count from 0 to the maximum number. If we have higher bit sized
maximums, then we just have more "timer increments" … but in the same frequency
specified period of time. What we thus have is more "granularity" in the timings.

Now that we have looked at the timer, lets turn our attention to the notion of a channel.
A channel be thought of as the PWM output signal. When we define a channel, we
specify which of the GPIO pins the signal will appear upon. We also specify which of
the four timers we plan on associating with the channel. Since a timer defines a
frequency, this defines the frequency (or period) of our PWM signal. Finally, and
arguably most importantly, we define the duty cycle of the PWM output. This is the time
duration within a period that the PWM output signal will be high before it goes low. The
value is supplied as a number of timer ticks and not a period of time and this is where
folks can get lost.

Think about the timer. It starts at 0 and counts upwards to its maximum value (as
defined by its bit size) and then resets. The rate of counting upwards is specified by the
frequency defined on the timer. If the frequency is 1Hz, then the timer takes 1 second

Page 261

to count from 0 to the maximum. The duty cycle value specifies the timer value after
which the PWM output signal will flip from high to low.

For example, imagine we wanted a PWM signal with a period of 1 second that is high
for ¼ of a second with a 10 bit granularity. We would set the frequency of the timer to
be 1 Hz and the granularity of the timer to be 10 bits. This then says it takes 1 second
for the timer to count from 0 to 1024. If we want the duty cycle of the PWM to be ¼ of a
second, then we want to switch the output signal ¼ of the way through the timer count
which would be 1024 * ¼ = 256.

To use the LEDC/PWM functions we would follow this recipe:

1. Set a LEDC timer. We do this by calling ledc_timer_config() passing in a
ledc_timer_config_t structure pointer.

ledc_timer_config_t timer_conf;
timer_conf.bit_num = LEDC_TIMER_12_BIT;
timer_conf.freq_hz = 1000;
timer_conf.speed_mode = LEDC_HIGH_SPEED_MODE;
timer_conf.timer_num = LEDC_TIMER_0;
ledc_timer_config(&timer_conf);

2. Set a LEDC channel.

ledc_channel_config_t ledc_conf;
ledc_conf.channel = LEDC_CHANNEL_0;

Page 262

ledc_conf.duty = 1024;
ledc_conf.gpio_num = 16;
ledc_conf.intr_type = LEDC_INTR_DISABLE;
ledc_conf.speed_mode = LEDC_HIGH_SPEED_MODE;
ledc_conf.timer_sel = LEDC_TIMER_0;
ledc_channel_config(&ledc_conf);

At a low level, the frequency is given by

f= Clock Speed
Divisor×precision

So Divisor is

Divisor=Clock Speed
f×precision

See also:

• Wikipedia: Pulse-width modulation

• ledc_channel_config

• ledc_timer_config

• Servos

Automated PWM fading
The hardware support for PWM in the ESP32 also includes an intriguing feature that
relates to "fading". If we consider the duty cycle of PWM, we can think of it as the
percentage of frequency that the signal is high vs low. So a 100% duty cycle will be
constantly high and a 0% duty cycle constantly low with values in between giving us an
"average" output over time. This can be used to "dim" LEDs. Now imagine that we
wanted to change the brightness of the LED over time. Effectively we would be "fading"
the brightness. For example, if we wanted to have the LED go from 100% brightness to
50% brightness over 2 seconds, the brightness output might look as follows:

Page 263

https://en.wikipedia.org/wiki/Pulse-width_modulation

Since the value of the duty cycle corresponds to the brightness of the LED, then what
we are talking about here is reducing the duty cycle value over time. Within the
hardware of the ESP32 PWM, we can specify an initial duty cycle value and the amount
that the duty cycle should be reduced by each configurable timer interval.

Analog to digital conversion
Analog to digital conversion is the ability to read a voltage level found on a pin between
0 and some maximum value and convert that analog value into a digital representation.
Varying the voltage applied to the pin will change the value read. The ESP32 has an
analog to digital converter built into it with a resolution of up to 12 bits which is 4096
distinct values. What that means is that 0 volts will produce a digital value of 0 while the
maximum voltage will produce a digital value of 4095 and voltage ranges between these
will produce a correspondingly scaled digital value.

One of the properties on the analog to digital converter channels is attenuation. This is
a voltage scaling factor. Normally the input range is 0-1V but with different attenuations
we can scale the input voltage into this range. The available scales beyond the 0-1V
include 0-1.34V, 0-2V and 0-3.6V.

Here is an example application using the APIs. What this example does is print the
value read from the ADC every second.

#include <driver/adc.h>
#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include "sdkconfig.h"

static char tag[] = "adc1";

Page 264

void task_adc1(void *ignore) {
 ESP_LOGD(tag, ">> adc1");
 adc1_config_width(ADC_WIDTH_12Bit);
 adc1_config_channel_atten(ADC1_CHANNEL_6, ADC_ATTEN_6db);
 while(1) {
 int value = adc1_get_voltage(ADC1_CHANNEL_0);
 ESP_LOGD(tag, "value: %d", value);
 vTaskDelay(2000/portTICK_PERIOD_MS);
 }
 vTaskDelete(NULL);
}

If we build out on a breadboard a circuit which includes a light dependent resistor such
as the following:

Page 265

Then when we change the amount of light falling on the resistor, we can see the values
change as data is written in the output log. This can be used to trigger an action (for
example) when it becomes dark.

Open question: What is the sample rate of the ADC?

Page 266

GPIO ADC Channel

GPIO 0 ADC2_CH1

GPIO 2 ADC2_CH2

GPIO 4 ADC2_CH0

GPIO 12 ADC2_CH5

GPIO 13 ADC2_CH4

GPIO 14 ADC2_CH6

GPIO 15 ADC2_CH3

GPIO 25 ADC2_CH8

GPIO 26 ADC2_CH9

GPIO 27 ADC2_CH7

GPIO 32 ADC1_CH4

GPIO 33 ADC1_CH5

GPIO 34 ADC1_CH6

GPIO 35 ADC1_CH7

GPIO 36 ADC1_CH0

GPIO 37 ADC1_CH1

GPIO 38 ADC1_CH2

GPIO 39 ADC1_CH3

Note that only a subset of ADC pins and functions are exposed. First, the supplied
drivers expose only ADC1. The board layout of the ESP32-DevKitC only exposes some
of the pins. Specifically, the following are exposed: ADC1_CH0, ADC1_CH3, ADC1_CH4,
ADC1_CH5, ADC1_CH6 and ADC1_CH7.

See also:

• adc1_config_channel_atten
• adc1_config_width
• adc1_get_voltage
• Wikipedia: Voltage divider

• YouTube: Analog to Digital with ESP32

• YouTube: Electronics Basics #27: ADC

Sleep modes
If the ESP32 device is constantly on, then it is constantly consuming current. If the
power source is unlimited, then this need not necessarily be an issue however when
running on batteries or other finite supply, we may need to minimize consumption. One
way to achieve this is to suspend the operation of the device when not in use. When

Page 267

https://www.youtube.com/watch?v=EnfjYwe2A0w
https://www.youtube.com/watch?v=CbacRysML5c
https://en.wikipedia.org/wiki/Voltage_divider

the device is suspended, the notion is that consumption will be reduced. There are
three defined sleep modes. These are called modem-sleep, light-sleep, deep-sleep.

By looking at the following table we can get a sense of the abilities in each of these
three modes:

Function Modem Light Deep

WiFi off off off

System Clock on off off

Real Time Clock on on on

CPU on pending off

Current consumption 15mA 0.5mA 20µA

The modem-sleep can only be used when the ESP32 is in station mode connected to
an access point. The application of this mode is when the ESP32 needs to still perform
work but minimizes the amount of wireless transmissions.

The light-sleep mode is the same as modem-sleep but in this case the clocks will be
suspended.

In deep-sleep mode, the device is really asleep. Neither CPU nor WiFi activities take
place. The device is to all intents and purposes off … with one exception … it can wake
up at a specified regular interval.

To enter deep sleep mode, we can call system_deep_sleep(). This can be supplied with
a suspension time. The device will go to sleep and after the interval has elapsed, the
device will wake up again. In addition to having a timer, we can also awake from a deep
sleep by toggling the value of a signal on a pin.

Write about ...

esp_deep_sleep_pd_config

esp_deep_sleep_enable_ext0_wakeup

esp_deep_sleep_enable_ext1_wakeup

esp_deep_sleep_start

esp_deep_sleep_enable_timer_wakeup

esp_deep_sleep

RTC_DATA_ATTR – Specify memory is RTC memory

How do we determine WHY we woke up?

Page 268

See also:

• YouTube: ESP32 #18 – Deep sleep API and how to wake up

Security
The ESP32 has the ability to store the password used to connect to the access point in
memory. This means that if one were to physically compromise the device (i.e. steal it)
then they could, in principle, dump the flash memory and retrieve your password. You
could choose not to cache the password in the clear in flash but instead have your
applications "decode" an encoded version that is saved in the flash memory … this
would prevent an obvious retrieval through a simple memory grab. The encoding
scheme could be a simple XOR against a magic number (either hard-coded or your own
MAC address).

Working with flash memory
Flash memory provides a non-volatile repository of information that survives a power
cycle of the device.

Data contained within flash is stored in units of sectors which are 4096 bytes in size. To
write data we can call spi_flash_write. To read data we call spi_flash_read.

Since writing to flash is performed in units of 4096 bytes, we can not change a single
byte by just over-writing it, instead we must retrieve the whole sector, erase the sector
and then write back the sector with the changed content. This can take some time to
complete and because of this, we may find that a failure is more likely to occur (eg. a
loss of power). If a failure occurs after we have erased a sector or during the re-write of
the sector, it should immediately become apparent that we will result in an overall
corruption of data.

Data reads and writes have to be 4 bytes aligned within flash.

The ESP32 has to be instructed about the size of the flash memory available to it.
Attempting to use flash memory addresses that differ from the expected size of flash
memory available can result in unexpected results.

When using esptool.py, the --flash_size flag can be supplied. For esptool-ck, the
corresponding flag is -bz.

The memory map for flash is flexible. A 1 MByte flash has an address range of

0x00 0000 - 0x0F FFFF

Page 269

https://www.youtube.com/watch?v=6BN1FOMQSPg

The bootloader loads at 0x00 1000.

The partition table loads at 0x00 8000.

NVS loads at 0x00 9000 to 0x00 EFFF which is 24K.

ESP32 data lives at 0x00 F000 to 0x00 FFFF which is 4K.

The single app loads starting at 0x01 0000. On a typical 4MByte flash space, this would
then end at 0x3F FFFF.

Address Description

0x00 1000 Bootloader

0x00 ???? Unknown

0x00 8000 Partition table

0x00 ???? Unknown

0x00 9000 NVS

0x00 EFFF

0x00 F000 ESP32 data

0x00 FFFF

0x01 0000 App

...

See also:

• esptool.py
• spi_flash_erase_sector

• spi_flash_read
• Cesanta: ESP8266, flash and alignment

Working with RAM memory
We can allocate memory using malloc() or zalloc(). The first function allocates and
returns memory and the second does exactly the same but zeros the memory before
returning. When your application logic no longer needs the memory, it can return it back
to the heap with free(). To determine how much heap size is available, we can call
esp_get_free_heap_size(). Once we have the memory pointer to allocated storage, we
can start to manipulate it through a series of memory commands. The memset()
command will set a block of memory to a specific value. The memcpy() will copy a block
of memory to a different block. The bzero() function will set the values of a block of
memory to zero.

Memory on the ESP32 is made up of a number of components. We have:

Page 270

https://blog.cesanta.com/esp8266_using_flash

• data

• rodata

• bss

• heap

The values of these can be found through the system_print_meminfo() function.

When the ESP32 needs to read an instruction from memory in order to execute it, that
instruction can come from one of two places. The instruction can be in flash memory
(also called irom) or it can be in RAM (also called iram). It takes less time for the
processor to retrieve the instruction from RAM than it does from flash. It is believed that
an instruction fetch from flash takes four times longer than the same instruction fetched
from RAM. However, on the ESP32 there is less RAM than there is flash. What this
means is that you are far more likely to run out of RAM before you run out of flash.
When writing normal applications, we shouldn't fixate on having instructions in RAM
rather than flash for the performance benefit. The execution speeds of the ESP32s are
so fast that if the cost of retrieving an instruction from RAM is blindingly fast then
retrieving an instruction from slower flash is still blindingly fast.

There are however certain classes of instructions that we might wish to place in RAM
rather than flash. Examples of these are interrupt handlers where the time spent in
these should always be as short as possible and also function that write to flash.

When we define C functions, we can add an attribute by the name of
ICACHE_FLASH_ATTR. What this does is place this function in the flash memory address
space as opposed to RAM. Specifically, flagging a function with ICACHE_FLASH_ATTR
tags it as being in the ".irom0.text" section of code.

Note: From a raw technical perspective, ICACHE_FLASH_ATTR is a #define that maps to:

__attribute__((section(".irom0.text")))

The mapping of RAM is

0x3FFB 0000 Data Ram
256K0x3FFF 0000

0x4008 0000 Instruction Ram
128K0x400A 0000

Page 271

See also:

• esptool.py
• gen_appbin.py

• Wikipedia – Data segment

RAM Utilization
As we write applications using the ESP-IDF, we will likely perform repeated tasks such
as creating sockets, creating FreeRTOS tasks and other items. Since anytime we
create something that has state, we will be consuming RAM, the question arises of "how
much RAM"? The amount of RAM used for common tasks governs just how many
instances of that task we can perform without relinquishing previously used memory.

An easy way to determine the current amount of free memory is to use the
esp_get_free_heap_size() function. This returns the number of free bytes of RAM on
the heap. As we use more RAM, the value returned by this function decreases. If we
wish to measure how much RAM a particular function might use, one way would be to
measure the free RAM before the call and then measure it again after the call and the
difference is some indication of how much might be used.

As a base line, after we start an ESP32 application and connect to an access point, I
find that the amount of RAM reported back is 191452. In these notes, I'll round that to
the nearest 1000 bytes and refer to this as "K" … for example 191K (not to be confused
with common "K" meaning 1024).

Let us start by looking at creating a FreeRTOS task. We commonly use
xTaskCreatePinnedToCore() for that purpose. The 3rd parameter to that function is the
stack that is allocated for the new task. This is carved up front from the heap when the
task is created. As you can immediately see, creating a stack far larger than needed
will immediately waste RAM.

Next, lets look at static RAM usage. This is storage data that is read/write but is
declared as static in C application. For example,

static char buffer[10*1024];
void myFunc() {
 …
}

In the above, buffer is readable and writeable … but does NOT reduce the heap size.

However not declaring as static, DOES reduce the heap size:

char buffer[10*1024];
void myFunc() {
 …
}

What about the following:

Page 272

https://en.m.wikipedia.org/wiki/Data_segment

void myFunc() {
 char buffer[10*1024];
 …
}

In this case, the storage is taken from that of the FreeRTOS task. So the global heap
does not decrease but the amount of free space of the FreeRTOS task will diminish.

In C, when we define storage with the "const" modifier, the storage is allocated in flash
(.text) as opposed to RAM.

For example:

const uint8_t data[100]

will be allocated in flash

while:

uint8_t data[100]

will be allocated in RAM.

Turning to sockets based APIs. The act of creating a listening socket seems to only
cost ~700 bytes. Accepting a new connection which itself creates a new socket again
only appears to cost about 700 bytes.

• esp_get_free_heap_size

Using PSRAM
Espressif not only manufactures the ESP32 but they also make a Pseudo SRAM device
called the ESP-PSRAM32. This is a 32MBit PSRAM device that supports serial and
quad parallel interfaces. 32MBits provides 4 MBytes.

To net this out, by attaching one of these devices to the ESP32, we can expand its
apparent RAM availability from 512K to 4 MBytes and above.

The page size of the devices is 1K.

Since this devices is a serial/quad bus addition to the ESP32 and not architected
directly into the ESP32 address bus standard, software running on the ESP32 must
provide the drivers and controllers necessary for it to work.

At the time of writing (2016/06) these have not been built into the standard ESP-IDF nor
standard tool chain. Special variants of these must be used. These can be separately
download and installed. Specifically:

tool-chain:

Page 273

ESP-IDF:

Applications that will run on the ESP32 and access the PSRAM need to be build against
these versions. In addition, SPI RAM support must be explicitly enable in make
menuconfig through the option "Capability allocator can allocate SPI RAM memory".

These settings can be found under the ESP32-specific section.

There are additional options that become active once this is checked:

• Enable workaround for bug in SPI RAM cache for Rev1 ESP32s.

• Heavy-handed workaround for bug: Always do memory barrier

• Debug: Test workaound by generating a lot of interrupts

• Type of dual-core PSRAM caching strategy

◦ Even/Odd

Page 274

◦ Low/High

• Type of SPI RAM chip in use

• Initialize PSRAM memory but do not add to heap allocator

• malloc() can also allocate in SPI SRAM

• ON SPI RAM init, do a quick memory test.

• Always put malloc()s smaller than this this size, in bytes, in internal RAM

• Reserve a region of memory for allocations that need to be in internal memory or
DMA'able memory.

See also:

• ESP-PSRAM32 Datasheet

EFUSE
Think of the classic (old?) household fuse. When too much current passes through it,
the filament wire inside gets too hot and melts through thus breaking the circuit and
electricity stops flowing. If we assign the flow of electricity the value "1" and the
inability to flow electricity the value "0", we have a simple boolean value that we can
detect. The concept of an EFUSE in the ESP32 is a set of bits that can be electrically
set one time. Imagine they have a default value of "1", we could select 8 bits and for
some of them, pass enough current through them to "blow the fuse". This doesn't harm
the ESP32 … its what these EFUSEs were designed to do. As a result, we now have 8
bits of data some of which are "1"s and some of which are "0"s … in effect … a byte of
data that we set to a fixed value in the hardware. Realize that setting an EFUSE to 0 is
a one time operation, you can't subsequently change it back to 1 … however it does
afford us a useful capability. We can imagine ESP32s that have electrically "hard
coded" values pre-assigned at manufacturing or distribution time. These could be
device identifiers or keys for encryption. Because the values are burned into the device,
they can't subsequently be altered or tampered with.

The ESP32 has 1024 bits of EFUSE of which 256 are reserved for the of Espressif for
purposes such as the network MAC addresses and chip configuration. However, this
still leaves 768 distinct bits at your disposal.

For the tinkerer, there is unlikely to be a compelling reason to use EFUSEs, but for the
production customer, this is yet another feature you can choose to leverage.

Page 275

http://espressif.com/sites/default/files/documentation/esp-psram32_datasheet_en.pdf

Button press detection
Button press detection is one of the simplest circuits there is. A schematic may look as
follows:

What we see here is that when the button is pressed, the GPIO 25 goes high. When
the button is not pressed, there is an open input to GPIO 25. As such, we want to flag
GPIO 25 as having a pull-down associated with it so that it has a default signal of low.

Now we can define an interrupt handler to GPIO 25 that will be called when GPIO 25
transitions from low to high. Unfortunately, this is not enough. When a button is
pressed, it usually "bounces" for a very small period. This will be interpreted as a series
of transitions and hence a series of interrupt handler events. What we want to do is
introduce a debounce handler. One way to achieve this is not to trigger our processing
when the signal transitions from low to high but to trigger our processing when the
signal transitions from low to high and the last transition from low to high was at least
50-100 msecs ago. When bounces happen, they are usually much shorter than those
time periods and can be eliminated.

Here is an example application which illustrates a GPIO interrupt handler:

#include <driver/gpio.h>
#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/queue.h>
#include <freertos/task.h>

#include "c_timeutils.h"
#include "sdkconfig.h"

static char tag[] = "test_intr";

Page 276

static QueueHandle_t q1;

#define TEST_GPIO (25)

static void handler(void *args) {
 gpio_num_t gpio;
 gpio = TEST_GPIO;
 xQueueSendToBackFromISR(q1, &gpio, NULL);
}

void test1_task(void *ignore) {
 struct timeval lastPress;
 ESP_LOGD(tag, ">> test1_task");
 gettimeofday(&lastPress, NULL);
 gpio_num_t gpio;
 q1 = xQueueCreate(10, sizeof(gpio_num_t));
 gpio_config_t gpioConfig;
 gpioConfig.pin_bit_mask = GPIO_SEL_25;
 gpioConfig.mode = GPIO_MODE_INPUT;
 gpioConfig.pull_up_en = GPIO_PULLUP_DISABLE;
 gpioConfig.pull_down_en = GPIO_PULLDOWN_ENABLE;
 gpioConfig.intr_type = GPIO_INTR_POSEDGE;
 gpio_config(&gpioConfig);

 gpio_install_isr_service(0);

 gpio_isr_handler_add(TEST_GPIO, handler, NULL);

 while(1) {
 ESP_LOGD(tag, "Waiting on queue");
 BaseType_t rc = xQueueReceive(q1, &gpio, portMAX_DELAY);
 ESP_LOGD(tag, "Woke from queue wait: %d", rc);
 struct timeval now;
 gettimeofday(&now, NULL);
 if (timeval_durationBeforeNow(&lastPress) > 100) {
 ESP_LOGD(tag, "Registered a click");
 }
 lastPress = now;
 }
 vTaskDelete(NULL);
}

GPS
The world is a sphere (hopefully that isn't news to you). We can specify a point on the
Earth through a coordinate system known as latitude (lat) and longitude (lng). Given a
lat/lng coordinate, we know where we are. The Global Positioning System (GPS) is a
technology that allows a GPS receiver to determine its own lat/lng coordinates.

Page 277

Given a pair of coordinates, for example one coordinate that says where a device is and
a second coordinate saying (for example) where we want to eventually be, we can
calculate some interesting data such as how far away are we from the target and what
compass bearing we need to head to get there.

There are many applications of GPS and it has entered the popular domain. Most cell
phones now have in-built GPS receivers such that they can display a map showing your
current location. Combine that with a database of driving directions and we have real-
time route planners where we mount either a dedicated GPS receiver or a cell phone on
our car dashboards and provide destination details and the devices tell us the turns to
make.

The Global Positioning System (GPS) is a set of satellites in orbit. They are continually
transmitting a very precise time signal. If we have a suitable receiver, we can receive
the time signals from some number of those satellites that are over head at any given
time. Since the speed of radio transmission is constant and not instantaneous and each
satellite is producing an extremely accurate and synchronized time signal, then a signal
clock pulse emitted by all satellites at exactly the same time will be received at very
slightly staggered times by the receiver as a function of the distance that the signal had
to travel through space. This is the same as the distance that the satellite was from the
receiver. By receiving enough signals from a sufficient number of distinct satellites and
by using complex mathematics, the receiver can then triangulate its own position and
thus know where it is on the surface of the Earth.

Putting that in perspective, an electronic module can determine physically where it is.
Such modules are now common within your cell phone and within many car
dashboards. They are often used in conjunction with mapping software to provide a
real-time map showing your location. The accuracy of GPS is commonly about 4
meters.

Devices can be picked up for about the $12 mark. The unit I worked with is called the
GY-GPS6MV2 which is based on the u-blox NEO-6m. The pins on this breakout board
are vcc, gnd, RX and TX. This is 5V device. As such, you must use a level shifter or
voltage divider between the TX pin of the GPS and the RX pin of the ESP32 as the
ESP32 can't accept a 5V signal input.

Since it is a UART device, we can test this on a regular PC. If we connect a serial port
terminal, we can watch the data be received. The data that comes across is in NMEA
format (National Marine Electronics Association). There are various NMEA reader
applications freely available which can format the data. The baud rate for the device
defaults to 9600 bps.

Page 278

To test the data, you should really be out-doors or otherwise have an un-obstructed
view of the sky. Testing in the interior of a building is basically fruitless as the GPS
signals will not penetrate and you will have learned nothing.

The device has an LED on the circuit that illuminates (flashes green) when a lock has
been made.

Here is a sample that reads input from GPIO34 which is connected to the GPS TX:

#include "esp_log.h"
#include "driver/uart.h"

static char tag[] = "gps";
void doGPS() {
 ESP_LOGD(tag, ">> doGPS");
 uart_config_t myUartConfig;
 myUartConfig.baud_rate = 9600;
 myUartConfig.data_bits = UART_DATA_8_BITS;
 myUartConfig.parity = UART_PARITY_DISABLE;
 myUartConfig.stop_bits = UART_STOP_BITS_1;
 myUartConfig.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
 myUartConfig.rx_flow_ctrl_thresh = 120;

 uart_param_config(UART_NUM_1, &myUartConfig);

 uart_set_pin(UART_NUM_1,
 UART_PIN_NO_CHANGE, // TX
 34, // RX
 UART_PIN_NO_CHANGE, // RTS
 UART_PIN_NO_CHANGE // CTS
);

 uart_driver_install(UART_NUM_1, 2048, 2048, 10, 17, NULL);

 unsigned char buf[100];
 int size;
 while(1) {
 size = uart_read_bytes(UART_NUM_1, buf, sizeof(buf), 1000/portTICK_PERIOD_MS);
 ESP_LOGD(tag, "Bytes read = %d", size);
 if (size >0) {
 ESP_LOGD(tag, "%.*s", size, buf);
 }

Page 279

 }
}

GPS decoding
An open source project on Github called "minmea" provides an excellent parsing library
for the protocol generated by these GPS devices. If we read a line at a time from the
GPS device and pass that into the parsing routines, we can get data including position,
speed and visible satellites. The library compiles 100% cleanly with ESP-IDF as long
as one adds:

CFLAGS+=-Dtimegm=mktime

to the component.mk used to build from the source. The sample snippets supplied with
the project proved to be more than sufficient to get a solution going in no time.

At a high level, the protocol exposed by the GPS device is called NMEA 0183. It is
composed of one line at a time where each line is considered to be a "sentence". The
sentence starts with a designator describing the types of sentence it represents. The
minmea parser has support for the following types:

• RMC – Time, latitude, longitude, speed, track, date

• GGA – Time, latitude, longitude, GPS quality, satellite count, altitude

• GSA – Active satellites

• GLL – Latitude, longitude, time

• GST – Error measurements

• GSV – Satellites in view

• VTG – Track and speed

See also:

• Github: cloudyourcar/minmea

• NMEA Revealed

Temperature and pressure – BMP180
The BMP180 module can be found on eBay for less than $2.00. This device provides
both temperature and barometric pressure readings via an I2C bus. It is less expensive
than the DHT22 but replaces humidity for air pressure measurement. Arguably, the
BMP180 is also easier to use as it does not require as finicky data stream timings.
Although common, this device has been superseded by the manufacturer with a later
model called the BMP280.

Page 280

http://www.catb.org/gpsd/NMEA.html
https://github.com/cloudyourcar/minmea

This is a 3V device. The I2C address of the device is 0x77.

The I2C commands to read the device are described in detail in the data sheet. At a
high level, we read out a series of EEPROM registers and then ask for both the
temperature and pressure. The values returned for these later values need to them be
arithmetically combined with the EEPROM registers using some equations and the
result will be two outputs. A temperature in °C and an air pressure in Pa.

The pin out of the some device types are:

Pin Label Description

1 3.3 Not used

2 SDA I2C SDA

3 SCL I2C SCLK

4 GND GND

5 VCC 3.3V

While others have the pin out of:

Pin Label Description

1 VIN 3.3V

2 GND GND

3 SCL I2C SCLK

4 SCA I2C SDA

Page 281

At the driver level, here are the low level details. First we read compensation
parameters through I2C. The parameters are identified in the data sheet as 16 bit
integers (MSB) read from the following I2C registers:

Parameter C Type Registers

AC1 short 0xAA, 0xAB

AC2 short 0xAC, 0xAD

AC3 short 0xAE, 0xAF

AC4 unsigned short 0xB0, 0xB1

AC5 unsigned short 0xB2, 0xB3

AC6 unsigned short 0xB4, 0xB5

B1 short 0xB6, 0xB7

B2 short 0xB8, 0xB9

MB short 0xBA, 0xBB

MC short 0xBC, 0xBD

MD short 0xBE, 0xBF

My understanding (loosely) is that when an instance of a BPM180 is manufactured,
there can be slight variances in the construction from one batch of devices from
another. These variances are anticipated and have to be accommodated. As such a
set of mathematical compensation values are written into an EEPROM contained within
the device which provide the details of the specific variants for this exact device. When
we ask the device for temperature and pressure values, we then have to also read the
compensation values and apply some mathematics using those plus the obtained
readings to achieve the final numbers. Fortunately, we don't have to worry about the

Page 282

actual underlying math, these have been worked out for us by the device designers.
However, in our software, we do have to actually perform the math using the
compensation values and the sensor read data. The details of the math can be found in
the device data sheets and also from the many examples in Github that have already
implemented the correct algorithms.

To read a register we perform:

<Start> <Address + WRITE> <Register> <Stop>
<Start> <Address + READ> <Read MSB> <Read LSB> <Stop>

See also:

• Data sheet

• Sparkfun – BMP180 Barometric Pressure Sensor Hookup

• BMP180 I2C Digital Barometric Pressure Sensor

• Github: Sparkfun/BMP180

Using the Arduino APIs
Adafruit provide an Arduino library for interacting with the device. This is part of their
unified sensor series. It has been tested with the Arduino environment running on the Pi
and found to work without issue. Stay away from the similarly named project called
Adafruit-BMP085-Library as it appears to be buggy.

See also:

• Adafruit Unified Sensor Driver

• Adafruit Unified BMP085/BMP180 Driver

NeoPixels

NeoPixel theory
NeoPixels are LEDs that are driven by a single data line of high speed signaling. Most
NeoPixels have a +ve and ground voltage source as well as a data line for input and a
data line for output. The output of one NeoPixel can be fed into the input of the next
one to produce a string of such LEDs. The input data to the LED is a stream of 24 bits
of encoded data which should be interpreted as 8 bits for the red channel, 8 bits for the
green channel and 8 bits for the blue channel. Each channel can thus have a
luminance value of between 0 and 255. By mixing the values for each of the channels
together, you can color an LED to any color you may choose. After sending in a stream
of 24 bits, if we send in a second stream of 24 bits quickly after the first stream, the
second stream is "pushed" through to the next LED in the chain. This can be repeated

Page 283

https://github.com/adafruit/Adafruit_BMP085_Unified
https://github.com/adafruit/Adafruit_Sensor
https://github.com/sparkfun/BMP180_Breakout
http://www.raspberrypi-spy.co.uk/2015/04/bmp180-i2c-digital-barometric-pressure-sensor/
https://learn.sparkfun.com/tutorials/bmp180-barometric-pressure-sensor-hookup-
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf

as far as desired. If we pause sending in data, the current values are "latched" into
place and each LED them remembers its own value.

The timings of the data signals for these LEDs can be quite tricky but fortunately great
minds have already built fantastic libraries for driving them correctly so we need not
concern ourselves with these low level timings and can instead concentrate on devising
interesting projects and purposes to which the LEDs can be placed. There are a
number of different types of these LEDs with the most common ones being known as
WS2811, WS2812 or PL9823.

NeoPixels are usually 5V devices but check the specs carefully. Since NeoPixels draw
a lot of current (60mA each), do not try and power them from low current sources. You
also need to be careful when sending signals into them and getting their polarity correct.
If you mess up, they are unforgiving. I recommend buying more instances that you will
need in case you make a mistake.

The eight piece strip is labeled CJMCU-2812-8. It has 4 pins at each end of the strip
labeled:

Label Description Color

GND Ground. Yellow

DIN/DOUT One side is DIN the other DOUT … this means that the strip is polarized. These are
the control data input and output lines.

Green

4-7VDC Source voltage. Red

GND Ground. Yellow

The data is sent as 24 bits in Green/Red/Blue order (GRB). Note that this is NOT RGB.
The format of the data uses NZR (Non-return-to-zero) encoding.

Specifically, the logic 0 and logic 1s are encoded as following.

Page 284

Both bits correspond to a transition from high to low to high again but the duration at
which they are held indicates the encoding of a 1 or 0.

The data send to an individual device is 24 bits corresponding to 8 bits of color data for
each of the RGB components. The 8 bits identify the brightness of each of the channels
with 1 being lowest and 255 being brightest.

Various diagrams show the timing as follows:

Various data sheets show different timing values in micro seconds:

Device T0H T0L T0 T1H T1L T1

WS2811 0.5 2.0 2.5 1.2 1.3 2.5

WS2812 0.35 0.8 1.15 0.7 0.6 1.3

WS2812B 0.4 0.85 1.25 0.8 0.45 1.25

PL9823 0.35 1.36 1.71 1.36 0.35 1.71

As we see, for a WS2812B, the "width" of a bit is about 1.25 microseconds. For a full
pixel, this would be 24 bits or 30 microseconds. Thinking of it another way, that would
be over 33,000 pixels that could be updated per second.

The data is sent high bit first.

For testing circuits, I like to use PL9823. These can be had on eBay for between 25
cents and 35 cents each. It is physically easy to work with and in the event of a design
or assembly error, they are cheap enough to shrug off damage and throw away ones
you damage or break.

Page 285

See also:

• WS2812 Data Sheet

• PL9823 Data Sheet

• Use a $1 ATTiny to drive addressable RGB LEDs

• Adafruit NeoPixel Uberguide

• NeoPixels Revealed: How to (not need to) generate precisely timed signals

NeoPixels and the ESP32
If we take the WS2812 as an average device, we see that we need to create timings on
the order of 400ns. That is much too short an interval to perform in code logic so we will
need hardware support to achieve the task. Fortunately, the RMT driver gives us
exactly what we need. If we look at the base clock, we find that it has a maximum
resolution of 80MHz which is a resolution of 12.5ns. In fact if we use a divisor of 8 we
then have a granularity of 100ns which puts us right on target. Thus to send a 0, we
would transmit high for 400ns and low for 800ns and to send a 1 we would transmit high
for 800ns and low for 500ns. A latch is low for 50us (50,000ns).

A sample C++ class for driving NeoPixels from the ESP32 is available here:

https://github.com/nkolban/esp32-snippets/tree/master/hardware/neopixels

See also:

• RMT – The Remote Peripheral

LED 7-Segment displays
The 7-Segment display is an LED device that is composed of 7 line segments that can
be arranged to display numbers. There is also an eighth LED that is used to display a
decimal point. The makeup of the segments are shown in the following diagram:

Page 286

https://github.com/nkolban/esp32-snippets/tree/master/hardware/neopixels
https://wp.josh.com/2014/05/13/ws2812-neopixels-are-not-so-finicky-once-you-get-to-know-them/
https://learn.adafruit.com/adafruit-neopixel-uberguide
http://www.instructables.com/id/Use-a-1-ATTiny-to-drive-addressable-RGB-LEDs/
http://www.led-genial.de/mediafiles//Sonstiges/PL9823.pdf
https://www.adafruit.com/datasheets/WS2812.pdf

Although a seven segment display looks "quite dated" they should not be discounted. If
what one wants to do is show a numeric value that can be read from a distance and
which is very cheap to use, then this device may be just perfect.

It is common to see 7-segment displays used in conjunction with the MAX7219 or
MAX7221 ICs. These ICs know how to drive up to eight multiplexed 7-segment
displays with data received over an SPI bus. As such, the ESP32 can send in an SPI
signal and these devices can easily display the results.

See also:

• Wikipedia – Seven-segment display

MAX7219/MAX7221 – Serial interface, 8-digit, led display drivers
The MAX7219 and MAX7221 are ICs that can drive up to eight digits of 7 segment
displays or drive an 8x8 matrix of LEDs. The LEDs should be common cathode. The
device works using the SPI protocol.

This is a 5V device. A 3.3V device known as the MAX6951 is also available. Note that
the device is input-signal only. As such, there should be no issues connecting it to any
of your ESP32 pins.

The physical layout of the IC looks as follows:

Place a 10uF electrolytic and 0.1uF ceramic as close to the device as possible.

For 7-Segment displays, these should be common cathode.

The pin out of the IC is shown in the next table.

Page 287

https://en.wikipedia.org/wiki/Seven-segment_display

Name Pin Description

DIN 1 Serial data input (MOSI). Data loaded on clock rising edge.

DIG0-DIG7 2, 3, 5-8, 10, 11 Connections to each of the eight digits.

GND 4, 9 Both ground pins must be connected.

CS 12 Chip select. Data is loaded into serial register while CS is low and
latched on CS rising edge. Unlike other SPI devices where you can leave
the CS enabled, this device needs to actively control the CS.

CLK 13 The clock for the serial data,

SEGA-SEGG, DP 14-17, 20-23 Connection to each of the eight segments in a digit.

ISET 18 Connect to VDD through a resistor to set peak segment current. The
resistor values are shown in a following table. The resistor is referred to
as RSET. The current sent to a segment is 100 times the current entering
ISET.

VDD 19 5V

DOUT 24 Serial data output for daisy chaining.

Data format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X Register Address Data

Registers

Page 288

Name Bits Description

Shutdown 0b1100 (0xc) Should the device shutdown the display
• 0 – Shutdown. In shutdown mode the display is blanked.
• 1 – Normal

Decoding 0b1001 (0x9) How is decoding performed?
• 0x00 – No decoding for digits 7-0
• Corresponding bit on – Code B decode for digit (0-9, E, H, L, P and '-')

Intensity 0b1010 (0xa) The brightness of the display
0000 – 1111 with 0000 being minimum and 1111 being maximum.

Scan Limit 0b1011 (0xb) Controls how many digits are to be included in the scan multiplexing.
• 0b0000 – Digit 0
• 0b0001 – Digits 0, 1
• 0b0010 – Digits 0, 1, 2
• 0b0011 – Digits 0, 1, 2, 3
• 0b0100 – Digits 0, 1, 2, 3, 4
• 0b0101 – Digits 0, 1, 2, 3, 4, 5
• 0b0110 – Digits 0, 1, 2, 3, 4, 5, 6
• 0b0111 – Digits 0, 1, 2, 3, 4, 5, 6, 7

Display Test 0b1111 (0xf) Test the display.
• 0 – Normal operation
• 1 – Test mode

No-Op 0b0000 (0x0) Don't perform any task. Useful for passing data through the device to a daisy
chained instance.

Digit 0 0b0001 (0x1) Set the value for digit 0.

Digit 1 0b0010 (0x2) Set the value for digit 1.

Digit 2 0b0011 (0x3) Set the value for digit 2.

Digit 3 0b0100 (0x4) Set the value for digit 3.

Digit 4 0b0101 (0x5) Set the value for digit 4.

Digit 5 0b0110 (0x6) Set the value for digit 5.

Digit 6 0b0111 (0x7) Set the value for digit 6.

Digit 7 0b1000 (0x8) Set the value for digit 7.

The value of the RSET resistor can be seen in the following table:

LED Forward Current 1.5V 2.0V 2.5V 3.0V 3.5V

10ma 66.7k 63.7k 59.3k 55.4k 51.2k

20ma 29.8k 28.0k 25.9k 24.5k 22.6k

30ma 17.8k 17.1k 15.8k 15.0k 14.0k

40ma 12.2k 11.8k 11.0k 10.6k 9.7k

Page 289

Anodes of the LEDs must be connected to the SEGx lines while cathodes must be
connected to the DIGx lines.

There are boards available which have MAX7219's already mounted and ready for work
including 8x8 LED matrices. These are much easier to work with than wiring together a
rats-nest of links. The boards cost less than $2 an instance. The pin out from the board
are:

Pin Label Description

1 Vcc +ve

2 GND Ground.

3 DIN Data in.

4 CS Chip Select.

5 CLK Clock.

Here is an image of such a board:

In addition to these 7-segment LEDs, there are also 8x8 matrix boards that use the
same MAX7219 and have the same pin outs.

Page 290

See also:

• MAX7221 Home Page

• Drive MAX7219/MAX7221 with common anode displays

• Arduino – The MAX7219 and MAX7221 LED drivers

• Github: Arduino – wayoda/LedControl library

• Instructables – 16x8 LED dot matrix with MAX7219 module

• YouTube – ESP32 Technical Tutorials: Driving the MAX7219

• YouTube – BrainyBits - How to use MAX7219 Dot LED matrix with Arduino

• YouTube – Scrolling text using the MAX7219 and an Arduino

• YouTube – Arduino tutorial: LED Matrix red 8x8 64 Led driven by MAX7219 (or MAX7221) and Arduino Uno

The U8g2 library
Available on Github is a rather good library for driving monochrome displays. The
library is called U8g2. See the links for the web page. There are actually two libraries.
One is called U8g2 which requires a memory buffer in the ESP32 to hold the raster of
the image and a second library called U8x8 which is text only and needs no raster
buffer. In order to work with the library, you need to know the controller type of the
graphics device plus the size of the display in pixels. There are separate constructors
for each of the distinct supported combinations. The supported combinations can be
found here.

The primitive drawing commands are bound to C functions and include filled rectangles,
frames, circles, ellipses, text and much more. Tests I have performed show that it
worked fine with an SSD1306.

When we think of a display, we should think of its as a rectangular array of pixels of a
fixed width and height. It is common to keep a data representation of what should be
shown on the display in RAM and this is known as a frame buffer. A change in the RAM
which is then pushed to the display causes an update of the display. If we set a bit in

Page 291

https://github.com/olikraus/u8g2/wiki/u8g2setupc
https://www.youtube.com/watch?v=TOuKnOG8atk
https://www.youtube.com/watch?v=FoHU6PrZcDg
https://www.youtube.com/watch?v=2rZWN1IcZpA
https://www.youtube.com/watch?v=1qEirFJWScg
http://www.instructables.com/id/16x8-LED-dot-matrix-with-MAX7219-module/
https://github.com/wayoda/LedControl
http://playground.arduino.cc/Main/MAX72XXHardware
http://marco-difeo.de/2013/02/21/drive-max7219max7221-with-common-anode-displays/
http://www.maximintegrated.com/en/products/power/display-power-control/MAX7221.html

the frame buffer to be 1 and then cause the frame buffer to be displayed, the
corresponding pixel will illuminate.

The manufacturers of distinct displays have chosen distinct technologies for
representing pixel data and how that pixel data is pushed to the displays. For example,
some vendors have 8 bits of data as the vertical set of pixels top to bottom while others
have them going from left to right. The U8g2 library attempts to normalize the story by
providing logical primitives that are then mapped to the correct data streams and frame
buffer updates appropriate for the specific device.

The U8g2 library is MCU agnostic. That means that it knows nothing about ESP32 and
everything about displays. To have the library work with the ESP32 we need a
hardware abstraction level or HAL. The HAL maps logical requests issued by the library
such as set a GPIO pin from high to low or send data via SPI to the actual APIs that are
needed by the target platform, in our case an ESP32. A set of HAL routines for the
ESP32 has been written. These routines can be compiled and linked with the U8g2
library and the ESP32 application to provide ESP32 support.

See also:

• Github: olikraus/u8g2

• U8g2 API reference

• YouTube – ESP32 Technical Tutorials: Displays and the U8g2 library

LCD display – Nokia 5110 – PCD8544
This little LCD screen has a resolution of 84x48 pixels and can be picked up on eBay for
about $3. The underlying IC is the PCD8544 but it is also known as the Nokia 5110.
The device is driven by an SPI interface. Since the device is input (to the device) only,
we need not be concerned with overloading ESP32 input pins.

The pins on the board are:

Page 292

https://www.youtube.com/watch?v=MipOGBStBbI
https://github.com/olikraus/u8g2/wiki/u8g2reference
https://github.com/olikraus/u8g2

Pin Description

1 Vcc – 6V – 8.5V

2 GND

3 SCE / CS – Chip enable. A low edge indicates start of data transmission.

4 RST – Reset the device. Active low.

5 D/C – Input is Data (1) or command (0).

6 DN <MOSI> – The SPI MOSI

7 SCLK – The SPI clock. The maximum permissible clock speed is 100KHz.

8 Backlight LED

The data sheet explains well the sequence of commands that need to be sent to drive
the display however, as always should be the case, you should look to be leveraging
what already exists rather than re-inventing for the sake of it. The fantastic folks at
Adafruit with their Adafruit GFX graphics library have provided an Arduino library for
working with the device. This library has been ported to work with the ESP32. As
such, all you need are copies of those libraries and you are ready to go.

An example set of pin mappings might be:

See also:

Page 293

• Data Sheet

OLED 128x32, 128x64 – SSD1306
Another screen device that is readily available are the small OLED displays. These are
based on an IC called the SSD1306 and can be found on eBay using that phrase as a
search. The price for an instance seems to range between $5 and $12.

The device can operate at either 3.3V or 5V.

The typical resolution is either 128x32 or 128x64 pixels. At a 6x8 character resolution,
this would give us 4 or 8 rows of 21 (and a bit) columns (128 pixels/6 pixels per column
= 21.333) .

The pin out on the SPI device is:

Pin Description

1 GND – Ground

2 VCC – 3.3v or 5.0v

3 D0 – Clock

4 D1 – MOSI

5 RES – Reset

6 DC – Data / Command

7 CS – Chip Select

The pin out on the I2C device is:

Pin Description

SDA Data

SCL Clock

VCC 3.3V

GND GND

Page 294

https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf

The I2C address is 0x3C or 0x3D.

The device can support a variety of protocols including 3 or 4 wire SPI and I2C.
Depending on the model / variety of the board it you obtain, it is likely that it will be
physically configured in one particular mode. Examine the board and the associated
documentation.

Again the excellent Adafruit folks have produced libraries for the Arduino which have
been ported to the ESP32.

A potential wiring diagram is as follows:

This display has also been tested with the U8g2 lib and worked as advertised.

See also:

• The U8g2 library

• SSD1306 Data S heet

• Github – Adafruit SSD1306

• Adafruit – Monochrome OLED breakouts

• ESP32 - Adafruit_SSD1306-Library

Page 295

https://github.com/nkolban/esp32-snippets/tree/master/hardware/displays/Adafruit_SSD1306-Library
https://learn.adafruit.com/monochrome-oled-breakouts
https://github.com/adafruit/Adafruit_SSD1306
https://www.adafruit.com/datasheets/SSD1306.pdf
https://www.adafruit.com/datasheets/SSD1306.pdf
https://www.adafruit.com/datasheets/SSD1306.pdf

Ambient light level sensor – BH1750FVI
An interesting little module incorporating the BH1750FVI (aka GY-302) is available from
a number of suppliers on eBay. Simply put, this device measures the amount of light
falling upon it and returns a measurement of that value. While that can be done through
a simple light dependent resistor and an analog to digital converter, this device is
arguably easier to use as the device attaches to an I2C bus. In addition, the device
characteristics are to sense light in the same spectrum as the human eye, something
I'm not sure is true for a simple light dependent resistor solution. Further, the device
has 16bits of sensitivity as compared to a maximum of 12 bits of sensitivity found the
ESP32 ADC.

This is a 3.3V device, do not attempt to power fro 5V.

Pin Function

VCC 3.3V

GND Ground

SCL I2C Clock

SDA I2C Data

ADDR Address select

The following commands can be sent by an I2C write:

Page 296

Value Function

0x00 Power down

0x01 Power on

0x07 Reset

0x10 Mode H

0x11 Mode 2H

0x13 Mode L

0x20 One time Mode H

0x21 One time Mode 2H

0x23 One time Mode L

The I2C bus address of the device is 0x23.

Here is a simple schematic illustrating the a wiring of the device.

See also:

• Rohm BH1750FVI – Data sheet

• Wikipedia – Lux

• YouTube: ESP32 Technical Tutorial – Ambient light levels

Ambient light and proximity sensor
The APDS-9930 is an ambient light and proximity sensor. This is a 3.3V device using
I2C.

Page 297

https://www.youtube.com/watch?v=VLIsH3NT7F8
https://en.wikipedia.org/wiki/Lux
http://rohmfs.rohm.com/en/products/databook/datasheet/ic/sensor/light/bh1750fvi-e.pdf

Module pins:

VL IR LED power

GND Ground

VCC 3.3V

SCL I2C Clock

SDA I2C Data

INT Interrupt

See also:

• Data sheet

Infrared receivers
Infrared is a frequency range of light that is not visible to our eyes. If we look at a
source of infrared light, we simply won't see any emissions even though they are
actually being emitted. There are LEDs available that can generate infra-red frequency
light and there are corresponding detectors that can measure the incoming amount of
infrared light. Since these light sources don't distract us, we can use them for signaling
by having an infra-red transmitter send pulses of light to an infra-red receiver. This is
precisely how many home remote control hand-sets work for devices such as TVs and
music systems.

What we might want to do is to control the ESP32 remotely using an infra-red hand-set.

There are many infra red hand-sets that we can use that can be purchase on eBay for a
few dollars. Alternative we can use any hand-set from an old TV.

Page 298

https://docs.broadcom.com/docs/AV02-3190EN

We will also need to wire in an infra-red receiver circuit to our ESP32.

With the transmitter (hand-set) and the receiver (electronics connected to ESP32) we
are about ready to go. The next thing we have to consider is how to receive the data
transmitted and how to decode it.

One of the more popular infrared receivers is the VS1838B.

The pin out of this device (from left to right facing the front):

Pin Function

1 Data

2 GND

3 Vcc 2.7-5.5V

This device is able to receive at a frequency resolution of 38KHz.

If we connect the data out to a logic analyzer and then apply an IR signal from a
controller, we can see the incoming pulse-train. For example:

Page 299

Obtaining the data from an IR receiver LED is supported natively by the hardware of the
ESP32 using the RMT peripheral. It can be configured to watch for pulse trains and
return us an array of items where each item represents the duration a signal is low and
the duration a signal is high. From this data we obtain very accurate representations of
the IR data. However, there are still puzzles to be solved. Most remote controls have
multiple buttons … power on, power off, volume up, volume down etc. Each button
performs a distinct function and hence must be sending a distinct pattern of data to
represent the function of that button. As such, not only do we want to detect that a
pulse train has arrived, we also need to decode its content. It would have been nice if
there had been one format for all remote controls, but sadly, that isn't the case. There
are in fact quite a few protocols made by different vendors. The protocols include NEC,
Sony SIRC, Phillips RC5, Phillips RC6 and more.

Let us use the NEC protocol as an example. A train starts with a 9ms mark followed by
a 4.5ms space. It is safe to assume that the durations measured won't be exactly 9ms
and 4.5ms … so we need to accommodate tolerance to the values actually measured.

See also:

• SB-Projects IT Remote Control Theory

• NEC protocol

RFID MFRC522
Perhaps you have stayed at a modern hotel recently. In some cases when they give
you the key-card at the reception desk and you get to your door, you may find that you
don't actually insert the card in a slot but instead bring it close to the door lock in order
to gain entry. Maybe you are an employee at a big corporation where you wear an ID
badge and in order to gain entry into the building, you bring your card near a turnstile or
door badge reader.

Page 300

http://www.sbprojects.com/knowledge/ir/nec.php
http://www.sbprojects.com/knowledge/ir/

In other cases, we find that products contain identification tags that can be used at
check-out or during stocking to determine information about them. These packages can
then be scanned to learn more:

What these have in common is the inclusion of an RFID.

Radio frequency identification (RFID) is the notion that we can have a receiver that is
listening for low power radio frequency emissions. When a device that emits a signal on
the correct frequency is brought in range, the receiver is triggered. Typically, the range
of such a device is only a few inches and the transmitter itself is a passive device …
meaning it has no power source within it but is instead activated by the receiver itself
transmitting enough energy for the transmitter to modulate a response. We see these
kinds of devices in hotels when they can be used to open doors. Instead of inserting a
physical key or even a key card into a slot, we simply bring the card "near" or "tap it" on
the lock and the door opens.

The transmitters can also transmit small amounts of information to the receiver and that
information can be used allow or disallow access.

For our purposes, we can use the MFRC522 receiver and associated cards and
transmitters. If you see the phrase "PICC" … this stands for "proximity integrated circuit
card" which is the formal name for the RFID cards and tags.

Page 301

A receiver and some transmitters can be picked up on eBay for under $3.

The MFRC522 is a 3.3V device. Do not try and power it from the 5V source. The cards
can hold up to 1K bytes of data and have a range of 1cm or 2cm. The communication
between the receiver and the ESP32 is via the SPI protocol.

The pin out on the device is:

Pin Label Description

1 3.3V Source

2 RST Reset

3 GND Ground

4 IRQ Can be left unconnected

5 MISO Master In / Slave Out

6 MOSI Master Out / Slave In

7 SCK Clock

8 SDA Slave select or SDA. Quite why this is labeled SDA is a mystery as
that is an I2C term and this board only supports SPI. It does seem
to serve as a slave select.

Page 302

The data on the card is broken out into sectors, blocks and bytes. There are 16 sectors
identified as 0 through 15. Each sector contains 4 blocks. These are identified as 0
through 3. Each block contains 16 bytes. If we look at the total … 16 sectors * 4 blocks
* 16 bytes we end up with 1024 bytes (or 1K).

See also:

• Wikipedia – Radio-frequency identification

• MFRC522 Data sheet

• YouTube: Tutorial:Using a RFID Card Reader with the Arduino

• YouTube: ESP32 #33: RFID Read and Write with MFRC522 Module

• Github: miguelbalboa/rfid – Arduino library for MFRC522

MFRC522 – Low levels
This is a 3.3V device, you will ruin it if you attempt to connect it to a 5V source.

The chances are that this section will be of little value to you. Most of the components I
work with have relatively simple interfaces but this one has a lot of options and unless

Page 303

https://github.com/miguelbalboa/rfid
https://www.youtube.com/watch?v=waYM37_fUsg
https://www.youtube.com/watch?v=yUtFinIsPWw
http://www.nxp.com/documents/data_sheet/MFRC522.pdf
https://en.wikipedia.org/wiki/Radio-frequency_identification

one wants to become a deep student of the device, it is likely that one of the pre-
existing libraries will be what is most beneficial. However, it is my intent that, over time,
I will read the data sheet carefully and combine that with the current know open source
implementations and try and provide at least a readers guide to understanding the
protocols and algorithms.

The device has a lot of registers:

Address Name Description

0x00 Reserved Reserved for future use.

0x01 CommandReg Starts and stops command execution.

0x02 ComlEnReg Control of interrupt requests.

0x03 DivlEnReg Interrupt request bits.

0x04 ComIrqReg

0x05 DivIrqReg

0x06 ErrorReg Error status of last command executed.

0x07 Status1Reg Status register.

0x08 Status2Reg Status register.

0x09 FIFODataReg

0x0a FIFOLevelReg Number of bytes in FIFO queue.

0x0b WaterLevelReg Threshold for FIFO queue under and over flow warning.

0x0c ControlReg Misc control bits.

0x0d BitFramingReg Bit oriented frames.

0x0e CollReg Collision detection handling.

0x0f Reserved Reserved for future use.

0x10 Reserved Reserved for future use.

0x11 ModeReg General transmit and receiver controls.

Pin Name

7 MSBFirst

6 N/A

5 TxWaitRF

4 N/A

3 Polarity of MFIN

2 N/A

1:0 CRC Preset

0x12 TxModeReg Transmit rate.

Pin Name

7 TAuto

6:5 TGated

Page 304

4 TAutoRestart

3:0 TPrescaler_Hi

0x13 RxModeReg Receive rate.

0x14 TxControlReg Controls antenna driver pins.

Pin Name

7 InvTx2RFOn

6 InvTx1RFOn

5 InvTx2RFOff

4 InvTx1RFOff

3 TX2CW

2 N/A

1 TX2RFEn

0 TX1RFEn

0x15 TxASKReg Transmit modulation setting.
Bit 6 1 Forces a 100% ASK modulation

0x16 TxSelReg Analog module control.

0x17 RxSelReg Receiver settings.

0x18 RxThresholdReg Thresholds for receiving.

0x19 DemodReg Demodulator settings.

0x1a Reserved Reserved for future use.

0x1b Reserved Reserved for future use.

0x1c MfTxReg MIFARE transmit parameters.

0x1d MfRxReg MIFARE reception parameters.

0x1e Reserved Reserved for future use.

0x1f SerialSpeedReg UART serial speed.

0x20 Reserved Reserved for future use.

0x21 CRCResultReg CRC calculation.

0x22 CRCResultReg CRC calculation.

0x23 Reserved Reserved for future use.

0x24 ModWidthReg Modulation width.

0x25 Reserved Reserved for future use.

0x26 RFCfgReg Receiver gain.

0x27 GsNReg Conductance of antenna pins.

0x28 CWGsPReg Detailed

0x29 ModGsPReg Detailed.

0x2a TModeReg Timer settings.

Page 305

0x2b TPrescalerReg

0x2c TReloadRegH

0x2d TReloadRegL

0x2e TCounterValReg

0x2f TCounterValReg

0x30 Reserved

0x31 TestSel1Reg Test signal configuration.

0x32 TestSel2Reg Test signal configuration.

0x33 TestPinEnReg

0x34 TestPinValueReg

0x35 TestBusReg

0x36 AutotestReg

0x37 VersionReg MFRC522 software version.

0x38 AnalogTestReg

0x39 TestDAC1Reg

0x3a TestDAC2Reg

0x3b TestADCReg

Be careful when using registers, they are encoded as follows:

7 6 5 4 3 2 1 0

1 = read
0 = write

address 0

As you can see, an address contains whether we are reading or writing to it … it is also
shifted one bit to the left.

To say that there is a lot of work in building access to RFID by hand is an
understatement. However, by looking closely at the work already performed by others
in various open source projects, we can get a feel for the steps of an implementation:

Initialization
Reset
TModeReg ← 0x8d – TAuto=1, non-gated, TPrescalerHi=b1101
TPrescalerReg ← 0x3e – Low 8 bits of TPrescaler
TReloadRegL ← 30
TReloadRegH ← 0
TxASKReg ← 0x40 – Force 100% ASK
ModeReg ← 0x3d – Not MSBFirst, TxWaitRF, MFin active High, CRCPreset=0x6363
AntennaOn

Page 306

AntennaOn
If TxControlReg→ Tx1RFEn is off or TxControlReg→Tx2RFEn is off
 TxControlReg→Tx1RFEn = 1
 TxControlReg→Tx2RFEn = 1

Cameras
It is tantalizing to think about processing real-time images in an ESP32 and to begin
down that journey, we need to be able to source video input.

See also:

• Github: igrr/esp32-cam-demo

Ivan's sample
Ivan over at Espressif has produced a great sample application that utilizes the camera.
The camera supported is the OV7725. It exposes the following functions:

• uint8_t *camera_get_fb() - Get the data of the frame buffer.

int camera_get_fb_height() - Get the height of the frame buffer.

• int camera_get_fb_width() - Get the width of the frame buffer.

• esp_err_t camera_init(camera_config_t config) – Configure the camera
interface. This is a structure which contains:

◦ pin_reset

◦ pin_xclk

◦ pin_sscb_sda

◦ pin_sscb_scl

◦ pin_d7

◦ pin_d6

◦ pin_d5

◦ pin_d4

◦ pin_d3

◦ pin_d2

◦ pin_d1

◦ pin_d0

Page 307

https://github.com/igrr/esp32-cam-demo

◦ pin_vsync

◦ pin_href

◦ pin_pclk

◦ int xclk_freq_hz

◦ ledc_timer_t ledc_timer

◦ ledc_channel_t ledc_channel

◦ camera_pixelformat_t pixel_format

▪ CAMERA_PF_RGB565

▪ CAMERA_PF_YUV422

▪ CAMERA_PF_GRAYSCALE

▪ CAMERA_PF_JPEG

◦ camera_framesize_t frame_size

▪ CAMERA_FS_QQVGA

▪ CAMERA_FS_QVGA

▪ CAMERA_FS_VGA

▪ CAMERA_FS_SVGA

◦ int jpeg_quality

• camera_print_fb()

• camera_probe(const camera_config_t *config, camera_model_t
*out_camera_model)

• esp_err_t camera_run() - Ask the camera to grab an image and then wait until it
is ready.

In this sample, we get a buffer which is width x height bytes in size and is composed of
8 bit grayscale values. We can save the image data but how can we look at it?

I have had good success using the Linux ImageMagick tools. Specifically, if I save an
image to the file "img.gray" and we know that the image is 320 x 240 pixels, we can
convert this to a PNG using:

$ convert -size 320x240 -depth 8 img.gray img.png

See also:

• Github: igrr/esp32-cam-demo

• ImageMagick

• OV7725

Page 308

https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/OV7725.pdf
http://www.imagemagick.org/script/index.php
https://github.com/igrr/esp32-cam-demo

OV7670
The OV7670 camera is a very cheap camera device. It is powered at 3V and hence is
perfect for use with the ESP32. The resolution is 640x480 pixels.

There are outputs of three synchronization signals. These are called VSYNC, HSYNC,
and HREF.

See also:

• OV7670 – Datasheet

• OV7670 – Implementation Guide – 2005-09-02

• OV7670 Software Application Note

Accelerometer and Gyroscope – MPU-6050 (aka GY-521)
The MPU-6050 is a 3.3V device.

An accelerometer measures the force of linear acceleration. Simply put, that when an
object is at rest (i.e. sitting peacefully on your desk), it is not being accelerated (well … it
actually is but we'll come back to that later). When you start to move the object, it
undergoes acceleration. Note that this is not the same as speed. Acceleration is the
rate of change in speed over time. When you are sitting as a passenger in your car and
the car is moving at a constant speed and if the ride were very smooth and you closed
your eyes, you wouldn't know you were moving. However, if the gas or brake are
pressed, your car would change speed and you would feel acceleration while the speed
changed. You would feel yourself pushed back in your seat when the gas is pressed
and you would feel yourself wanting to move forward if the brake is pressed. Similarly, if
you stand in an elevator and press a button, you feel yourself being pushed into the
floor when it starts to rise and you would find yourself wanting to rise when it comes to a
stop. Acceleration is a vector quantity meaning that it has a directional quality
associated with it. In your car (assuming you are driving forward and we call the
forward direction x) then stepping on the gas produces an acceleration in the x direction
while stepping on the brake produces an acceleration in the -x direction. Similarly with

Page 309

https://github.com/luckasfb/Development_Documents/blob/master/MTK-Mediatek-Alps-Documents/OV7670%20software%20application%20note.pdf
http://web.mit.edu/6.111/www/f2015/tools/OV7670app.pdf
https://www.voti.nl/docs/OV7670.pdf

the elevator, when you rise there will be an acceleration in the z direction and when you
stop, there will be an acceleration in the -z direction. There is one more twist to the
story … gravity. Although you may not have thought about it, as you sit in your chair
there is a force acting on you that wishes to accelerate you. That force is called gravity
and the direction of the acceleration is -z. If it weren't for the chair, your body would be
accelerated towards the floor. Even though your body isn't moving, we can consider
this an acceleration force being applied. What this means for us is that when a device
such as the MPU-6050 is sitting on your desk, it will be reporting that it is accelerating
downwards.

The practical implication of this is very interesting. If the MPU-6050 is flat on the desk, it
will report an acceleration in its -z direction. If we now were to tilt the device, the
acceleration due to gravity is still present but now the direction of that force will have
changed. The magnitude of the acceleration will remain the same but the
measurements will now show it spread over the x, y and z axises. Working backwards,
by examining the values of the acceleration on the x, y and z axises, we can calculate
the orientation of the device relative to the direction of gravity (i.e. relative to up and
down).

Having just discussed the concept of measurement of acceleration through the notion of
an accelerometer, we can now look at how a gyroscope comes into play. A gyroscope
measures the change in velocity (if at all) of a device rotating around its own axis, A
gyroscope measures changes in angular velocity.

The MPU-6050 combines these to measure both linear acceleration and angular
velocity. The device measures both qualities in the x, y and z axis and hence is
considered a measurement in 6 degrees of freedom (linear acceleration in x, y and z
and angular velocity in x, y and z). The measurement values have a 16 bit resolution.

If our goal is to measure the orientation of the device, we may be able to see that the
orientation can be found by examining the accelerometer values however these values
only result in accurate answers if the device is at rest. If it is moved, then the
acceleration due to movement can produce jittery results. If we look at the gyroscope, if
we start from a known orientation (eg. flat on the desk), then in principle we should also
be able to determine the device's current orientation by adding together all the
gyroscopic changes that have happened to it since its original known (calibrated)
position. Unfortunately, both of these techniques introduce errors. Using the
accelerometer, we can determine our orientation by averaging values over time to
remove jitter. As such, it gives good values over time but poor for short term
measurement. The gyroscope gives us good angular momentum values in the short
term but the errors accumulate over time when we try and calculate the orientation of
the device from its base state by successive addition of delta values. Fortunately, we

Page 310

can combine these two techniques through a variety of algorithms to give us a good
value that is built from the combination of the two measurements.

The MPU-6050 device connects via an I2C bus (default address is 0x68 but can be
changed to 0x69). This is 3.3V device and hence is safe to connect to ESP32 pins
directly.

The device has the following pins exposed from the breakout boards:

Pin Description

VCC 3.3V

GND Ground

SCL I2C Clock

SDA I2C Data

XDA Auxiliary I2C Data

XCL Auxiliary I2C Clock

ADD I2C address selection, either 0x68 or 0x69. Low = 0x68, high = 0x69.

It is not recommend to let this line float. Tie it to the desired signal.

INT

A sample wiring of the device to ESP32 looks as follows:

Page 311

After wiring, if we run an I2C scanner we will see the device:

 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Page 312

Register Offset Name Description

0x3B 0 ACCEL_XOUT_H AccelX High

0x3C 1 ACCEL_XOUT_L AccelX Low

0x3D 2 ACCEL_YOUT_H AccelY High

0x3E 3 ACCEL_YOUT_L AccelY Low

0x3F 4 ACCEL_ZOUT_H AccelZ High

0x40 5 ACCEL_ZOUT_L AccelZ Low

0x41 6 TEMP_OUT_H Temp High

0x42 7 TEMP_OUT_L Temp Low

0x43 8 GYRO_XOUT_H GyroX High

0x44 9 GYRO_XOUT_L GyroX Low

0x45 10 GYRO_YOUT_H GyroY High

0x46 11 GYRO_YOUT_L GyroY Low

0x47 12 GYRO_ZOUT_H GyroZ High

0x48 13 GYRO_ZOUT_L GyroZ Low

Note that the data values are signed 16 bits in big endian format.

To use the I2C protocol, we send the value 0 to register PWR_MGMT_1 (0x6b).

Flag Description

Device Reset [7] Reset the device

Sleep [6] Put the device to sleep

Cycle [5] Cycle between awake and asleep

Temp disable [3] Disable the temperature sensor

Clksel [2:0] Clock source of the devuce

You will sometimes see these devices referred to as Inertial Measurement Units (IMUs).

The value returned from the accelerometer is a raw value. The actual result we want is
measured in gravities (g) which is about 9.81 ms-2. The device has various sensitivities
built in. To get to the real value, we need to divide by a scaling factor as show below:

Page 313

Acceleration
Limit

Sensitivity
Factor

2g 16384

4g 8192

8g 4096

16g 2048

Thus to get the required value from the raw value we would use the equation:

required value= raw value
sensitivity factor

By default, the device is configured for a 2g acceleration limit

Similarly, there is an angular velocity scaling:

Angular
Velocity
Limit

Sensitivity
Factor

250°/s 131

500°/s 65.5

1000°/s 32.8

2000°/s 16.4

Page 314

Technical task … send in accel values X, Y and Z.

See also:

• Accelerometers

• YouTube – ESP32 Technical Tutorials: MPU6050 Accelerometer

• Tilt Sensing Using a Three-Axis Accelerometer

• MPU-6050 Data Sheet

• MPU6050 Register Map and Descriptions

• MPU -6050 Accelerometer + Gyro

• I 2 Cdevlib – MPU -6050

• Filters

• InvenSense – MPU-6050 Home Page

• Gyroscopes and Accelerometers on a Chip

• Using an accelerometer for inclination sensing

• YouTube: MPU-6050 Data with a Complementary Filter

• Digi-Key: How the latest MEMS inertial modules help overcome application development challenges

The math of accelerometers
Our real world is composed of three spatial dimensions. In English we might think of
these as left/right, up/down and in/out (or forward/back). In our math, we will label these
by the common x, y and z. If we want to think about the orientation of something, we
can think of it as the rotation about these axis. We define the rotation around the x axis
as "roll" designated by the symbol "Φ". We define the rotation around the y axis as
"pitch" designated by the symbol "Θ" and finally, we define the rotation around the z axis
as "yaw" designated by the symbol "Ψ". So, to think about the orientation of an object,
we can think about its roll, pitch and yaw.

Axis Name Symbol

x roll Φ

y pitch Θ

z yaw Ψ

Now, let us merge in the notion of how we are going to measure our roll, pitch and yaw.
Assuming no acceleration of our device (I.e it is stationary) then there will be a constant
force on it of 1g in the z axis. So the force measured in the z axis will be 1 and x and y
will both be 0. As we tilt the device from its horizontal orientation, that force will start to
be distributed across multiple axis and not just the z axis. So a tilt will produce a new
measured force value in both x and y. And here comes the magic. The measured force
change is proportional to the roll and pitch angles. But wait, what about the yaw? Well
… if we think about it, a rotation around the z axis does not change the tilt of what we

Page 315

https://www.digikey.com/en/articles/techzone/2017/feb/how-the-latest-mems-inertial-modules-application-development
https://www.youtube.com/watch?v=qmd6CVrlHOM
http://www.analog.com/media/en/technical-documentation/application-notes/AN-1057.pdf
http://www.geekmomprojects.com/gyroscopes-and-accelerometers-on-a-chip/
http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
http://web.mit.edu/~jinstone/Public/filter.pdf
http://www.i2cdevlib.com/devices/mpu6050#source
http://www.i2cdevlib.com/devices/mpu6050#source
http://www.i2cdevlib.com/devices/mpu6050#source
http://www.i2cdevlib.com/devices/mpu6050#source
http://www.i2cdevlib.com/devices/mpu6050#source
http://www.i2cdevlib.com/devices/mpu6050#source
http://playground.arduino.cc/Main/MPU-6050
http://playground.arduino.cc/Main/MPU-6050
http://playground.arduino.cc/Main/MPU-6050
http://playground.arduino.cc/Main/MPU-6050
http://playground.arduino.cc/Main/MPU-6050
http://store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf
http://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
https://www.nxp.com/files/sensors/doc/app_note/AN3461.pdf
https://www.youtube.com/watch?v=HwurH20jsvw
https://www.youtube.com/watch?v=HwurH20jsvw
http://www.hobbytronics.co.uk/accelerometer-info

want to measure. Think of it like this, if we have a perfectly flat table top and place
some marbles on its surface, if we tilt the table left or right, the marbles will roll. If we tilt
it forward or back, the marbles will roll. However, if we are gentle and rotate the table
around its central vertical axis, the marbles will not roll. They will remain in their same
position relative to the table.

Another way to think about this is to hold your cell phone in your hand flat while sitting
on a chair. If you now spin around on your chair, have you changed the "tilt" of your cell
phone? I would say no.

What this means to us is that we can calculate the orientation of our device only by
figuring out the roll and pitch. The yaw becomes immaterial to our story (for just now).

By some math, we can find that:

tan(Φ)=
Gpy

G pz

tan(Θ)=
−Gpx

√ Gpy
2 +Gpz

2

See also:

• Using an Accelerometer for Inclination Sensing

• Understanding Euler Angles

Visualizing orientation
It is all very good getting raw numbers representing the amount and direction of force on
our device against different axis, but triplets of numbers isn't at all intuitive to our ways
of thinking. Instead, what we want is a mechanism to "see" the orientation of the
device. Since orientation is inherently a three dimensional physical consideration, what
we want is to visualize the data as a 3D scene. There are many 3D programming
packages on the Internet with varying degrees of sophistication and capabilities. Since
my belief is that all user interfaces should be browser based as opposed to thick client,
I wanted one that could run in a browser. I also wanted one that is open source. For
this I chose "three.js".

See also:

• three.js

Compass – HMC5883L (aka GY-271) (aka CJ-M49)
In the real world, a compass is a device which can be used to determine the direction of
magnetic north. There are also electronic components that can perform the same task.
One such component is the HMC5883L (which has been superseded by the HMC5983

Page 316

http://threejs.org/
http://www.chrobotics.com/library/understanding-euler-angles
http://www.analog.com/media/en/technical-documentation/application-notes/AN-1057.pdf

but both are compatible with each other). Strictly speaking, the device measures the
intensity of any magnetic field around it. Since field strength is a vector quantity (has
both magnitude and direction), we will be measuring the field strength in the X, Y and Z
axis. The going price for one of these on eBay is about $3.

The calculation of a compass bearing is affected by the relative tilt of the device. What
this means is that if the device is tilted the compass bearing result will be wrong. We
can compensate for this if we know the amount of tilt. This can be calculated from an
MPU-6050.

This is a 3.3V device.

The pin configuration for GY271 is (Left-Right as seen from chip side with connector at
top):

Pin Function

DRDY Data ready/Interrupt

SDA I2C Data line

SCL I2C Clock line

GND Ground

VCC +ve voltage – 3.3V

The pin configuration for the CJ-M49 is (Left-Right as seen from chip side with
connector at top):

Page 317

Pin Function

3V3 +ve voltage – 3.3V

DRDY Data ready/Interrupt

SDA I2C Data line

SCL I2C Clock line

GND Ground

VCC
+5V

+ve voltage – 5V

The module makes its data available via the I2C bus. The I2C address of the device is
0x1E. If we run an I2CScanner we will see the device as being present:

 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1e --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

From I2C there are a set of registers that can be accessed:

Address Description Access

00 Configuration register A Read / Write

01 Configuration register B Read / Write

02 Mode register Read / Write

03 Data output X MSB register Read

04 Data output X LSB register Read

05 Data Output Z MSB register Read

06 Data Output Z LSB register Read

07 Data output Y MSB register Read

08 Data output Y LSB register Read

09 Status register Read

10 Identification register A Read

11 Identification register B Read

12 Identification register C Read

Page 318

Think of the device as having a register cursor. We can move the cursor simply by
sending the id of the register to move to. For example, sending the device 0x03 will
move the cursor to register 3. Subsequent reads will read from the cursor location and
auto-increment the cursor. So moving to register 3 and reading 6 bytes will read the
next 6 register values [0x03-0x08].

Configuration Register A (register 00) is as follows:

Name Bits Description

7 Reserved. Must be 0.

MA 6:5 Averaged samples per measurement:
● 00 = 1 (default)
● 01 = 2
● 10 = 4
● 11 = 8

DO 4:2 Data output rate in measurements/second:
● 000 = 0.75
● 001 = 1.5
● 010 = 3
● 011 = 7.5
● 100 = 15 (default)
● 101 = 30
● 110 = 75
● 111 = Reserved

MS 1:0 Measurement configuration
● 00 – Normal (default)
● 01 – Positive bias
● 10 – Negative bias
● 11 – Reserved

Configuration Register B (register 01) is as follows:

Page 319

Name Bits Description

GN 7:5 Gain values:
● 000 = 1370
● 001 = 1090 (default)
● 010 = 820
● 011 = 660
● 100 = 440
● 101 = 390
● 110 = 330
● 111 = 230

4:0 Reserved. Must be 0.

Mode Register (02)

Name Bits Description

HS 7 High speed I2C control

6:2 Reserved. Must be 0.

MD 1:0 Operating mode:
● 00 = Continuous

● 01 = Single measurement (Default)

● 10 = Idle mode

● 11 = Idle mode

The three identification registers return the ASCII values 'H' (0x48), '4' (0x34) and 'C' or
'H' (0x48), '4' (0x34) and '3' (0x33)

To create an angle in degrees, the following formula can be used:

angle = atan2((double)y,(double)x) * (180 / 3.14159265) + 180; // angle in degrees

The driving logic at a high level is:

Function Description

Write 0x02 Select mode register

Write 0x00 Continuous measurement mode

Write 0x03 Select register 3

Read 6 bytes X, Z, Y value pairs MSB/LSB

we combine MSB and LSB of data with:

Page 320

data[0] << 8 | data[1];

Attachment of the device to ESP32 is particularly easy. As you can see it only needs 4
wires to connect.

Here is a schematic of how an instance of the board may be wired to ESP32.

When we use a compass, the result we usually want is "which way is North". On a real
physical compass, we have a needle that points in that direction and we know our
answer. Through a digital device, what we should expect to get back is an angle that
the device would have to be oriented for it to point North. This assumes that there is a
reference mark on the device from which the angle has meaning.

When experimenting with the device, don't bring strong magnets too close to the device
as it may become magnetized or otherwise damaged.

See also:

• Data sheet

• Sparkfun Tutorial

• Arduino Nano + GY -271 (Digital Compass module) + OLED

• Electrodragon - HMC 5883 L - Three - Axis Compass

• YouTube – ESP32 Technical Tutorials: HMC5883L – Compass

• YouTube – Arduino How To : HMC 5883 L Compass Magnetometer Tutorial

• YouTube – Use the HMC5883L 3-axis sensor with an Arduino – Tutorial

Page 321

https://www.youtube.com/watch?v=HHTf3fFX7aA
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=VVlwIRTiHTQ
https://www.youtube.com/watch?v=4JUnS0wViaQ
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://www.electrodragon.com/w/index.php?title=HMC5883L_Three-Axis_Compass_Magneticfield_Module
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
http://arduino-er.blogspot.com/2015/04/arduino-nano-gy-271-digital-compass.html
https://www.sparkfun.com/tutorials/301
https://www.sparkfun.com/tutorials/301
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/HMC5883L_3-Axis_Digital_Compass_IC.pdf
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/HMC5883L_3-Axis_Digital_Compass_IC.pdf

• YouTube – Let's build an Arduino electronic Compass using the HMC5883L and a Ring of LEDs - Tutorial

• Wikipedia – atan2

• Github – Arduino Library

Tilt compensation of the compass
When the compass module is perfectly planar, it returns a good value but if it is tilted,
then the value is no longer true. Look at the following diagram and imagine your
compass center in a perfect horizontal plane. At that time, there will be no roll and no
pitch. For our purposes, the yaw of the board will be pointing vertically straight up and
we don't care. The value of the compass will be correct. However if the board is tilted
with roll and pitch, then the compass value is no longer accurate. However, given then
value measured from the compass and if we have the values of roll and pitch, we can
compensate and calculate a correct compass value.

Again by looking at the above image, consider an accelerometer. This will measure the
force of gravity and gives us a reference to the orientation of the compass sensor.
When the sensor is horizontal, the acceleration measured will be exclusively down the Z
axis however when the sensor is titled, the acceleration will be distributed across X, Y
and Z and by using math, we can determine the orientation of the board. As a side
note, when the board is horizontal, the compass bearing will be the yaw value.

We will define the following definitions:

Φ – phi Roll (X)

ϴ – theta Pitch (Y)

Ψ – psi Yaw (Z)

Page 322

https://github.com/jrowberg/i2cdevlib
https://en.wikipedia.org/wiki/Atan2
https://www.youtube.com/watch?v=w3Gz472O93s

See also:

• Implementing a Tilt-Compensated eCompass using Accelerometer and Magnetometer Sensors

• Wikipedia: Axes conventions

Real time clocks
When we start an ESP32, it doesn't know what the real time is. We can tell it once
booted but even then, once we power it off, it will forget again. If the ESP32 is
connected to the Internet, it can learn the real time by using a network time protocol.
However, if our ESP32 is not connected to the Internet and is network isolated, by
default, it has no mechanism to know the current time. This is what we can add a real-
time-clock (RTC) module. A real-time clock module is a small piece of electronics that
contains a battery and is taught the current date and time. Because it has an on-board
battery, it can remember the time even when the ESP32 is powered off. When the
ESP32 boots, it can be configured to ask the RTC module for the current date/time and
use that from then on.

There are many RTC modules available but one of the more prevalent is the DS1307.

These can be picked up on eBay for about $1. The RTC uses battery backup when not
powered. This is a standard CR2032 type. When inserting the battery, it is +ve down.
When soldering on header pins, think through how you will mount the board when
complete. It may be that you want to solder the header pins such that you can easily
access and replace the battery once attached to your PCB or strip board.

This device provides a real time clock capability that includes hours, minutes, seconds,
month, day of month, day of week and year. Month calculations including leap year
support are also accommodated. Interestingly, it also provides 56 bytes of non-volatile
RAM. The device uses I2C for communication.

Page 323

https://en.wikipedia.org/wiki/Axes_conventions
http://www.nxp.com/files/sensors/doc/app_note/AN4248.pdf

Note: Before plugging your board to the ESP32, realize that this is a 5V module. If you connect 5V to the ESP32
GPIO pins bad things can happen because they are 3.3V pins. The I2C protocol uses pull-up resistors to bring the
SDA and SCL lines high by default. If we were to look at the schematic diagram of this module we would find that
resistors R2 and R3 are pull-up resistors. Unfortunately, we have two problems. First is that the ESP32 already
pulls up the pins and secondly the module pulls them high to a 5V line which is too much for the ESP32. The
solution is to physically remove these two resistors from your module before use. The resistors are clearly marked
on the board as R2 and R3 and carry the mark 332 (3.3k).

Since the device has battery backup, an interesting question is how long can this
module keep time for? If we examine the data sheet, we find that it consumes 500nA
while running on battery. If we understand that a typical CR2032 battery has a capacity
of 200mAh then, if my math is correct, this works out to be about 45 years … which is
well past the life of the battery itself.

The boards have 5 pins on one side 7 on the other.

Pin Label Description

1 DS DS18B20 Temp.

2 SCL I2C clock.

3 SDA I2C data line.

4 Vcc Vcc (5V).

5 GND Ground.

Pin Label Description

1 SQ Square wave output.

2 DS DS18B20 Temp.

3 SCL I2C clock.

4 SDA I2C data line.

5 VCC Vcc (5V).

6 GND Ground.

7 BAT Battery voltage

Once plugged in, we will see the RTC at I2C address 0x68:

 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Page 324

The device has registers contained within it that are laid out as follows:

Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Function Range

0x00 CH 10 Seconds Seconds Seconds 00-59

0x01 0 10 Minutes Minutes Minutes 00-59

0x02 0 0 – 24 10 hour 10 Hour Hours Hours 1-12
AM/PM
00-23

1 – 12 AM/PM

0x03 0 0 0 0 0 Day Day 01-07

0x04 0 0 10 Date Date Date 01-31

0x05 0 0 0 10 Month Month Month 01-12

0x06 10 Year Year Year 00-99

0x07 OUT 0 0 SQWE 0 0 RS1 RS0 Control

0x08 -
0x3f

RAM 0x00 -
0xFF

The encoding of the data is known as "Binary Coded Decimal" (BCD). Each decimal
digit is encoded as a 4 bit representation. For example, the decimal number "34" would
be encoded as 0011 1000. The first four bits representing "3" and the last four bits
representing "4".

To convert a two digit decimal valued integer to a BCD representation we would use the
expression:

bcdValue = ((num / 10) << 4) | (num%10)

to convert from a BCD to an integer, we would use the expression:

num = (bcdValue >> 4) * 10 + (bcdValue & 0x0f)

In addition to performing the service of a real time clock, this device also provides 56
bytes of battery backed up RAM. While 56 bytes doesn't sound like much, it could be
used to hold fourteen 32 bit integer values or perhaps an SSID/password pair.

Page 325

See also:

• YouTube – ESP32 Technical Tutorials: DS1307 Real Time Clock

• Tutorial – Using DS1307 and DS3231 Real-time Clock Modules with Arduino

• Maxim integrated datasheet

Servos
A servo is a physical movement device similar to an electric motor. Typically, a servo
has a rotation shaft that can rotate from 0 degrees to 180 degrees as a function of the
incoming signal applied to it. If one sets the signal to a specific value, the shaft will
rotate to a specific position as a function of that signal. The actual minimum and
maximum angles are specified by the manufacturer of any particular servo model.

The signal expected by a servo is encoded as Pulse Width Modulation (PWM). One
should always consult the manufacturers data sheet to find the specific values.
However, in general, the story works as follows.

Typically, the period of the PWM is 20 milliseconds. If we think this through, we will
realize that 20ms is 50Hz as there are 50 instances of 20ms periods in 1 seconds
(1000ms). At the start of the period, the duration that the signal is high determines the
rotation of the shaft. For example, it may be defined that there is a minimum value of 1
millisecond and a maximum value of 2 milliseconds. This means that if the signal is
high for 1 millisecond, the shaft rotates to its minimum value. If the signal is high for 2

Page 326

http://datasheets.maximintegrated.com/en/ds/DS1307.pdf
http://tronixstuff.com/2014/12/01/tutorial-using-ds1307-and-ds3231-real-time-clock-modules-with-arduino/
https://www.youtube.com/watch?v=irtxFEZPRrg

milliseconds, the shaft rotates to its maximum value. For high durations between 1 and
2 milliseconds, the shaft rotates proportionally to that duration.

Here is a diagram (not drawn to scale) to illustrate the principle:

Again, it is important to read the data sheet to find the correct values for minimum and
maximum duty cycle widths.

We also need to remember that the voltage output from a ESP32 GPIO pin is 3.3v.
Most of the servos require a signal at the 5v level. This means that we can't directly
drive a servo's data signal input from a ESP32 pin. We will need to employ a logic level
shifter to shift the output PWM signal from 3.3V up to 5V.

If we use the ESP-IDF drivers and we imagine that the minimum duty cycle is 1ms and
the max is 2ms with a period of 20ms, then we see that the range of duty cycle is 1ms
which is 1/20th of the period. This then gives us the granularity of adjustment for the
servos by looking at the different bit sizes available for the PWM timers:

Page 327

Bit Size Granularity (1ms spread) Low (1ms) High (2ms)

10 51 51.2 102.4

11 102 102.4 204.8

12 204 204.8 409.6

13 408 409.6 819.2

14 819 819.2 1638.4

15 1638 1638.4 3276.8

See also:

• LEDC – Pulse Width Modulation – PWM

The Mini/Micro SG90
The mini/micro SG90 servos can be found on eBay for under $2 each. These servos
weight only 9g. They have a stall torque of 1.8kg·cm, operate at 5v, have a speed of
about 0.3 seconds for 180° and have discrete step instances of 10µs. The stalled
current draw on one of these servos is reported to be 600mA.

Color Function

Red Vcc

Brown Ground

Orange PWM

See also:

• Mini/Micro SG90 – Data sheet

Audio

PCM5102 – I2S DAC
This device takes as input an I2S signal and produces an analog audio output.

Page 328

http://www.micropik.com/PDF/SG90Servo.pdf

Pin Function

VCC

3.3V

GND

FLT Filter select

DMP De-emphasis

SCK System clock input

BCK Audio data bit clock input

DIN Audio data in

LCK Audio data word clock input

FMT Audio format selection

XMT Mute control

See also:

• I2S Bus

• Data sheet

Graphic Equalizer
An integrated circuit called the MSGEQ7 is a graphic equalizer. It can operate at 3.3V
or 5V.

If we provide it an audio input signal, it will analyze the signal into 7 discrete frequency
bands of 63Hz, 160Hz, 400Hz, 1KHz, 2.5KHz, 6.25KHz and 16KHz.

The integrated circuit is supplied in an 8 pin configuration with:

Pin Function Description

1 VDDA 3.3-5V power supply

2 VSSA Negative

3 OUT Multiplexed DC Output. This is an analog output value.

4 STROBE Channel selection

5 IN Audio input

6 GND_REF

7 RESET Reset. A high resets the multiplexor, low enables the strobe.

8 CKIN Clock. This is passive component clock circuit.

Page 329

http://www.ti.com/lit/ds/slas764b/slas764b.pdf

VDDA CKIN

VSSA RESET

OUT GND_REF

STROBE IN

Yellow reset - 16

Blue Strobe - 17

Green Out

[3.3V] [GND] [OUT - GREEN – GPIO 36] [STROBE BLUE – GPIO 17] [RESET –
YELLOW - GPIO 16]

The high level of operation is that we apply our audio signal in "IN" pin. Normally, the
RESET pin is low. When it goes high and then low again, the decoding of the signal is
latched. Now we can read data from the "OUT" pin which is an analog value. The
STROBE pin is initially high. When it goes low, we can read the value of OUT. When it
goes high and then low again, we will have stepped onto the next frequency.

A high level algorithm would be:

pinMode(RESET, OUTPUT);
pinMode(STROBE, OUTPUT);
pinMode(OUT, ANALOG);

digitalWrite(RESET, LOW);

Page 330

digitalWrite(STROBE, HIGH);

digitalWrite(RESET, HIGH);
delay(1);
digitalWrite(RESET, LOW);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);
v63hz = analogRead(OUT);
digitalWrite(STROBE, HIGH);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);
v160hz = analogRead(OUT);
digitalWrite(STROBE, HIGH);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);
v400hz = analogRead(OUT);
digitalWrite(STROBE, HIGH);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);
v1000hz = analogRead(OUT);
digitalWrite(STROBE, HIGH);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);
v2500hz = analogRead(OUT);
digitalWrite(STROBE, HIGH);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);
v6250hz = analogRead(OUT);
digitalWrite(STROBE, HIGH);
delay(1);

digitalWrite(STROBE, LOW);
delay(1);
v16000hz = analogRead(OUT);

For an easy wiring solution, breakout modules exist. These provide an MSGEQ7, pin
outs, passive components and signal input sockets on a single board ready to be wired
in.

Page 331

The pins exposed are:

• VCC – Power

• GND – Ground

• RESET – Reset pin (input)

• STROBE – Strobe Pin (input)

• OUT – Analog output

See also:

• Datasheet

• MSGEQ7-Based DIY Audio Spectrum Analyzer: Construction

External networking
It may seem strange to include additional networking hardware interfacing given that the
ESP32 is a first class WiFi and Bluetooth device however there are times when we want
to performing networking which doesn't fit either of those categories. While WiFi and
Bluetooth are great, you may have to interact remotely with devices which don't support
those protocols. A classic example are the cheap nRF24 modules from Nordic. These
devices are reported to easily be able to transmit and receive over 300 feet and hence
become ideal components for longer distance communications.

The nRF24
The nRF24L01 is an extremely cheap communication device. It allows one to transmit
and receive data over large distances (hundreds of feet). It transmits and receives
packets between similar devices. Do not confuse it with WiFi or Bluetooth. You can
transmit from one nRF24 to another nRF24 but not to anything else. There are a

Page 332

http://www.eetimes.com/author.asp?doc_id=1323030
http://www.mix-sig.com/images/datasheets/MSGEQ7.pdf

number of reasons to consider this device for projects over others. First is the very low
cost. An instance of the device can be picked up for less than a dollar. Second is the
peer-to-peer nature of the devices. There does not need to be a master/slave
relationship in the story. In fact, two or more devices can exchange packets with each
other without any of them acting as controllers. There are occasions where this is
exactly what is needed.

The device operates on 3.3V and uses SPI as a protocol. The pin-out on the nRF24L01
is:

Pin Description

Vcc 3.3V

GND Ground

MISO SPI Master In/Slave Out.

MOSI SPI Master Out/Slave In.

SCK SPI System clock.

CSN SPI Chip Select – Enable the device (active low). Normally this will be wired to ground.

CE RX or TX mode. The Data sheet calls this Chip Enable which seems an awfully strange name for a
communication mode selector. CE=1 for transmit while CE=0 for receive.

IRQ Maskable interrupt.

Seen from above, the pins are:

GND VCC

CE CSN

SCK MOSI

MISO IRQ

Page 333

Some of the key specifications of this component include up to 2Mbps transmission rate
and low power consumption. It operates in the 2.4GHz wireless band.

The device operates in a variety of different modes … here is the state transition
diagram for them which taken from the data sheet:

Page 334

The first mode is "Power Down". This is the lowest power mode while still maintaining
state/configuration.

The second mode is called "Standby". Again in this mode it is consuming low amounts
of power but not as much as "Power Down". The difference between this mode and
"Power Down" is how quickly it can begin transmitting and receiving.

The third mode is called "RX". In this state the device is a receiver.

The final mode is called "TX" and is entered when the device is transmitting data.

Page 335

The modes are entered through:

Power Up CE PRIM_RX TX FIFO

Power Down 0 - -

Standby 1 0 -

RX 1 1 1

TX 1 1 0 >0

There are two data transmission rates … 1MBps and 2MBps. It is vital that both the
transmitter and receiver devices use the same data rate.

The communications protocol used by the nRF24 devices is called "Enhanced
ShockBurst". It has a dynamic payload length of between 1 and 32 bytes. What this
means is that a single transmission can can contain a maximum of 32 bytes of payload
data. If we need to transmit additional data, we would send a stream of packets one
after the other. Automatic transaction handling is also provided. We should think of a
transaction as the request from the transmitter to send a packet and have the receiver
pick it up. It is possible that there may be errors in the transmission. The transaction
solution is to hold the transmitted data until there is a positive acknowledgment that the
receiver has actually received it. If that doesn't happen, the transmitter can re-transmit
the packet.

To set the size of the payload of a packet, we have two choices available to us … these
are static and dynamic payload sizes. For the static payload size, the receiver specifies
the size of the payload and the sender must send that size before a transmission is
complete. For dynamic payload, the transmitter can send a variable number of bytes
before that packet is acknowledged as received by the receiver.

Each device has a configurable address. When data is transmitted from one device to
another, the transmitter specifies the address of the receiver. An address can be
between 3 and 5 bytes in length.

Devices communicate on a "channel". Think of this as a specific radio frequency
bandwidth chunk. In order for a transmitter and receiver to talk to each other, they must
both agree on the channel to be used. A channel is 7 bits in length (0 to 127). The
default is channel 2.

The nRF24 has a variety of communication speeds including 1Mbps and 2Mbps.

A Cyclic Redundancy Check (CRC) can be applied to the payload to assist in detection
of transmission errors. The CRC size can be set to be 8 bits or 16 bits.

The transmission power can be adjusted. The more transmission power you request
the more overall power will be consumed and if you are running from batteries, this may
be a consideration. There are four settings:

Page 336

Output power Current consumption

0dBm 11.3mA

-6dbM 9.0mA

-12dBm 7.5mA

-18dBm 7.0mA

A handy little addition to a nRF24 module is a YL-105. This is a connector board that
hosts a nRF24 but also exposes the pins on the top in a line. One of the issues (at least
to me) when working with nRF24s is that they have the pins pointing downwards and I
have to do mental mirror imaging to get things right (and don't always).

The pins are:

• CE

• CSN

• SCK

• MOSI

• MISO

• IRQ

and two further pins for:

• VCC

• GND

When pairing a couple of nRF24s, I find it useful to create a spreadsheet with two
columns; one for each of the devices. We can then validate that the settings necessary
to be paired on both are correct.

Page 337

Attribute Device A Device B

Addr1 TX: RX:

Addr2 RX: TX:

Address Width

RF_CH

Data Rate

CRC Length

Notes:

• The air data rate must be the same on all participants.

• The RF channel frequency must be the same for all participants.

See also:

• Nordic Semi – Home Page

• Data sheet

• SPI – Serial Peripheral Interface

• Tutorial: Ultra Low Cost 2.4 GHz Wireless Transceiver with the FRDM Board

• Julian Ilett #1

• NRF 24 L 01 - How To

• Adding a nRF24L01 to a breadboard or stripboard

• Tutorial 0: Everything You Need to Know about the nRF24L01 and MiRF-v2

• YouTube: Getting started with the nRF24L01

Using the Arduino APIs
An Arduino library for the nRF24 is available called RF24. This library is highly active
and well documented. It appears to be a fork of the RF24 library originally created by
Manicbug. It has a detailed set of documentation including descriptions of all the class
APIs.

A typical flow would be:

RF24 radio(CE_PIN, CSN_PIN);
radio.begin();
radio.setPALevel(RF24_PA_LOW);
radio.openWritingPipe(addressTX);
radio.openReadingPipe(1,addressRX);
// To be a receiver ...
radio.startListening();

To stop being a receiver, call:

radio.stopListening();

Page 338

https://www.youtube.com/watch?v=BjId_6tlYvE
http://www.diyembedded.com/tutorials/nrf24l01_0/nrf24l01_tutorial_0.pdf
http://neilkolban.com/tech/attaching-an-nrf24-to-a-breadboard/
http://arduino-info.wikispaces.com/Nrf24L01-2.4GHz-HowTo
http://arduino-info.wikispaces.com/Nrf24L01-2.4GHz-HowTo
http://arduino-info.wikispaces.com/Nrf24L01-2.4GHz-HowTo
http://arduino-info.wikispaces.com/Nrf24L01-2.4GHz-HowTo
http://arduino-info.wikispaces.com/Nrf24L01-2.4GHz-HowTo
http://arduino-info.wikispaces.com/Nrf24L01-2.4GHz-HowTo
https://www.youtube.com/watch?v=wlhuO82IZjQ
https://www.youtube.com/watch?v=wlhuO82IZjQ
https://www.youtube.com/watch?v=wlhuO82IZjQ
http://mcuoneclipse.com/2013/07/20/tutorial-ultra-low-cost-2-4-ghz-wireless-transceiver-with-the-frdm-board/
http://www.nordicsemi.com/eng/nordic/download_resource/8041/1/45549471
http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01

Since there are only two modes, a receiver and a transmitter, when one stops being a
receiver, one immediately becomes a transmitter.

To determine if there is data available to receive, call:

radio.available()

To read data, we can call:

radio.read(&buffer, length);

To write, we can call:

radio.write(&buffer, length);

The library comes with some samples.

• GettingStarted – Two devices. One can act as the transmitter and one as the
receiver. They can be flipped around through user input from the serial port.

Before the library can be used, an instance of it must be constructed. The constructor
looks as follows:

RF24(cePin, csPin)

The Arduino pins for ce and cs need not be fixed and hence we must instruct the library
as to which pins we actually used. Take care that when an instance is created you
specify the pins in the correct order as there is no guard against that.

Before any other functions can be called, we must call begin(). This perform the
initialization of the device plus sets defaults for many of the operational parameters.

Every device has an address associated with it. This allows a transmission from one
source device to be addressed to a specific destination device. When a transmission
occurs, devices other than the one with the matching address will ignore the
transmission. The device requires the size of the address to be supplied and fixed. The
allowable address sizes are 3, 4 or 5 bytes. The default is 5 bytes. The size of the
address can be changed with the setAddressWidth() method however you are unlikely
going to want to change the default value. You must remember to supply the full data
for the address. For example, don't set an address of "123" when the address size is 5
bytes as your device address will become "123<?><?>" and you will likely waste time
trying to find out why no data is coming to you.

At this point, we must consider what we are going to do with the device from here on.
The device has two modes of operation. It can transmit data or it can receive data but it
can't do both simultaneously.

Let us look first at being a transmitter. First we create a "pipe" over which the data will
flow. We supply the address of the destination.

Page 339

openWritingPipe(const unit8_t *address)

For example:

unit8_t address = "1Node";
openWritingPipe(address);

We are now ready to actually transmit some data.

bool write(const void *data, uint8_t length);

This method will transmit the data pointed to by the data pointer for the number of bytes
supplied in length. There is a maximum size as specified by the getPayloadSize()
method and you should not exceed that. The method will block until the data has been
transmitted or the transmission request has timed out. The time out is short, about
70ms so you won't block for long. Upon return from the method call, we can determine
whether the transmission was successful or if it failed. A return value of true means we
succeeded while false means as failure.

The device has a maximum transmission size that is 32 bytes. You can not transmit
packets larger than this. The default maximum transmission set in the library is 32
bytes which is the maximum that the device will permit. You can change this with the
setPayloadSize() method but it is unlikely you will need that function. Simply
remember that we can not ever send a payload size greater than 32 bytes.

The other mode of the device is that of a receiver where we actually listen for incoming
data. As mentioned, the device can either be in transmit mode or receive mode.

To receive incoming data, we need to supply the address of the device from which we
are expecting incoming data to arrive. We do this using the openReadingPipe() method.

openReadingPipe(uint8_t number, const uint8_t *address)

Once we have specified the address of the transmitting device we will receive data
from, we can start actively listening using the startListening() method. Should we
wish to end listening mode, we can call the stopListening() method which will return
us to transmission mode.

Once we have entered listening mode, we can ask the library if there is data available
for us to read. The method for this is available(). If there is data available, the return
value is true and false otherwise.

To actually read the data that was received, we can use the method called read().

read(void *buf, uint8_t len)

This method supplies a buffer into which the received data will be stored. The length of
the buffer is also supplied.

A debug file called printDetails() is provided which logs the state of the nRF24 to the
stdout. In order to use this one must:

Page 340

• Include <printf.h>

• Call printf_begin()

When the printDetails() function is then called, a status of the nRF24 is written to the
Serial port. This can be a powerful tool for debugging problems. Here is an example of
the output:

STATUS = 0x0e RX_DR=0 TX_DS=0 MAX_RT=0 RX_P_NO=7 TX_FULL=0
RX_ADDR_P0-1 = 0x0045444f4e 0x0045444f4e
RX_ADDR_P2-5 = 0xc3 0xc4 0xc5 0xc6
TX_ADDR = 0x0045444f4e
RX_PW_P0-6 = 0x20 0x20 0x00 0x00 0x00 0x00
EN_AA = 0x3f
EN_RXADDR = 0x02
RF_CH = 0x4c
RF_SETUP = 0x03
CONFIG = 0x0f
DYNPD/FEATURE = 0x00 0x00
Data Rate = 1MBPS
Model = nRF24L01+
CRC Length = 16 bits
PA Power = PA_LOW

The complete API can be found documented at the project's web site but here is a quick
summary:

Page 341

Method Notes

bool begin()

void startListening() Enter receiving mode.

void stopListening() Enter transmitting mode.

bool available() Returns true if there is data available to be read.

void read(
 void *buf,
 uint8_t len)

Read data.

bool write(
 const void *buf,
 uint8_t len)

One must call stopListening() before writing.

void openWritingPipe(
 const uint8_t *address)

Write data.

void openReadingPipe(
 uint8_t number,
 const uint8_t *address)

void setAddressWidth(
 uint8_t addressWidth)

void setRetries(
 uint8_t delay,
 uint8_t count)

void setChannel(uint8_t channel)

uint8_t getChannel()

void setPayloadSize(uint8_t size)

uint8_t getPayloadSize()

uint8_t getDynamicPayloadSize()

void enableAckPayload()

void enableDynamicPayloads()

void enableDynamicAck()

bool isPVariant()

void setAutoAck(bool enable)

void setAutoAck(uint8_t pipe,
 bool enable)

void setPALevel(uint8_t level)

uint8_t getPALevel(void)

bool setDataRate(
 rf24_datarate_e speed)

Values of the enumeration are:
• RF24_1MBPS
• RF24_2MBPS
• RF24_250KBPS

rf24_datarate_e getDataRate() Values of the enumeration are:
• RF24_1MBPS

Page 342

• RF24_2MBPS
• RF24_250KBPS

void setCRCLength(
 rf24_crclength_e length)

Values of the enumeration are:
• RF24_CRC_DISABLED
• RF24_CRC_8
• RF24_CRC_16

rf24_crclength_e getCRCLength() Values of the enumeration are:
• RF24_CRC_DISABLED
• RF24_CRC_8
• RF24_CRC_16

void disableCRC()

void maskIRQ(
 bool txOk,
 bool txFail,
 bool rxReady)

void printDetails()

Here is an example breadboard layout:

Page 343

Arduino pin nRF24 Function Color code

Pin 13 SPI CLK

Pin 12 MISO

Pin 11 MOSI

Pin 8 CSN

Pin 7 CE

3v3 3v3

GND GND

Here is a sample to have an Arduino read data from the device:

#include <SPI.h>
#include <printf.h>
#include "RF24.h"

RF24 radio(7,8);

byte addressrx[5] = {0x11, 0x22, 0x33, 0x44, 0x55};

void setup() {
 Serial.begin(115200);

 radio.begin();
 radio.setPALevel(RF24_PA_HIGH);
 radio.setChannel(0x4c);
 radio.setCRCLength(RF24_CRC_8);
 radio.setDataRate(RF24_2MBPS);
 radio.setAddressWidth(5);
 radio.setRetries(5,15);
 radio.enableDynamicPayloads();
 radio.openReadingPipe(1,addressrx);
 radio.startListening();
 printf_begin();
 radio.printDetails();
} // End of setup

void loop()
{
 if (radio.available()){
 Serial.print("Size of payload is ");
 Serial.println(radio.getDynamicPayloadSize());
 while (radio.available()) {
 char buffer[33];
 uint8_t length = radio.getDynamicPayloadSize();
 radio.read(buffer, length);
 buffer[length] = 0;
 Serial.print("Received: ");
 Serial.println(buffer);
 }

Page 344

 }
} // End of Loop

See also:

• Github project – tmrh20.github.io

• Github project – source code

• Project Blog

• Forum thread

Integrating the nRF24 with the ESP32
Our goal will be to have the ESP32 interact with "something else" using nRF24
technology. This means that we will need two environments. One for our ESP32 and
one for "something else". We could use two ESP32s but I tend to go for the simplest
environments where possible. In addition, while we are developing and testing
solutions, it is a good idea to have at least one known/reference environment. If we
were working exclusively on the ESP32 and introduced an error it is likely that error
would be on both environments and would either cancel each other out or result in
something extremely difficult to diagnose.

As such, I recommend a simple Arduino environment with an attached nRF24. We can
use a simple sketch on the Arduino that will listen for incoming network traffic and log it
as it arrives. This then allows us to write the ESP32 side of the story and validate that it
is working. If all is working, we will see ESP32 transmitted data arrive on the Arduino.

Here is an example ESP32 application.

#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <RF24.h>

#include "sdkconfig.h"

static char tag[] = "test_nrf24";

extern "C" {
 void task_test_nrf24(void *ignore);
}

void task_test_nrf24(void *ignore) {
 RF24 rf24(25,15);
 rf24.begin();
 rf24.setPALevel(RF24_PA_HIGH);
 rf24.setChannel(0x4c);
 rf24.setCRCLength(RF24_CRC_8);
 rf24.setDataRate(RF24_2MBPS);
 rf24.setAddressWidth(5);
 rf24.setRetries(5,15);

Page 345

http://forum.arduino.cc/index.php?topic=231294.0
http://tmrh20.blogspot.com/2014/03/high-speed-data-transfers-and-wireless.html
https://github.com/nRF24/RF24
http://tmrh20.github.io/RF24/index.html

 rf24.enableDynamicPayloads();

 rf24.printDetails();

 uint8_t txAddress[5] = {0x11, 0x22, 0x33, 0x44, 0x55};
 rf24.openWritingPipe(txAddress);
 rf24.write("123", 3);
 ESP_LOGD(tag, "Transmitted data");

 ESP_LOGD(tag, "test done");
 vTaskDelete(NULL);
}

and here is a corresponding example Arduino sketch:

#include <SPI.h>
#include <printf.h>
#include "RF24.h"

RF24 radio(7,8);

byte addressrx[5] = {0x11, 0x22, 0x33, 0x44, 0x55};

void setup() {
 Serial.begin(115200);

 radio.begin();
 radio.setPALevel(RF24_PA_HIGH);
 radio.setChannel(0x4c);
 radio.setCRCLength(RF24_CRC_8);
 radio.setDataRate(RF24_2MBPS);
 radio.setAddressWidth(5);
 radio.setRetries(5,15);
 radio.enableDynamicPayloads();
 radio.openReadingPipe(1,addressrx);
 radio.startListening(); // Become a receiver.
 printf_begin();
 radio.printDetails();
} // End of setup

void loop()
{
 if (radio.available()){
 Serial.print("Size of payload is ");
 Serial.println(radio.getDynamicPayloadSize());
 while (radio.available()) {
 char buffer[33];
 uint8_t length = radio.getDynamicPayloadSize();
 radio.read(buffer, length);
 buffer[length] = 0;
 Serial.print("Received: ");
 Serial.println(buffer);
 }
 }
} // End of Loop

Page 346

When we run these, a message is sent from the ESP32 to the Arduino.

Now let us look at how to build an environment for running nRF24 on the ESP32. First,
please realize that the library selected is based on C++. As such, you should be
comfortable working in both C and C++ environments. In addition, since the nRF24
library from GitHub doesn't yet understand the ESP32 environment, we will have to
augment the functions currently present with ESP32 logic. Rather than re-invent the
wheel, we use classes from the example C++ ESP32 classes found here:

https://github.com/nkolban/esp32-snippets

Lets begin.

• Create a new ESP-IDF template application.

• Create a components directory.

• In the components directory, symbolic link to the cpp_utils

• In the components directory, download the nRf24 library

$ git clone https://github.com/nRF24/RF24.git

• In the RF24 directory, create a file called component.mk that includes:

COMPONENT_ADD_INCLUDEDIRS=.
COMPONENT_SRCDIRS=. utility/ESP_IDF

• Create the file called components/RF24/utility/includes.h which contains:

#ifndef __RF24_INCLUDES_H__
#define __RF24_INCLUDES_H__

#define RF24_ESP_IDF
#include "ESP_IDF/RF24_arch_config.h"
#include "ESP_IDF/RF24_ESP_IDF.h"
#include "ESP_IDF/NRF24_spi.h"
#endif

• Copy in the esp32-snippets/hardware/utility/ESP_IDF directory

And that's it.

Programming using Eclipse
Eclipse is a popular open source framework primarily used for hosting application
development tools. Although primarily geared for building Java applications, it also has
first class C and C++ support. At the time of writing, the currently available release of
Eclipse is called "Neon".

Page 347

https://github.com/nkolban/esp32-snippets

Let us now look at how we can setup an Eclipse environment for an ESP-IDF template
application.

1. Start with ESP-IDF installed and the environment variable IDF_PATH defined.

2. Make a directory called workspace and change into it.

$ mkdir workspace
$ cd workspace

3. Clone the template app into the workspace folder

git clone https://github.com/espressif/esp-idf-template.git myapp

4. Run the make menuconfig command to create the sdkconfig file.

$ cd myapp
$ make menuconfig
$ cd ..

5. Launch Eclipse.

6. When prompted for the workspace, provide the directory you just created

7. Switch to the C/C++ Perspective

Page 348

8. Create a new empty C project with the same name as your project (eg. myapp).

Page 349

9. Open up the project properties and visit C/C++ Build. Change the settings to
look as follows:

Page 350

10. In the global properties set C/C++ > Build > Environment add two variables
called IDF_PATH and PATH as shown:

Page 351

The IDF_PATH variable points to the root of your ESP-IDF installation and the path PATH
is augmented to point to the Xtensa ESP32 tool chain.

11. Open the properties dialog called C/C++ General > Paths and Symbols and add
the following:

Page 352

Also … components/tcpip_adapter/include

Also … components/lwip/include/lwip

Also … components/spi_flash/include

What this does is tell the Eclipse tooling where to go look for include directories to
satisfy the inclusions from the C source files.

12.Add a build target for the Makefile called all:

Page 353

13.Run Build Targets > all:

Page 354

This causes the Makefile for the project to be run and the compilation proceeds.

14.Examine the console.

We should see a clean build.

And with that you have build a binary. Now if you edit the source files and re-build the
Makefile target called "all", only the changed files will be shown. Should there be a
compilation error, we will see them all highlighted in the console, in the code and in the
project explorer. Double clicking in the console will take us to the associated source file
and line within that source file.

Page 355

You can also add other build targets such as:

• flash – To perform a flash of your application against your ESP32.

• clean – To clean the current build.

Short cuts are also available for some of the more common tasks. For example:

• F9 – Will re-execute the last build you performed.

• The menu bar entry will perform a "make all".

Here are some additional Eclipse tips I recommend:

• By default, any changed files are not saved before building. I often find I make a
change and rebuild and test only to find no difference in execution only to realize

Page 356

that what I built did not include my changes because I hadn't saved the source
file. We can automate the saving of source files before a build by setting the
preferences entry in General > Workspace and checking "Save automatically
before build":

• Install the Eclipse Path Tools package.

• The primary editor font and font size can be changed at the preferences setting
located at General > Appearance > Colors and Fonts | C/C++ > Editor >
C/C++ Editor Text Font and then clicking "Edit…":

Page 357

My personal preference is "Liberation Mono" at 11pt.

Installing the Eclipse Serial terminal
Note: My retests of this crash Eclipse. I have since switched to opening a shell within
Eclipse and running minicom within the shell.

Although there are many excellent serial terminals available as stand-alone Windows
applications, an alternative is the Eclipse Terminal which also has serial support. This
allows a serial terminal to appear as a view within the Eclipse IDE. It does not come
installed by default but the steps to add are not complex.

First start Eclipse (I use the Luna release).

Go to Help > Install new software...

Select the eclipse download repository.

Select General Purpose Tools > TM Terminal via Remote API Connector Extensions

Page 358

Step through the following sections and when prompted to restart, accept yes.

We are not ready to use it yet, we must add serial port support into Eclipse.

Go back to Help > Install new software and add a new repository

Page 359

The repository URL is:

• http://archive.eclipse.org/tm/updates/rxtx/

Now we can select the Serial port run-time support library:

Page 360

http://archive.eclipse.org/tm/updates/rxtx/

Follow through the further navigation screens and restart Eclipse when prompted.

We now have terminal support installed and are ready to use it. From Windows > Show
View > Other we will find a new category called "Terminal".

Page 361

Opening this adds a Terminal view to our perspective. There is a button that will allow
us to open a new terminal instance that is shown in the following image:

Clicking this brings up the dialog asking us for the type of terminal and the properties.
For our purposes, we wish to choose a serial terminal. Don't forget to also set the port
and baud rate to match what your ESP8266 uses.

Page 362

After clicking OK, after a few seconds we will see that we are connected and a new
disconnect icon appears:

And now the terminal is active.

You can invert the colors to produce a white on black visualization which many users
prefer.

Web development using Eclipse
Eclipse also provides a first class web development environment for writing and testing
web apps including HTML pages. It is suggested that the Eclipse Web Developer Tools
be installed.

Page 363

Programming using the Arduino IDE
Long before there was an ESP8266 or ESP32, there was the Arduino. A vitally
important contribution to the open source hardware community and the entry point for
the majority of hobbyists into the world of home built circuits and processors.

One of the key attractions about the Arduino is its relative low complexity allowing
everyone the ability to build something quickly and easily. The Integrated Development
Environment (IDE) for the Arduino has always been free of charge for download from
the Internet. If a professional programmer were to sit down with it, they would be
shocked at its apparent limited capabilities. However, the subset of function it provides
compared to a "full featured" IDE happen to cover 90% of what one wants to achieve.
Combine that with the intuitive interface and the Arduino IDE is a force to be reckoned
with.

Here is what a simple program looks like in the Arduino IDE:

In Arduino parlance, an application is termed a "sketch". Personally, I'm not a fan of that
phrase but I'm sure research was done to learn that this is the least intimidating name

Page 364

for what would otherwise be called a C language program and that would intimidate the
least number of people.

The IDE has a button called "Verify" which, when clicked, compiles the program. Of
course, this will also have the side-effect that it will verify that the program compiles
cleanly … but compilation is what it does. A second button is called "Upload" that, when
clicked, what it does is deploy the application to the Arduino.

In addition to providing a C language editor plus tools to compile and deploy, the
Arduino IDE provides pre-supplied libraries of C routines that "hide" complex
implementation details that might otherwise be needed when programming to the
Arduino boards. For example, UART programming would undoubtedly have to set
registers, handle interrupts and more. Instead of making the poor users have to learn
these technical APIs. the Arduino folks provided high level libraries that could be called
from the sketches with cleaner interfaces which hide the mechanical "gorp" that
happens under the covers. This notion is key … as these libraries, as much as anything
else, provide the environment for Arduino programmers.

Interesting as this story may be, you may be asking how this relates to our ESP32
story? Well, a bunch of talented individuals have built out an Open Source project on
Github that provides a "plug-in" or "extension" to the Arduino IDE tool (remember, that
the Arduino IDE is itself free). What this extension does is allow one to write sketches in
the Arduino IDE that leverage the Arduino library interfaces which, at compile and
deployment time, generate code that will run on the ESP32. What this effectively
means is that we can use the Arduino IDE and build ESP32 applications with the
minimum of fuss.

Mapping from the Arduino to the ESP32
Obviously, an Arduino is not the same thing as an ESP32 and as such, assumptions
about the Arduino hardware don't map to the same things on the ESP32.

Page 365

Here we discuss some of the distinctions:

• I2C and the Wire library – The default pins on the ESP32 for the I2C and Wire
library are GPIO21 for SDA and GPIO22 for SCL.

Implications of Arduino IDE support
The ability to treat an ESP32 as though it were "like" an Arduino is a notion that I haven't
been able to fully absorb yet. ESP32 is a Tensilica CPU unlike the Arduino which is an
ATmega CPU. Espressif have created dedicated and architected API in the form of
their SDK for directly exposed ESP32 APIs. The Arduino libraries for ESP32 seem to
map their intent to these exposed APIs. For these reasons and similar, one might argue
that the Arduino support is an unnecessary facade on top of a perfectly good
environment and by imposing an "alien" technology model on top of the ESP32 native
functions, we are masking access to lower levels of knowledge and function. Further,
thinking of the ESP32 as though it were an Arduino can lead to design problems. For
example, the E needs regular control in order to handle WiFi and other internal actions.
This conflicts with the Arduino model where the programmer can do what he wants
within the loop function for as long as he wants.

The flip side is that the learning curve to get something running on an Arduino has been
shown to be extremely low. It doesn't take long at all to get a blinky light going on a
breadboard. With that train of thought, why should users of the ESP8266/ESP32 be
penalized for having to install and learn more complex tool chains and syntax to achieve
the same result with more ESP8266/ESP32 oriented tools and techniques? The name
of the game should be to allow folks to tinker with CPUs and sensors without having to
have university degrees in computing science or electrical engineering and if the price

Page 366

one pays to get there is to insert a "simple to use" illusion then why not? If I build a
paper airplane and throw it out my window … I may get pleasure from that. A NASA
rocket scientist shouldn't scoff at my activities or lack of knowledge of aerodynamics …
the folded paper did its job and I achieved my goal. However, if my job was to put a
man on the moon, the ability to visualize the realities of the technology at the "realistic"
level becomes extremely important.

Installing the Arduino IDE with ESP32 support
The Arduino IDE support for ESP32 can be found on Github here.

https://github.com/espressif/arduino-esp32

As of October 2016, this is an extremely new component and is still in the process of
baking so be gentle with it.

First we download and install an Arduino IDE at 1.6.9 or later. We then follow the
installation/configuration instructions which are:

1. Enter the Arduino installation directory

2. Change into the "hardware" directory:

$ cd hardware

3. Make a directory called "espressif":

$ mkdir espressif

4. Change into the "espressif" directory:

$ cd espressif

5. Download the ESP32 package for Espruino:

$ git clone https://github.com/espressif/arduino-esp32.git esp32

6. Change into the "esp32/tools" directory:

$ cd esp32/tools

7. Run the supplied "get.py" script

Page 367

https://github.com/espressif/arduino-esp32

$ python get.py

8. Start Arduino

9. Pick "ESP32 Dev Module" from the Boards:

Using the Arduino libraries as an ESP-IDF component
Now comes the capability that excites me the most. By now we should be fully
appreciative of the capabilities provided by the ESP-IDF and realize that it is component
driven. This means that as we need functions, we can "drop them in" as components as
long as they conform to the governance rules of the ESP-IDF.

The Arduino libraries can be used as an ESP-IDF component.

Let that sink in for a few moments. What this effectively means is that all the functions
provided by the Arduino ESP32 libraries are available to us in our "normal" ESP-IDF
applications. This is huge!! It opens up a world of possibilities for us.

Now let us look at how we go about using the Arduino libraries in our project. Let us
imagine that we have created a new ESP-IDF template application by using:

$ git clone https://github.com/espressif/esp-idf-template.git myapp

Now we want to perform this recipe:

1. Create a new directory called "components" in the app directory.

$ mkdir components

2. Change into the components directory.

$ cd components

3. Install the Arduino-ESP32 library relative to here by performing a Github Clone:

$ git clone https://github.com/espressif/arduino-esp32.git

And that's it!! We can now build our sample application as normal.

Page 368

Tips for working in the Arduino environment
Remember that the Arduino environment is two things. First, an actual application that
you install on your machine providing the Arduino IDE. Second, a set of libraries that
model those available to an actual Arduino device which are mapped to ESP*
capabilities. With that in mind, here are some hints and tips that I find useful when
writing Arduino sketches for an ESP32 environment.

Initialize global classes in setup()
Within an Arduino sketch, we have a pre-supplied function called setup() that is called
only once during ESP32 boot-up. Within this function, you perform one time
initialization functions. In C++, we have the ability to create class instances globally.
For example:

MyClass myClass(123);

void setup() {
// Some code here

}

instead of this, use the following:

MyClass *myClass;

void setup() {
myClass = new MyClass(123);
// Some code here

}

This of course changes your variable's data type. It went from being an instance of
MyClass to being a pointer to an instance of MyClass which means that you might have
to change other aspects of your program … but the reason for this is that in the first
case, the constructor for your MyClass instance ran outside of the setup() and we can't
say what state the environment might have been in at that point. Within the setup()
code, we have a reasonable expectation of the environment context.

Invoking Espressif SDK API from a sketch
• There is nothing to prevent you from invoking Espressif SDK API from within your

sketch. You must include any include files that are necessary. Here is an
example of including "XXXX.h".

• extern "C" {
 #include "XXXX.h"
}

Page 369

Notice the bracketing with the C++ construct that causes the content to appear as
though it were being defined in a C program.

Reasons to consider using Eclipse over Arduino IDE
As previously mentioned, there is no question that the Arduino IDE is much more
friendly and consumable that the professional Eclipse environment for folks new to the
area. There doesn't appear to be anything that one can't build using the Arduino IDE
that would mean one would have to switch to Eclipse. So why then would one ever
consider using Eclipse?

There is a trade-off between ease of use and richness of function. For example, Eclipse
has built in syntax assistance, error checking, code cross references, refactoring and
much more. None of these things are "essential" but any one of them can be
considered to make a programming job easier if and when needed. If I need to rename
a variable, in Arduino IDE I have to manually find and replace each occurrence. In
Eclipse, I can re-factor the variable using a built-in wizard and the IDE does the work for
me. As another example, if I can't remember the syntax for a method, in Arduino IDE I
would go to the web and look it up while in Eclipse I could type the name of the method
and hover my mouse over it and the tooling will show me the possible options for the
parameters.

Programming with JavaScript
JavaScript is a high level interpreted programming language. Some of its core
constructs are loose typing, object oriented, support of lambda functions, support of
closures and, most importantly, has become the language of the web. If one is writing a
browser hosted application, then it is a certainty that it will be written in JavaScript. But
what of non-browser environments? For a while now JavaScript has been moving into
server side code through projects such as Node.js. As a language for running server
code, it has a significant set of features to realize this capability. Specifically, it supports
an event driven architecture paradigm. In JavaScript, we can register functions to be
called back upon events being detected. These callbacks can be defined as simple in-
line functions on what to do. In these made up examples, we illustrate this:

httpServer.on("/path1", function() {
 // Do something for /path1
 httpServer.send(response);
});

or

socket.accept(port, function(newSocket) {
 newSocket.on("receive", function(data) {

Page 370

 print("We received new data: " + data);
 newSocket.send("We got the data", function() {
 newSocket.close();
 });
 });
});

And if we can implement a good JavaScript model, it maps excellently to the ESP32
model of the world which is itself event driven via callbacks. This mapping won't be
easy … but plans are afoot.

The Duktape and Jerry Script engines provide excellent access to standard JS run-
times. In addition Espruino is an open source project to provide a JavaScript run-time
for embedded devices. It has been implemented for the ARM Cortex M3/M4 processors
and others.

The question now is … can these be used for the ESP32? Active projects are
attempting to do just that.

See also:

• ESP32-Duktape
• Espruino

Duktape
Duktape is an open source implementation of JavaScript written exclusively in highly
portable C with minimal footprint or requirements. It lends itself extremely well to
running in embedded systems such as an ESP32.

Being open source, one wondered if it would be able to build as an ESP-IDF component
and … yes it does. A project is now under way to provide a distribution.

The core pattern for usage is:

1. Create a context

2. Evaluate JavaScript

3. Delete the context

We create a context by calling duk_create_heap_default().

To evaluate a JavaScript string, we call duk_eval_string().

To delete the context we call duk_destroy_heap().

See also:

• duktape.org

• duktape API reference

Page 371

http://duktape.org/api.html
http://duktape.org/
http://www.espruino.com/
https://github.com/nkolban/duktape-esp32

Compiling code
The JavaScript that is to be run can be executed in a variety of ways:

• duk_eval – Evaluate code on the stack.

• duk_compile – Compile code on the stack and leave it there as a function to be
called.

• duk_compile_lstring – Compile a string representation of JavaScript with a
specific length.

• duk_compile_file – Compile a file containing JavaScript.

• duk_compile_lstring_filename –

• duk_compile_string – Compile a NULL terminated string.

• duk_compile_string_filename – Compile a source file who's identity is on the
stack.

To invoke the code, we can either use one of the duk_eval() functions which compiles
and executes or else we can compile and then invoke with duk_call().

Building for ESP32
To our absolute delight, Duktape compiled first time using the ESP-IDF environment
without any issues at all.

Integrating Duktape in an ESP32 application
To use Duktape in a C program we must include "duktape.h".

We create a context for our JavaScript execute environment using
duk_create_heap_default().

The Duktape stack
To work with Duktape C API is unusual relative to some other programming languages
and concepts. It is based on a solid understanding of stack processing concepts such
as push and pop and the stack frame in which we are working.

Working with object properties
Imagine we wish to set a property on an object. First we push that object onto the
stack. Next we push the name and then the value onto the stack. Finally we call
duk_put_prop() and here is where the magic happens. The top two items are popped

Page 372

from the stack and considered to be the name and value. Next, the object given by its
location on the stack from the top has a property created on it given by name and set to
the value given by value. There are variants of this function including:

• duk_put_prop – Pop the top 2 items and use as name and value.

• duk_put_prop_index – Pop the value from the stack and set to the property with a
supplied index.

• duk_put_prop_string – Pop the value from the stack and set to the property with
the supplied name.

Let us imagine that we want to create a new object with properties. We would do this
by:

duk_idx_t objIdx = duk_push_object(ctx);
duk_push_string(ctx, "Hello world");
duk_put_prop_string(ctx, objIdx, "greeting");

The result will be a new object on the stack with the new property.

We can retrieve values from the stack with duk_get_???() functions. These are non-
destructive retrievals.

Calling C from a JavaScript program
We can call native C function from a Duktape script. The functions must conform to the
syntax:

duk_ret_t myFunction(duk_context *ctx) {
 return 0;
}

A return of 1 means the top of the stack is to be interpreted as a return value.

A return of 0 means that there is no return value and undefined is returned to the caller.

A negative value means an error and should map to DUK_RET_???.

To add a global function we would call:

duk_push_global_object(ctx); // Push the object into which we are going to set the
function.
duk_push_c_function(ctx, myFunction, argCount); // Push the function onto the stack.
duk_put_prop_string(ctx, -2, "<functionName>"); // Set the object at top-2 to have a
new function property.

Page 373

JerryScript
JerryScript is an open source implementation of JavaScript written exclusively in C with
minimal footprint or requirements. It lends itself extremely well to running in embedded
systems such as an ESP32.

Being open source, one wondered if it would be able to build as an ESP-IDF component
and … yes it does. A project is now under way to provide a distribution.

See also:

• jerryscript.net

• JerryScript & IoT.js: JavaScript for IoT from Samsung

• JerryScript mailing list

• Zephyr OS

• IoT-JS

Platform specific files
When porting JerryScript to a new platform such as the ESP32, there are certain files
that are environment specific. These can be found in the <root>/targets directory.
The default directory has proven to work just fine. The functions that have to be
implemented are:

• jerry_port_fatal – Handle an error from which JerryScript can't recover.

• jerry_port_console – Print to the console.

• jerry_port_log – Display or log diagnostics. The options levels are:

◦ JERRY_LOG_LEVEL_ERROR –

◦ JERRY_LOG_LEVEL_WARNING –

◦ JERRY_LOG_LEVEL_DEBUG –

◦ JERRY_LOG_LEVEL_TRACE –

• jerry_port_get_time_zone –

• jerry_port_get_current_time –

JerryScript life-cycle
To run a JerryScript JavaScript program we go through a life cycle that starts with a call
to jerry_init(). If we have a buffer that holds the JavaScript source, we then parse
that source to create the environment suitable for execution. We do this by calling
jerry_parse(). When we wish to run the code, we call jerry_run(). To cleanup we
call jerry_release_value() against the parsed code and finally jerry_cleanup().

Page 374

http://iotjs.net/
https://github.com/01org/zephyr.js
https://mail.gna.org/listinfo/jerryscript-dev
https://www.infoq.com/news/2015/08/iotjs-jerryscript-samsung
http://jerryscript.net/api-example/

To interpret code, we have an API call jerry_eval() which takes a string of JavaScript
and interprets it in the current context. The return is the value of the evaluation which
may indicate an error has occurred.

Accessing the global environment
There is a special object that represents the full environment. We can obtain this
through a call to jerry_get_global_object().

The jerry_value_t
The data type called jerry_value_t is the data type that references a JavaScript value.
It can refer to:

• boolean

• number

• null

• object

• string

• undefined

We can create a jerry_value_t representing a string by creating one using a C NULL
terminated string. For example:

jerry_value_t name = jerry_create_string((const jerry_char_t *)"John");

We can create a new object instance using jerry_create_object(). Given an object,
we can set a property within that object using jerry_set_property().

A jerry_value_t variable has a reference counter on it. Be sure and call
jerry_release_value() when you no longer need a reference to it.

A value also has an error flag which can be checked with
jerry_value_has_error_flag().

Handling errors
Errors encountered while parsing or running result in a jerry_value_t which has an
error flag associated with it. We can check that error flag with a call to
jerry_value_has_error_flag(). It is common that the resulting jerry_value_t
corresponds to an object that has two properties:

Page 375

• name – The identity (name) of the error … for example "ReferenceError"

• message – An English description of the error.

The generation of error messages is optionally compiled in and is off by default. To
compile JerryScript with error messages, add

-DJERRY_ENABLE_ERROR_MESSAGES

to the compilation.

Interfacing JerryScript with C
From within a JavaScript program running in JerryScript, we can invoke a C function.
This is a very important concept. It allows us to invoke arbitrary code such as ESP32
specific functions such as WiFi enablement.

The function that we wish to expose from C has to conform to a specific signature as
defined by the jerry_external_handler_t.

jerry_value_t myHandler(
 const jerry_value_t functionObj,
 const jerry_value_t thisVal,
 const jerry_value_t args[],
 const jerry_length_t argsCount)

The args is an array of arguments passed in.

The argsCount is the number of arguments passed in.

We register the function with a call to jerry_create_external_function().

jerry_value_t jerry_create_external_function(jerry_external_handler_t funcHandle)

Here is a full example:

static jerry_value_t testFunction(
 const jerry_value_t functionObj,
 const jerry_value_t thisVal,
 const jerry_value_t args[],
 const jerry_length_t argsCount) {

 ESP_LOGI(tag, "testFunction called!");
 return 0;
}

{
 ...
 jerry_value_t testF = jerry_create_external_function(testFunction);
 jerry_value_t name = jerry_create_string((const jerry_char_t *)"f1");
 jerry_value_t global_object = jerry_get_global_object();
 jerry_set_property(global_object, name, testF);
 jerry_release_value(testF);
 jerry_release_value(name);
 jerry_release_value(global_object);

Page 376

 ...
 // Now within the JavaScript we have a global function called f1() that
 // when it is called will invoke the C function called "testFunction".
}

IoT.js
JavaScript is a powerful language but, like both C and Java, provides very little in the
way of native libraries. The IoT.js project provides an environment with a rich set of pre-
built objects and classes that you can use in your JavaScript applications.

See also:

• IoT.js home page

Programming with Python

Pycom Micropython
See also:

• Github: pycom/pycom-micropython

• YouTube: MicroPython ESP32 Building and loading firmware with Tony D!

Programming with Lua

Lua-RTOS for ESP32
See also:

• Github: whitecatboard/Lua-RTOS-ESP32

Integration with Web Apps

HTTP Protocol
The HTTP protocol is the underpinnings of all web based interactions including
browser/web-server, REST requests and WebSockets.

HTTP Headers
Following a HTTP request or response line, there will be zero or more HTTP headers.
Think of these as name/value pairs that are used to pass additional information. Most

Page 377

https://github.com/whitecatboard/Lua-RTOS-ESP32
https://www.youtube.com/watch?v=qa2406iiSbI
https://github.com/pycom/pycom-micropython
http://iotjs.net/

HTTP headers are well document and architected into the standards while other
headers can be used for application logic.

Some headers are common to both requests and responses while others are found only
on requests or only on responses.

Accept header
Used to indicate in a request the media types allowed in a response. The basic format
is:

Accept: <type>/<subtype>

If we really don't care, we can specify the wildcards:

Accept: */*

However if we specify a type, we can wildcard the subtype:

Accept: text/*

or we can be explicit and define both type and subtype:

Accept: text/plain

Multiple entries can be supplied separated by commas. We can further qualify a type
with a semicolon (";") followed by parameters.

Authorization header
Provides authorization credentials. Remember that unless we are using transport level
encryption, these authorization credentials will be visible in a network examination.

Connection header
Used to indicate that the network connection should be closed by a request receiver
after it has sent its response.

Connection: close

Content-Length header
Used to indicate the size of the payload/content.

Content-Type header
Used to indicate the type of data that is being sent in a request or response.

Page 378

Host header
The Host header is mandatory on an HTTP/1.1 request and identifies who the
transmitted claims to be. For example:

Host: www.example.org

User-Agent header
A header that identifies the originator of the request.

Web Servers
A Web Server is a software component that listens for incoming HTTP requests from
Web browsers. On receipt of a request, the web server sends a response. This can be
the return of an HTML document for display in a browser or can be a payload of data
that forms a service call response. An HTTP request can also include an incoming
payload to send data into the ESP32 for processing. There are many implementations
of Web Servers that can run within an ESP32 environment.

See also:

• RFC7230 – HTTP/1.1 – Message Syntax and Routing
• HTTP: The Protocol Every Web Developer Must Know – Part 1

• Github: lighttpd - nope

• GNU Libmicrohttpd - nope

• LibHTTPD - nope

• Libonion - nope

• EmbedThis – GoAhead

• Monkey

Mongoose networking library
The Mongoose networking library provides a library implementation and associated API
that one can use to build a rich and powerful HTTP server. If we think about the core
nature of a web server, we will find that it passively listens on a TCP port waiting for
incoming requests. When a request arrives it services that request and then returns to
its listening state waiting for the next request to arrive. The request is a text stream
encoded in the HTTP protocol. The way mongoose works is to provide a framework
following this model. We can tell mongoose to start listening and then when a request
arrives, an event handler (a subroutine of code that we are responsible for writing) is
invoked. The parameters to the event handler include the nature of the event (there are
different types) and a parsed representation of the incoming HTTP request. For
example, when a request arrives to retrieve a web page, the mongoose framework will
call our event handler and tell us the path to the page being requested. Our code can

Page 379

http://monkey-project.com/
https://embedthis.com/goahead/
http://www.coralbits.com/libonion/
http://www.hughes.com.au/products/libhttpd/
https://www.gnu.org/software/libmicrohttpd/
https://github.com/lighttpd
http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://tools.ietf.org/html/rfc7230
http://www.example.org/

then send back an HTTP response containing the file. Whether we get that data from a
"file" or generate it via a dynamic call in code is immaterial.

To use the framework, we call mg_mgr_init() to initialize the environment. Next we bind
it to a handler using mg_bind(). Finally, we poll the server for work using
mg_mgr_poll().

void setupMongoose() {
 struct mg_mgr mgr;
 mg_mgr_init(&mgr, NULL);
 mg_bind(&mgr, ":80", evHandler);
 while(1) {
 mg_mgr_poll(&mgr, 1000);
 }
}

When a request arrives from a browser, we consider that an event which is handed off
to an event handler. The signature of an event handler is:

void eventHandler(
 struct mg_connection *nc,
 int event,
 void *eventData)

Where:

• nc – The network connection that received the event.

• event – The type of event that triggered the callback.

• eventData – Data associated with the event.

Thus far we will receive callbacks for socket connections. If we wish, we can now
register that we wish to parse the incoming data as an HTTP request. We do that by
making a call to mg_set_protocol_http_websocket(). For example:

struct mg_connection *c = mg_bind(&mgr, ":80", mongoose_event_handler);
mg_set_protocol_http_websocket(c);

When setup as an HTTP server, an incoming browser request will appear with the event
type of MG_EV_HTTP_REQUEST. The eventData passed in will be an instance of struct
http_message from which the nature of the request can be determined.

Should we wish to setup debugging, we can compile with:

• -DCS_ENABLE_DEBUG=1 – Specify if we want low level debugging.

MG_EV event types we might see include:

• MG_EV_ACCEPT – We have accepted a new connection.

• MG_EV_RECV – Data has been received. The ev_data is a point to an int describing
how many bytes of data were received.

Page 380

• MG_EV_SEND

• MG_EV_CLOSE – The connection has been close.

• MG_EV_HTTP_REQUEST – Data is an instance of a pointer to a "struct
http_message".

• MG_EV_HTTP_REPLY – A response has been detected that is a response/reply to a
previous HTTP request. Data is an instance of a pointer to a "struct
http_message".

The struct http_message describes the nature of the message and contains:

• message – The whole incoming message. The type is a struct mg_str.

• method – The method sent with the request … eg. "GET". The type is a struct
mg_str.

• uri – The URI part of the request … eg. "/hello". The type is a struct mg_str.

• proto

• resp_code

• resp_status_msg

• query_string

• header_names – An array of header names. The type is a struct mg_str.

• header_values – An array of header values. The type is a struct mg_str.

• body – The body of the incoming request. The type is a struct mg_str.

To send a response when we have received a request, we will start by calling
mg_send_head(). This takes the status code, the length of the payload and any extra
headers. To send the payload we will call mg_send(), mg_printf() or mg_vprintf().
Once all the data that we wish to send has been built, we should set the nc.flags value
to include MG_F_SEND_AND_CLOSE to indicate that we have finished.

Note that some of the string data types are coded as the special type "mg_str" which is
not the same as a null terminated string. Specifically, an mg_str is a C structure that
contains two fields:

• p – A pointer to data.

• len – The length of the data.

We have some utility functions to work with instances of mg_str including:

Page 381

• struct mg_str mg_mk_str(const char *s) – Make a new mg_str from a null
terminated string.

• struct mg_str mg_mk_str_n(const char *s, size_t len) – Make a new mg_str
from a pointer to data and length.

• int mg_vcmp(const struct mg_str *str1, const char *str2) – Compare an
mg_str against a null terminated string.

• struct mg_str mg_strdup(const struct mg_str s) – Duplicate an mg_str.

• struct mg_str mg_strcmp(const struct mg_str str1, const struct mg_str

str2) – Compare two mg_str instances.

To get a null terminated String from an mg_str, the following high level algorithm can be
used:

char *mgStrToStr(struct mg_str mgStr) {
 char *str = (char *)malloc(mgStr.len + 1);
 memcpy(str, mgStr.p, mgStr.len);
 str[mgStr.len] = 0;
 return str;
}

Here is an example mongoose event handler that is used to return the time since
ESP32 start-up when /time is the path request.

void mongoose_event_handler(struct mg_connection *nc, int event, void *eventData) {
 switch (event) {
 case MG_EV_HTTP_REQUEST:
 printf("HTTP REQUEST\n");
 struct http_message *message = (struct http_message *)eventData;

 char *uri = mgStrToStr(message->uri);

 if (strcmp(uri, "/time") == 0) {
 char payload[256];
 sprintf(payload, "Time since start: %d ms", system_get_time()/1000);
 int length = strlen(payload);
 mg_send_head(nc, 200, length, "Content-Type: text/plain");
 mg_printf(nc, "%s", payload);
 }
 else {
 mg_send_head(nc, 404, 0, "Content-Type: text/plain");
 }
 nc->flags |= MG_F_SEND_AND_CLOSE;
 free(uri);
 break;
 }
}

The determination that the event is an HTTP request and the examination of the path is
such a common occurrence that a helper function is provided called

Page 382

mg_register_http_endpoint(). This function registers a relative URI path and an event
handler to be called when a request arrives that matches the path. This makes it easy
for us to break out different paths.

Since the ESP32 uses co-routines to provide an illusion of parallelism, this then asks
the question about whether we can make mongoose API calls from multiple tasks. The
answer is no. Instead we must invoke mg_broadcast() to broadcast an event. The
signature of mg_broadcast is:

mg_broadcast(struct mg_mgr *, mg_event_handler_t func, void *, size_t)

By default, this feature is disabled, to enable we have to add the following:

CFLAGS+=-DMG_ENABLE_BROADCAST

See also:

• Github: cesanta/mongoose

• Mongoose Developer Centre

• Mongoose WebSocket

Setting up Mongoose on an ESP32
The recipe I follow to setup Mongoose is as follows:

1. In your project directory, create a components directory.

2. In the components directory, clone Mongoose:

git clone https://github.com/cesanta/mongoose.git

3. In the new Mongoose directory, create a file called component.mk containing:

COMPONENT_ADD_INCLUDEDIRS=.

4. Compile your solution.

As you see there isn't much to it; it just works.

Sending a request from Mongoose
To send an HTTP request outbound from Mongoose we can use the mg_connect_http()
API. This has the signature:

struct mg_connection *mg_connect_http(struct mg_mgr *mgr,
 mg_event_handler_t eventHandler,
 const char *url,
 const char *extraHeaders,
 const char *postData)

The eventHandler is a function that will be called to process events for this request.

Page 383

https://www.cesanta.com/developer/mongoose
https://github.com/cesanta/mongoose

The Mongoose struct mg_connection
There are a number of fields/properties in the struct mg_connection that might be of
use to use. Here is a list of some of the more important/interesting ones:

• union socket_address sa – The address and port number of the other end of the
network connection. We can use the mg_conn_addr_to_str() function to convert
the mg_connection into a printable string.

Handling file uploads
To understand file uploads, we should start by thinking about an HTTP POST request
with multipart/form-data encoding. In this scheme, the body of the HTTP POST
contains multiple sections. Each section can contain a "name" attribute and the body of
the section is the value of that attribute. For files, the section also contains an attribute
called "filename" which is the simple name of the file that was supplied by the user.

If mongoose is compiled with the definition

MG_ENABLE_HTTP_STREAMING_MULTIPART

then additional events are presented during an incoming HTTP request. These events
are:

• MG_EV_HTTP_MULTIPART_REQUEST – Indication of the start of a set of multipart form
data sections.

• MG_EV_HTTP_PART_BEGIN – Indication that the start of a part is beginning.

• MG_EV_HTTP_PART_DATA – Data is being made available.

• MG_EV_HTTP_PART_END – The end of the part.

• MG_EV_HTTP_MULTIPART_END – Indication of the end of a set of multipart form data
sections.

Associated with multi-part handling is the data structure called:

struct mg_http_multipart_part

This contains:

• const char *file_name – The name of the file.

• const char *var_name – The name of the variable.

• struct mg_str data – The data of the variable/file.

• int status – Status code.

• void *user_data – User taggable data.

Page 384

A utility function is provided called mg_file_upload_handler(). This can be called when
an MG_EV_HTTP_PART_BEGIN, MG_EV_HTTP_PART_DATA or MG_EV_HTTP_PART_END events are
received. The signature of this function is:

void mg_file_upload_handle(
 struct mg_connection *nc,
 int ev,
 void *ev_data,
 mg_fu_fname_fn local_name_fn)

The local_name parameter is a function reference to a function with the signature:

struct mg_str upload_fname(struct mg_connection *nc, struct mg_str fname)

This function is responsible for determining the name of the file to be created.

GoAhead Web Server
The high level structure of GoAhead is:

See also:

• The EmbedThis GoAhead Web Server

JavaScript Webserver
Running JavaScript on the ESP32 opens up some elegant techniques to serve web
pages. Using JavaScript for web servers is discussed in the JavaScript section and not
repeated here.

See also:

• ESP32 Technical Tutorials: ESP32 Duktape WebServer

REST Services
The notion of distributed computing dates back many decades. The idea that one
computer could perform a service on behalf of another is a classic concept. The
thinking is that work could be distributed across systems, data could be centralized or
dedicated systems could perform specialized roles. Over the years, many forms of
distributed computing have been tried. These include socket servers, remote procedure
calls (RPC), Systems Network Architecture (SNA), Distributed Computing Environment
(DCE), Web Services and others.

Today (2017), the current incumbent of distributed computing protocols and technology
is REST. REST is a simple protocol that leverages the existing Hyper Text Transport

Page 385

https://www.youtube.com/watch?v=DsuDcYnQB2U
https://embedthis.com/goahead/

Protocol (HTTP) used as the transport between browsers and web servers. This
protocol was build to allow a browser to request data from a remote file system hosted
by a web server. It provides HTTP "commands" which include GET, POST, PUT and
others. The notion behind REST is more of an accident than a design. REST re-
purposes HTTP as a communication conduit from a client to a server where a client
makes a REST request and the server offers up a REST service. From the network
perspective, it "looks" just like a browser/Web Server interaction but both ends choose
to agree on the formation and interpretation of the communication.

When we add an ESP32 into the mix, our desire is two-fold. We want the ESP32 to be
able to be a client to external REST service providers and we want the ESP32 to be the
target of clients making REST requests. From the partner perspective, it should be
unaware that it is interacting with the ESP32 as compared to any other computing
device.

REST protocol
The REST protocol is built on top of HTTP.

See also:

• RFC7230 – HTTP/1.1 – Message Syntax and Routing
• HTTP: The Protocol Every Web Developer Must Know – Part 1

ESP32 as a REST client
For the ESP32 to be a REST client, it must build and transmit HTTP requests to the
service provider. This will include building HTTP headers, transmitting the data in a
form expected by the provider (eg. JSON, XML or other textual representation) and
handling the response from the provider which may include interpreting the received
payload.

To transmit a REST request is composed of two parts. First it opens a TCP connection
to the partner and then transmits the HTTP compliant data down that connection. The
first part is easy, the second part is more of a challenge. We could read and understand
the HTTP spec and build the request part by part but this would have to be done for
each project that wishes to use REST client technology. What would be better is if we
had a library that "knows" how to make well formed REST requests and we simply
leveraged its existing functions.

Making a REST request using Curl
Not only is curl a command line tool, it is also a very rich library of function that can be
used in your own projects. From an architectural perspective, any app that wants to use
curl as a library should perform an initialization call, request an opaque "handle", setup
parameters on the handle and then perform the request against the handle. The handle

Page 386

http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://tools.ietf.org/html/rfc7230

is a black-box that encapsulates the nature of the request. It hides from us all the low
level details and gives us a higher level abstraction against which we can think of
working with network endpoints.

At a high level we call curl_global_init() for coarse initialization. Next we get a
handle using curl_easy_init(). When we are finished with the handle we should call
curl_easy_cleanup() to dispose of it and release any resources that may have been
allocated on its behalf. The handle is the container that is used to associate options.
We set options against a handle using curl_easy_setopt(). We will use this function to
set the target URL at a minimum.

We can define a callback function that is invoked when data is received upon the
handle. That callback function is registered against the handle. The signature of the
callback function looks like:

size_t writeData(void *buffer, size_t size, size_t nmemb, void *userp)

Think of this function as receiving a buffer of records where each record is of size bytes
and the number of records is nmemb. Typically, size will be 1 and nmemb will then be the
total size of data in the buffer. The function should return the size of data consumed. If
it is not size * nmemb then that will stop processing.

Once written, we can register the callback with:

curl_easy_setopt(handle, CURLOPT_WRITEFUNCTION, writeData);

Notice that the data callback has a parameter at the end called userp. This is a pointer
to context data that relates the request to the response. The value passed in to the
callback function is the value registered with the handle using the CURLOPT_WRITEDATA
parameter:

curl_easy_setopt(handle, CURLOPT_WRITEDATA, dataPointer);

When ready, we can ask the handle to perform its task using:

success = curl_easy_perform(handle);

It is common that we want to pass HTTP headers with our request. To do this we build
a list where each entry in the list is a name/value header entry. We use the data type
struct curl_slist to hold the list:

struct curl_slist *headers = NULL;

To add a header we can then use:

headers = curl_slist_append(headers, "Content-Type: application/json");

To associate the headers with a handle, we call:

curl_easy_setopt(handle, CURLOPT_HTTPHEADER, headers);

Page 387

When the list has served its purpose, we can release the resources used to manage the
list with a call:

curl_slist_free_all(headers);

When making a REST request, we commonly wish to set the command in the HTTP
payload. We can use the following to set different styles:

To set the command to GET, use:

curl_easy_setopt(handle, CURLOPT_HTTPGET, 1);

To set the command to POST, use:

curl_easy_setopt(handle, CURLOPT_POST, 1);

To set the command to PUT, use:

curl_easy_setopt(handle, CURLOPT_PUT, 1);

These commands will set the Content-Type to the form format. If we wish to send data
as-is, don't call either of the above but just specify CURLOPT_POSTFIELDS data by
itself.

To send data with the request, we can use:

curl_easy_setopt(handle, CURLOPT_POSTFIELDS, data);

Where the data is a null terminated string.

The Curl package has a number of great samples. Here is a good instance that makes
an HTTP GET request.

#include <stdio.h>
#include <curl/curl.h>

int main(void)
{
 CURL *curl;
 CURLcode res;

 curl = curl_easy_init();
 if(curl) {
 curl_easy_setopt(curl, CURLOPT_URL, "http://example.com");
 /* example.com is redirected, so we tell libcurl to follow redirection */
 curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);

 /* Perform the request, res will get the return code */
 res = curl_easy_perform(curl);
 /* Check for errors */
 if(res != CURLE_OK)
 fprintf(stderr, "curl_easy_perform() failed: %s\n",
 curl_easy_strerror(res));

 /* always cleanup */
 curl_easy_cleanup(curl);
 }

Page 388

 return 0;
}

An excellent resource for testing Curl requests is the "httpbin.org" website. This
provides HTTP rest responses for a variety of tests.

To build libcurl we create a components directory and perform some commands within.

The curl source can be downloaded from github using:

$ git clone https://github.com/curl/curl.git

Next we run:

$./buildconf
$./configure

Remove the following from lib/curl_config.h

HAVE_LIBSSL

USE_OPENSSL

HAVE_ZLIB

HAVE_LIBZ

HAVE_SIGSETJMP

HAVE_SYS_POLL

HAVE_POLL

HAVE_POLL_H

HAVE_CLOCK_GETTIME_MONOTONIC

HAVE_NET_IF_H

HAVE_SYS_IOCTL_H

HAVE_SYS_SELECT_H

HAVE_SYS_UN_H

HAVE_NETINET_TCP_H

HAVE_MSG_NOSIGNAL

HAVE_POLL_FINE

USE_UNIX_SOCKETS

HAVE_IFADDRS_H

Page 389

HAVE_STROPTS_H

HAVE_GETIFADDRS

HAVE_IOCTL_SIOCGIFADDR

HAVE_GETHOSTNAME

HAVE_GETEUID

HAVE_BASENAME

HAVE_SIGNAL

When building curl, we may need to set some definitions:

The following can be found include/curl/curlbuild.h:

• CURL_SIZEOF_LONG – 4 – The size in bytes of a long.

• CURL_TYPEOF_CURL_SOCKLEN_T – unsigned int – The data type that is a
socklen_t.

• CURL_TYPEOF_CURL_OFF_T – long

• CURL_FORMAT_CURL_OFF_T – "ld"

• CURL_FORMAT_CURL_OFF_TU – "lu"

• CURL_FORMAT_OFF_T – "%ld"

• CURL_SIZEOF_CURL_OFF_T – 4

• CURL_SUFFIX_CURL_OFF_T – L

• CURL_SUFFIX_CURL_OFF_TU – UL

We also need a lib/curl_config.h

We will also need a component.mk with the following entries:

COMPONENT_SRCDIRS:=lib
COMPONENT_PRIV_INCLUDEDIR:=lib include
include $(IDF_PATH)/make/component_common.mk

We need to say that we don't have includes:

• netinet/in.h – HAVE_NETINET_IN_H

• arpa/inet.h – HAVE_ARPA_INET_H

• net/if.h – HAVE_NET_IF_H

• sys/ioctl.h – HAVE_SYS_IOCTL_H

• process.h – HAVE_PROCESS_H

Page 390

• fcntl.h – HAVE_FCNTL_H

• netinet/tcp.h – HAVE_NETINET_TCP_H

To enable SSL, we add:

#define USE_MBEDTLS 1

And in the CFLAGS+=-DMBEDTLS_FS_IO to both the CURL and the MBEDTLS
component.

See also:

• Curl

• Curl C API

• curl_east_setopt

• libcurl examples

Making a REST request using Mongoose
Using the Mongoose APIs, we can quite easily send a REST request and work with the
response. The high level story is to initialize Mongoose with mg_mgr_init(), request a
connection to the REST service provider with mg_connect(), associate the connection
as being HTTP oriented and then start processing events. The first event to return will
be an MG_EV_CONNECT event indicating that we are now network connected. From there
we can use mg_printf() to send the REST request. When the REST partner responds,
we will get an MG_EV_HTTP_REPLY event and we have completed our request/response
pairing.

ESP32 as a REST service provider
For an ESP32 to be a REST service provider, basically means that it has to play the role
of a Web Server and respond to Web Server requests. However, unlike a simple Web
Server which simply retrieves and sends file content as a function of the path on the
URL, it is likely that the REST service provider will perform some computation when an
HTTP client request arrives. For example, if we attached a temperature sensor to the
GPIOs of the ESP32, when a REST request arrives, the ESP32 could read the current
temperature value and send the encoded result back as a the response to the request.

Being a Web Server basically means listening on a TCP port and when connections
arrive, interpreting the data received as HTTP protocol. This would be a lot of work on a
project by project basis but thankfully there are a number of pre-written libraries that
perform this task for us and all we need concern ourselves with is examination of any

Page 391

https://curl.haxx.se/libcurl/c/example.html
https://curl.haxx.se/libcurl/c/curl_easy_setopt.html
https://curl.haxx.se/libcurl/c/
https://curl.haxx.se/

parameters passed with the request and performing the logic we wish performed when
ever a new request is received.

Once again, mongoose becomes an excellent consideration for being a Web Server
and handling incoming requests.

See also:

• Mongoose networking library

WebSockets
WebSockets is both an API and a protocol introduced in HTML5. Simply put, if we
imagine an HTTP server sitting waiting for incoming HTTP requests, we can convert a
current request into a socket connection between the server and the browser such that
either end can send data to be received by its partner.

Here we see a raw request to upgrade an HTTP connection to a WebSocket
connection:

GET / HTTP/1.1
Host: 192.168.1.10
Connection: Upgrade
Pragma: no-cache
Cache-Control: no-cache
Upgrade: websocket
Origin: file://
Sec-WebSocket-Version: 13
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/46.0.2490.86 Safari/537.36
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-US,en;q=0.8
Sec-WebSocket-Key: saim6TzFH+zVb4qY2nrh0Q==
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

See also:

• html5rocks – Introducing WebSockets: Bringing Sockets to the Web

• The WebSocket protocol – RFC6455

• The WebSocket API

A WebSocket browser app
The highest likelihood is that you will be running your ESP32 as a WebSocket server.
This would imply that you are going to have browser hosted applications that will be
connecting to a WebSocket server as clients and from there, you will likely be writing
some WebSocket client code … if nothing else then for unit testing your server.

Page 392

http://www.w3.org/TR/websockets/
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://www.html5rocks.com/en/tutorials/websockets/basics/
file:///C:/Users/Kolban/Documents/

Because of that, we will now spend some time talking about what is involved in writing a
WebSocket client application.

Let us assume that we will be writing JavaScript hosted in the browser. We start by
creating an instance of a WebSocket object passing in the URL to the WebSocket
server:

var ws = new WebSocket("ws://<somehost>[:<someport>]");

The WebSocket API is mostly event driven and there are a number event types of
interest to us:

• open – Invoked when the connection to the WebSocket server has been
established and we are now ready to send or receive data. We can define this
with the "onopen" property of the WebSocket as a function reference.

• message – Receive a message from the server. We can define this with the
"onmessage" property of the WebSocket as a function reference. The incoming
message data passed to the handler function contains a MessageEvent which
contains:

◦ data – The payload of the message.

• error – Receive an indication that an error was detected. We can define this
with the "onerror" property of the WebSocket as a function reference.

• close – Receive an indication that a request to close the connection was
detected. We can define this with the "onclose" property of the WebSocket as a
function reference.

Event handlers can be registered either with an "on<Event>" mechanism or with an
addEventListener() call.

There are two methods defined on a WebSocket object. Those are:

• send – Send data to a WebSocket server. The signatures are:

◦ send(String)

◦ send(Blob)

◦ send(ArrayBuffer)

◦ send(ArrayBufferView)

• close – Close the connection to a WebSocket server. The close() method takes
two parameters:

◦ close code – An integer close code describing the reason for the close.

Page 393

▪ 1000 – CLOSE_NORMAL

▪ 1001 – CLOSE_GOING_AWAY

◦ status message – A string describing the close reason.

Finally, there are a few attributes:

• readyState – The state of the WebSocket connection. Values include:

◦ WebSocket.CONNECTING

◦ WebSocket.OPEN

◦ WebSocket.CLOSING

◦ WebSocket.CLOSED

• bufferedAmount – Amount of data that is buffered pending transmission to the
WebSocket server

• protocol – The WebSocket server selected protocol being used.

Mongoose WebSocket
Using Cesanta's Mongoose libraries, we can setup a WebSocket server. After setting
up a binding for incoming network requests we can call
mg_set_protocol_http_websocket(). This will attach an event handler to the network
protocol level to handle events associated with WebSockets. Specifically, these are the
following web socket events we are interested in:

• MG_EV_WEBSOCKET_HANDSHAKE_REQUEST –

• MG_EV_WEBSOCKET_HANDSHAKE_DONE –

• MG_EV_WEBSOCKET_FRAME –

When an MG_EV_WEBSOCKET_HANDSHAKE_REQUEST is received, the data contains a parsed
HTTP request as a struct http_message. When we receive the
MG_EVENT_WEBSOCKET_HANDSHAKE_DONE event, we are ready to send and receive web
socket messages.

When an MG_EV_WEBSOCKET_FRAME is received, the data contains a reference to a struct
websocket_message. The struct websocket_message contains:

• data – The data passed from the partner.

• size – The size of the passed data.

• flags – Flags (unknown).

Page 394

To send outbound (out from Mongoose) web socket messages we use the
mg_send_websocket_frame() API call. The signature of this function is:

void mg_send_websocket_frame(
 struct mg_connection *nc,
 int op_and_flags,
 const void * data,
 size_t data_len)

The op_and_flags should be one of:

• WEBSOCKET_OP_CONTINUE

• WEBSOCKET_OP_TEXT

• WEBSOCKET_OP_BINARY

• WEBSOCKET_OP_CLOSE

• WEBSOCKET_OP_PING

• WEBSOCKET_OP_PONG

• WEBSOCKET_DONT_FIN – This can be boolean or'd with one of the above to
indicate that we will be continuing.

For example, if we wish to send a "Hello World" message we might code:

char *message = "Hello World";
mg_send_websocket_frame(nc, WEBSOCKET_OP_TEXT, message, strlen(message));

See also:

• Mongoose networking library

Other Websocket implementations
See also:

• WebSockets on the ESP32

Tasker
Tasker is an Android application that automates and scripts tasks to be executed on an
Android device. Using Tasker we can create a task which is defined as a sequence of
commands and actions to be executed. Next we can create a Profile which maps an
event, that when detected, executes a task. Although this is useful, how does that
relate to an ESP32? Imagine that the event that occurs is an ESP32 sending a
message to your phone. With that notion, an ESP32 can, effectively, trigger anything

Page 395

http://www.barth-dev.de/websockets-on-the-esp32/

that one might be able to do with such a phone. For example, it might make a phone
call, send an SMS message or capture a photograph.

See also:

• Tasker home page
• YouTube: Tasker 101 Tutorials

AutoRemote
Following on from our discussion of Tasker above, we now have an admission. It
appears that Tasker does not have the ability to listen for incoming TCP/IP based
events and messages. However, because Tasker is extensible and developers can
write plug-ins for it, Tasker can be augmented. One such augmentation is the
AutoRemote plugin. Using that plugin, a TCP/IP message can then be sent and
received by AutoRemote which can then act as a source of events for Tasker.

With AutoRemote configured as a Tasker plugin, we can configure it to listen for HTTP
requests. This causes AutoRemote to listen on TCP port number 1817. The data it is
listening for is an HTTP request. For example:

http://<phone ip>:1817/sendmessage?message=1

With both Tasker and AutoRemote installed, it will still not be listening for incoming WiFi
messages over a local WiFi environment unless we are Internet connected. We must
run a Tasker Task called "AutoRemote WiFi".

For example, in Tasker:

1. Create a new profile triggered by Event → System → Device Boot

2. Create a New Task associated with the profile

3. Add an action from Plugin → AutoRemote → Wifi

4. In the configuration for the action, check "Wifi Service"

What this will do is start the Wifi Service whenever the device (Android) boots.

Unfortunately, AutoRemote has a serious drawback. It doesn't allow Tasker to send a
response back in the original REST request that might contain data that could be used.
For example, if we wish to use AutoRemote to send a request that returned the current
GPS location, that is simply not possible.

When an AutoRemote request arrives, it sets a number of variables within the Tasker
environment that can be used as parameters to Tasker tasks. These include:

• %armessage

• %arpar()

Page 396

https://www.youtube.com/playlist?list=PLjV3HijScGMynGvjJrvNNd5Q9pPy255dL
http://tasker.dinglisch.net/

• %arcomm

• %artime

• %arfiles

• %arsenderbtmac

• %arsenderid

• %arsenderlocalip

• %arsendername

• %arsenderpublicip

• %arsendertype

• %arvia

◦ wifi

See also:

• AutoRemote home page

DuckDNS
I anticipate that in most folks houses there is a WiFi access point that either directly or
through a modem, connects to the Internet. Since the WiFi access point offers a local
network to which the ESP32 can join, we now see that the ESP32 can reach the outside
world through the access point. However, what about the reverse? What if we want a
client on the Internet to reach our ESP32. How could we achieve that?

Page 397

http://joaoapps.com/autoremote/

If we look at the above diagram (all IP address made up), we see that the ESP32 knows
its own IP address as 192.168.1.2. However, this can't be "shared" with the Internet as
that is a local address and not a global IP address. What would need to be shared is
the IP address of the access point as seen on the Internet.

One way to achieve that is through the use of a service provider such as DuckDNS.
This free service allows you to register a name. Your device (usually a PC) periodically
sends a request to the DuckDNS web site saying "Hello … I am here!". The return
address implicitly sent with the request is always the IP address of your access point
connected to the Internet and hence DuckDNS learns your external address. Later,
someone (perhaps a third party) can ask "What is the IP address" of the name you
registered and that address is made available. Essentially, DuckDNS acts as a real-
time broker of logical names to IP addresses.

If you are concerned that "some scary person" can learn the IP address of your access
point … then don't use DuckDNS. However, for the majority of us, our
modem/router/access point prevents incoming traffic from reaching us and essentially
blocks anything we don't want. But wait … won't this also block requests to the ESP32?
The answer is "yes it will" which is why you have to define port-forwarding. Port
forwarding a function of your modem/router/access point that says that when a request
arrives for a given port location, automatically forward it to an IP address on your local
network … for example, the network address of your ESP32.

https://www.duckdns.org/update?domains= XXX &token= XXX &ip =

Networking protocols

MQTT
The MQ Telemetry Transport (MQTT) is a protocol for publish and subscribe style
messaging. It was originally invented by IBM as part of the MQSeries family of products
but since has become an industry standard governed by the Oasis standards group.
The latest specification version is 3.1.1.

Being Pub/Sub, this means that there is a broker (an MQTT Broker) to which
subscribers can register their subscriptions and publishers can submit their publications.
Publications and subscriptions agree on the topics to be used to link the messages
together. A client can be a publisher, a subscriber or both.

The value of MQTT is that it can be used to deliver data from an application running on
one machine to an application running on another. Immediately we seem to see an
overlap between MQTT and REST calls but there are some major differences. In a
REST environment, when you form a connection from a client to a server, the server

Page 398

https://www.duckdns.org/update?domains=XXX&token=XXX&ip
https://www.duckdns.org/update?domains=XXX&token=XXX&ip
https://www.duckdns.org/update?domains=XXX&token=XXX&ip
https://www.duckdns.org/update?domains=XXX&token=XXX&ip
https://www.duckdns.org/update?domains=XXX&token=XXX&ip

must be available in order for the client to deliver the data. With MQTT that is not
necessarily the case. The client can publish a message which can then be held by the
broker until such time as the receiving application comes on-line to retrieve it. This is a
store and forward mechanism.

Every published message must have a topic associated with it that is used to determine
which subscribers would be interested in receiving a copy.

The structure of a topic is broken into topic levels separated by a "/". Subscribers can
include wild cards in their topic selections of copies of messages that they would like to
receive:

• + – Single topic level wild-card

eg. a/+/c

would subscribe to a/b/c and a/x/c.

• # – Multi topic level wild-card

eg. a/#

would subscribe to a/<anything>.

MQTT is commonly implemented on top of TCP/IP. Clients connect to the broker (not to
each other) over a TCP connection.

There is a quality of service requested by a client. This is encoded in the QoS field:

• QoS=0 – Send at most once. This can lose messages. At most once means
perhaps never.

• QoS=1 – Send at least once. This means that the message will be delivered.
Saying this another way, a message will not be discarded or lost. However,
duplicates can arrive … i.e. the message can be delivered twice or more.

• QoS=2 – Send exactly once. This means that the message will not be lost and will
be delivered once and once only.

MQTT also has the capability to buffer messages for subsequent delivery. For example,
if a client subscriber is not currently connected, a message can be queued or stored for
delivery to the client when it eventually re-connects. We call a client that is not
connected an off-line client. For a subscription, we have the choice to deliver all the
queued messages for a client or just the last message. To understand the difference,
we can imagine a published message that says "I sold your stock for <$$$> price" …
we want all such messages sent to the client because they are all of interest. However
if we think of a published message of "Today's forecast is sunny and warm" then there

Page 399

may be no need for old messages and only the current weather forecast is of interest to
us. During publishing we can declare that a message is eligible for retention and this is
called the "retained message". When a client subscribes, it can ask to receive the last
retained message immediately … so even if a subscription takes place after a previous
publication, it can still receive data immediately.

Clients make their status known to the broker so the broker can tell if a client is
connected. This is achieved via a keep-alive/heartbeat. When forming a connection to
a broker, the client provides a keep-alive interval (in seconds). If the broker hasn't
received a message from the client in this interval then the broker can disconnect the
client assuming it to have been lost/disconnected. If the keep-alive interval is set to 0,
then there will be no validation from the broker.

If a client connection is lost because of a network disconnection, the broker can detect
that occurrence. This is where we get morbid. We define this as the client having
"died". In the real world, when someone dies, there may be a last "will and testament"
which are the desired instructions of what the person wanted to happen when they die.
MQTT has a similar concept. A client can register a message to be published in the
event of the clients death. This is remembered by the broker and in the event of the
client dieing, the broker will perform the role of the attorney and publish the last
registered "will and testament" message on behalf of the deceased client.

The default port number for an MQTT broker is 1883.

See also:

MQTT Hive

Mosquitto

• MQTT.org

• Oasis MQTT spec – 3.1.1

• Mosquitto,org

• YouTube: Internet of Things – Why You Need MQTT

• OASIS Message Queuing Telemetry Transport (MQTT)

• OASIS MQTT V3.1.1 Specification

Mosquitto MQTT
One of the most prevalent implementations of MQTT is called Mosquitto and is
available as an open source implementation. On a Linux system we would install with:

$ sudo apt-get install mosquitto

Where systemd is installed, mosquitto is controlled by it. To see if it is running execute

$ systemctl status mosquitto
● mosquitto.service - LSB: mosquitto MQTT v3.1 message broker
 Loaded: loaded (/etc/init.d/mosquitto)
 Active: active (running) since Thu 2016-01-21 21:32:26 CST; 6min ago

Page 400

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.youtube.com/watch?v=exMm-fmU5ck
http://mosquitto.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
http://mqtt.org/

 Docs: man:systemd-sysv-generator(8)
 CGroup: /system.slice/mosquitto.service
 └─12871 /usr/sbin/mosquitto -c /etc/mosquitto/mosquitto.conf

Jan 21 21:32:26 kolban-VirtualBox systemd[1]: Starting LSB: mosquitto MQTT v3.1
message broker...
Jan 21 21:32:26 kolban-VirtualBox mosquitto[12862]: * Starting network daemon:
mosquitto
Jan 21 21:32:26 kolban-VirtualBox mosquitto[12862]: ...done.
Jan 21 21:32:26 kolban-VirtualBox systemd[1]: Started LSB: mosquitto MQTT v3.1 message
broker.

The default configuration file for mosquitto is /etc/mosquitto/mosquitto.conf.
Messages from mosquitto are logged to /var/log/mosquitto/mosquitto.log.

Two sample applications are provided that perform subscriptions and publications.
These are mosquitto_sub and mosquitto_pub. These are distributed as part of the
mosquitto-clients package.

As a simple test, open two terminal sessions. In one run:

$ mosquitto_sub -t greeting

When the subscriber is started it will sit quietly waiting for an arriving publication.

In the other run:

$ mosquitto_pub -t greeting -m "Hello World"

Some other common flags we use with this command include:

• -r – Mark this publication as "retained".

• -q 0|1|2 – Set the Quality Of Service of the message.

• -d – Include debugging in the output.

• -h – Host (server) to connect to. Defaults to localhost.

• -p – Port number to connect to. Defaults to 1883.

You will see the published message appear in the subscriber window.

Let us now dig a little further into a mosquitto configuration file. Within there, we can
specify multiple "listener" entries. These can bind to a port or a port and interface.
Within a listener section, we can configure the protocol that the listener should use. By
default, it will be plain TCP for normal client connections but we can specify that the
protocol should be "websockets". For example, adding the following into the
mosquitto.conf file:

Page 401

listener 8081
protocol websockets

will cause mosquitto to listen for websocket clients on port 8081. If you want to listen on
both standard mqtt protocol and websocket, then you will need multiple listener
definitions.

listener 1883
protocol mqtt

listener 8081
protocol websockets

See also:

• Moqsuitto.org

• man(1) – mosquitto_sub

• man(1) – mosquitto_pub

• man(5) – mosquitto.conf

• MQTT Community Wiki

Installing on Windows
We can download and install a version of Mosquitto for Windows. Binary downloads
are available here:

http://mosquitto.org/download/

The version illustrated here is 1.4.8.

Page 402

http://mosquitto.org/download/
https://github.com/mqtt/mqtt.github.io/wiki
https://eclipse.org/mosquitto/man/mosquitto-conf-5.php
https://eclipse.org/mosquitto/man/mosquitto_pub-1.php
https://eclipse.org/mosquitto/man/mosquitto_sub-1.php
https://eclipse.org/mosquitto/

Page 403

Writing ESP32 MQTT clients

Using Mongoose as an MQTT client
Once again we can turn to Mongoose to provide higher level networking services. Not
only can Mongoose be a Web Server and provide HTTP calling services, it also provide
MQTT services.

To be a client, at a high level we perform the following operations:

Page 404

mg_mgr_init(…);
mg_connect(…);
while(1) {
 mg_mgr_poll(…);
}

In the event handler we registered in mg_connect(), we process events as follows:

MG_EV_CONNECT

mg_set_protocol_mqtt(…);
mg_send_mqtt_handshake_opt(…);

MG_EV_MQTT_CONNACK

// Do something now we are MQTT broker connected ...

To publish a message we can call mg_mqtt_publish().

To subscribe, we can call mg_mqtt_subscribe(). The signature for a subscription is:

void mg_mqtt_subscribe(
 struct mg_connection *nc,
 const struct mg_mqtt_topic_expression *topics,
 size_t topicsLen,
 uint16_t messageId)

The mg_mqtt_topic_expression is a structure that contains two fields:

• topic – char * – The identity of the topic on which to subscribe.

• qos – uint8_t – The quality of service.

Following a subscription, when a publication arrives, we will receive the
MG_EV_MQTT_PUBLISH event. The payload of the event is an instance of an
mg_mqtt_message which contains:

Type Name Notes

int cmd

struct mg_str payload The payload of a received message.

uint8_t connack_ret_code Used on MG_EV_MQTT_CONNACK.

uint16_t message_id Used on MG_EV_MQTT_PUBLISH.

char * topic The topic on which the message was received.

Page 405

Here is a concrete example:

void event_handler_mqtt(struct mg_connection *nc, int ev, void *evData) {
 switch (ev) {
 case MG_EV_CONNECT:
 mg_set_protocol_mqtt(nc);
 mg_send_mqtt_handshake(nc, "dummy");
 break;
 case MG_EV_MQTT_CONNACK: {
 struct mg_mqtt_message *msg = (struct mg_mqtt_message *) evData;
 if (msg->connack_ret_code == 0) {
 mg_mqtt_publish(nc, "/greeting", 0, MG_MQTT_QOS(0), "hello", 5);
 }
 break;
 }
 } // End of switch
} // End of event_handler_mqtt

...

struct mg_connection *nc = mg_connect(&mgr, "192.168.5.1:1883", event_handler_mqtt);
if (nc == NULL) {
 printf("Error with mg_connect()\n");
}

See also:

• Mongoose networking library

Using Espruino as an MQTT client
The Espruino JavaScript environment has native MQTT support.

var ssid="RASPI3";
var password="password";

var wifi=require("Wifi");
wifi.connect(ssid, {password: password}, function() {
 console.log("Connected to access point");
 var mqtt = require("MQTT").create("192.168.5.1");
 mqtt.on("connected", function() {
 console.log("MQTT connected");
 mqtt.subscribe("test");
 mqtt.on('publish', function (pub) {
 console.log("topic: " + pub.topic);
 console.log("message: " + pub.message);
 });
 });
 console.log("Doing a connect");
 mqtt.connect();
});

See also:

Page 406

• Espruino MQTT

Writing non ESP32 MQTT clients
Having an MQTT environment available is nice but without clients doesn't add much
value. Your clients will be the applications that will register subscriptions and publish
messages. The subscriber will name the topic on which messages published will be
received.

While the MQTT protocol may be standardized, the client APIs appear to not be. As
such there are multiple APIs for any given language.

Eclipse paho

We start by creating a network representation object using NewNetwork(&n) followed by
a connect to the host and port via NetworkConnect(). From there we have a number of
MQTT primitives:

• MQTTClientInit – Initialize a client.

• MQTTConnect – Connect to an MQTT engine.

• MQTTSubscribe – Subscribe to a topic and invoke a message handler when a
subscription message arrives.

• MQTTUnsubscribe – Unsubscribe from a topic.

• MQTTPublish – Publish a message to a topic.

• MQTTDisconnect – Disconnect from an MQTT server.

• MQTTYield – Unknown.

• MQTTRun – Run an MQTT client.

The message handler passed to MQTTConnect() is invoked when a message is received
by the MQTT client after it has been published to the broker. The handler function has
the following signature:

void function(MessageData *messageData)

The MessageData data type is a C structure containing:

• MQTTMessage *message – The message that was published.

• MQTTString *topicName – The topic on which the original message was
published.

Page 407

http://www.espruino.com/MQTT

The MQTTMessage data type is a C structure containing:

• enum QoS qos – The quality of service of the published message.

• unsigned char retained – A flag indicating whether this was a retained
message.

• unsigned char dup – A flag indicating whether this message was attempted to be
delivered previously and hence may be a duplicate.

• unsigned short id – The identifier of this message.

• void *payload – A pointer to the payload of the message.

• size_t payloadlen – The size in bytes of the message.

Here is an illustrative client that takes a subscription:

See also:

• Paho home page

• Practical MQTT with Paho

• MQTTClientInit

• MQTTConnect

• MQTTDisconnect

• MQTTPublish

• MQTTUnsubscribe

• MQTTSubscribe

C – Mosquitto client library
The library called libmosquitto is available for linking with C applications. You will need
to install the package called libmosquitto-dev.

• mosquitto_lib_version – Determine the version of the library in use

• mosquitto_lib_init – Initialize the library

• mosquitto_lib_cleanup – Conclude the use of the library

• mosquitto_new – Create a client

• mosquitto_destroy – Destroy a client

• mosquitto_reinitialize – Destroy a client and then create a new one

• mosquitto_username_pw_set – Set the userid and password for authentication

• mosquitto_will_set – Set the last will of the client for estate planning purposes

• mosquitto_will_clear – Revoke the last will

• mosquitto_connect – Connect a client to a broker

Page 408

http://www.infoq.com/articles/practical-mqtt-with-paho
https://www.eclipse.org/paho/

• mosquitto_connect_bind – Same as mosquitto_connect but constrains interface
to bind with

• mosquitto_connect_async – Asynchronous connection to the broker

• mosquitto_reconnect – Reconnect to a broker after a lost connection

• mosquitto_reconnect_async – Same as mosquitto_reconnect but asynchronous

• mosquitto_disconnect – Disconnect a client from a broker

• mosquitto_publish – Publish a message on a given topic

• mosquitto_subscribe – Subscribe to messages on a topic

• mosquitto_unsubscribe – Unsubscribe to messages on a topic

• mosquitto_loop – Perform processing for the mosquitto client. It is here that
incoming message from the broker are received or previously unsent publications
transmitted.

• mosquitto_loop_read –

• mosquitto_loop_write –

• mosquitto_loop_misc –

• mosquitto_loop_forever – Same as mosquitto_loop but does not return and
keeps processing until the client is disconnected

• mosquitto_socket – Retrieve the low level TCP/IP socket that the mosquitto
client is using

• mosquitto_want_write – Return true if there is pending data to be sent to the
broker

• mosquitto_loop_start – Start a thread to process a mosquitto_loop in the
background

• mosquitto_loop_end – Stop a previously started loop that was created using
mosquitto_loop_start

Here is an example publishing client:

#include <stdio.h>
#include <string.h>
#include <mosquitto.h>

int main(int argc, char *argv[]) {
 char *host="pc9100";

Page 409

 int port = 1883;
 char *message = "hello world!";
 char *topic = "greeting";

 mosquitto_lib_init();
 struct mosquitto *mosq = mosquitto_new(
 NULL, // Generate an id
 true, // Create a clean session
 NULL); // No callback param
 int rc = mosquitto_connect(
 mosq, // Client handle
 host, // Host of the broker
 port, // Port of the broker
 false); // No keepalive
 if (rc != MOSQ_ERR_SUCCESS) {
 printf("Error with connect: %d\n", rc);
 return(rc);
 }
 mosquitto_publish(
 mosq, // Client handle
 NULL, // Message id
 topic, // Topic
 strlen(message)+1, // Length of message
 (const void *)message, // Message to be sent
 0, // QoS = 0
 false); // Not retained
 mosquitto_destroy(mosq);
 mosquitto_lib_cleanup();
}

See also:

• man(3) – libmosquitto

• mosquitto.h

Node.js JavaScript – MQTT
There is Node.js package called mqtt that provides MQTT functions for JavaScript
applications. To install this package we should run:

$ npm install mqtt

Here is a sample JavaScript application that acts as a publisher:

var mqtt = require("mqtt");
var client = mqtt.connect("mqtt://pc9100");
client.on('connect', function() {
 console.log("Connected ... now publishing");
 client.publish("greeting", "Hello from JavaScript");
 client.end();
});

And here is an application fragment that acts as a subscriber:

var mqtt = require("mqtt");
var client = mqtt.connect("mqtt://pc9100");

Page 410

http://mosquitto.org/api/files/mosquitto-h.html
http://mosquitto.org/man/libmosquitto-3.html

client.on('connect', function() {
 client.subscribe("greeting");
});
client.on('message', function(topic, message) {
 console.log("Received message for topic=" + topic + ", message=" + message);
});

Error handling can be accommodated by registering a client handler for an error event:

client.on("error", function(error) {
 console.log("We detected an error: " + error);
});

The full details of the API can be found on the NPM home page for the MQTT package.
At a high level, the functions are:

• connect – Connect to a broker.

• Client.publish – Publish a message. The message content may be a Buffer or
a string. The identity of the topic on which the message is being published must
also be supplied.

• Client.subscribe – Subscribe to a topic.

• Client.unsubscribe – Unsubscribe from a topic. The signature is:

client.unsubscribe(topic, [options], [callback])

• Client.end – Close the client connection to the broker.

• Client.handleMessage – A mechanism for handling messages.

See also:

• npm – mqtt

Browser JavaScript – MQTT
The Eclipse Paho project includes a JavaScript client API that is suitable for running
within the context of a browser. This client API uses the HTML5 WebSocket API to
communicate with an MQTT broker.

Page 411

https://www.npmjs.com/package/mqtt

The MQTT broker chosen must support MQTT protocol through WebSocket. Popular
brokers such as Mosquitto are able to perform that role. From a security standpoint,
browsers are only allowed to make WebSocket requests back to the HTTP server from
which the page running in the browser was originally loaded. As such, the browser can
only make WebSocket requests to the MQTT broker if the MQTT broker served up the
page. We can alleviate that issue by introducing full function Web Servers and proxies
into the story but for simple purposes, brokers such as Mosquitto can serve up static
web pages directly. This means that we can point our browser to Mosquitto which will
then look for an HTML file on the local file system to Mosuqitto and send that back to
the browser. The browser will now see the MQTT broker as the server of the web page
and when the JavaScript in that web page asks for an MQTT subscription, it will
succeed. Within the Mosquitto configuration file, each listener definition that wishes to
also provide HTTP files must supply an "http_dir" option which names the directory
that will be searched for HTML file requests from the browser.

We are not limited running an MQTT broker on a separate server machine, we can run
the MQTT broker directly on the Pi should we desire.

Now let us look and see what is needed to run an MQTT client in the browser.

First we need to download the Paho JavaScript client. If we visit the Paho downloads
page:

https://projects.eclipse.org/projects/technology.paho/downloads

we will find an entry for "JavaScript client 1.0.1". Follow through that link and download
the ZIP file. At the time of writing the result will be:

Page 412

https://projects.eclipse.org/projects/technology.paho/downloads

paho.javascript-1.0.1.zip

we can then unzip the file using unzip. Within we will find a file called mqttws31.js.
This is the JavaScript source of the client and needs to be included in the HTML file that
will be using MQTT. Here is an example HTML with embedded JavaScript illustrating us
connecting to a broker and registering a subscription. When a message is published to
the matching topic, it is logged to the browser console.

<html>
 <head>
 <script src="mqttws31.js"></script>
 <script>
var client = new Paho.MQTT.Client("192.168.1.101", 8081, "/", "CLIENT1");
client.onMessageArrived = function(message) {
 console.log("Message arrived ...: " + message.payloadString);
};
client.onMessageDelivered = function(message) {
 console.log("Message delivered ...");
};
client.connect({
 onSuccess: function() {
 console.log("On success ... we are now client connected to the broker!");
 client.subscribe("greeting", {
 onSuccess: function() {
 console.log("Subscription success ...");
 },
 onFailure: function(context, errorCode) {
 console.log("Failed to make a subscription ... code=" + errorCode);
 }
 });
 },
 onFailure: function(context, errorCode, errorMesage) {
 console.log("On failure ... code=" + errorCode + ", message=" + errorMesage);
 }
});
 </script>
 </head>
 <body>
 </body>
</html>

Within the mosquitto.conf file, we will have an entry that looks like:

listener 1883
protocol mqtt

listener 8081
protocol websockets
http_dir /mnt/pc/projects/robot

Page 413

This defines that we will listen on port 1883 for standard MQTT protocol while we will
also listen on port 8081 for websocket HTTP requests and if a request to load a page
arrives, we will serve it from a given directory.

The API to publish a message is called "send" and takes as a parameter an MQTT
message object.

See also:

• Eclipse Paho JavaScript client

• Paho API JavaScript documentation

• The Mosquitto MQTT broker gets Websockets support

CoAP – Constrained Application Protocol
When we typically think of networked computers, we imagine our desktop PCs. These
have powerful CPUs, lots of memory, networking cards and unlimited electrical power
sources (they are plugged into power outlets). Even our cell phones and tablets aren't
too dissimilar to these desktop PCs. Their CPUs are still relatively powerful, RAM is still
measured in megabytes and when the batteries in these devices gets low (after many
hours of usage) we think nothing about recharging them.

With IoT devices, characteristics change. We have limited CPU capabilities, very low
memory availability and electrical power is at a premium. For these devices to
communicate, every moment of radio transmission is a drain on power consumption. If
our transmission unit of information is 1000 bytes we could consider that 1000 units of
consumption. If we could reduce that to a 100 bytes or 10 bytes would the potentiality
to improve our power usage by a factor of 10 or 100 … and that is important.

If we think about common communication protocols like TCP/IP we will find that they are
quite "chatty" and have relatively high overheads. If we go even further up the stack
and start considering HTTP as a protocol, the overheads become extremely large.
Layer on top of these other data such as JSON or XML … and all of a sudden we find
that the number of bytes we are passing for "control" and "structure" as compared to the
actual content payload is grossly disproportionate. So … why then do we use these
protocols? The answer is standardization to achieve interoperability. We could invent
any number of binary protocols that are solution specific but these, by definition, would
have difficulty inter operating with each other. In addition, each time we wanted to
leverage one of these protocols, we would have to go through some degree of learning
curve. Not a great situation.

Thinking this through, we find that what we ideally want is a standardized protocol that
is designed to accommodate as many IoT use cases as possible but yet is designed
from the ground up to minimize byte sizes for transmission and hence reduce radio "on
time". Such a standard has been written and is called "The Constrained Application

Page 414

http://jpmens.net/2014/07/03/the-mosquitto-mqtt-broker-gets-websockets-support/
https://www.eclipse.org/paho/files/jsdoc/index.html
https://www.eclipse.org/paho/clients/js/

Protocol" or "CoAP". This standard has been issued as an IETF request for comments
(RFC 7252) which adds credibility to the selection. Let us now look and see how this
standard can be utilized in an ESP32 environment.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Ver T TKL Code Message ID

Token (if any, TKL bytes) …

Options (if any) …

1 1 1 1 1 1 1 1 Payload (if any) ...

Ver: Version. Must be 0x01.

T: Type of message:

• Confirmable (0x00)

• Non-Confirmable (0x01)

• Acknowledgement (0x02)

• Reset (0x03)

TKL: Token length – A value between 0 and 8 (inclusive). 9-15 are reserved.

Code: An 8 bit unsigned value that is coded in 3 bits (called the class) and 5 bits (called
the detail). The class can be:

• request – 0

• success response – 2

• client error response – 4

• server error response – 5

The options that follow are encoded for minimal space. While the encoding scheme is
undoubtedly sensible to achieve minimum data size, it is worthless to describe its
minutia here. Suffice it to say that there can be an arbitrary number of options of
arbitrary length. Each option is represented by a numeric code and a value of zero or
more bytes. There is a special "terminator" option type that can be used to terminate
the sequence of options.

See also:

• IETF RFC 7252 – The Constrained Application Protocol (CoAP)

Page 415

https://tools.ietf.org/html/rfc7252

FTP
FTP is the File Transfer Protocol. On Linux we can install an FTP server using:

$ sudo apt-get install ftpd

and we can install an FTP client using:

$ sudp apt-get install ftp

TFTP
The Trivial File Transfer Protocol is a simple protocol for moving named files around.
The underlying transport is a sequence of data-grams as opposed to a connection.

It has no directory listing capabilities and no security features.

A TFTP server can be installed on Linux using:

$ sudo apt-get install tftpd

An implementation of a TFTP server is available as part of Kolban's C++ library.

A TFTP server listens on a well known port (69 by default). A client can either request to
upload a new file or request to download a file.

For upload, this is called a "write request". The client sends a message of the format:

 2 bytes string 1 byte string 1 byte
 --
| Opcode | Filename | 0 | Mode | 0 |
 --

The Opcode in this case will be WRQ (2). On receipt of the request, the TFTP server
will create a new socket and bind it to a local port. It will then send an acknowledgment
back to the client. An acknowledgment consists of:

 2 bytes 2 bytes

| Opcode | Block # |

A WRQ is acknowledged with an ACK packet having a block number of 0. Following
the acknowledgment, data packets will be received of the format:

 2 bytes 2 bytes n bytes

| Opcode | Block # | Data |

For a download a "read request" is received. The client sends a message of the format:

Page 416

 2 bytes string 1 byte string 1 byte
 --
 | Opcode | Filename | 0 | Mode | 0 |
 --

This will then cause the TFTP server to send data packets and wait for a corresponding
ACK. The TFTP server may send data in chunks of 512 bytes. To signal the end of the
transmission, it will send a data block of less than 512 bytes in length. If the last block
should happen to be exactly 512 blocks it will send a 0 length block after the ACK.

See also:

• Wikipedia – Trivial File Transfer Protocol

• RFC1350 – The TFTP Protocol Rev 2

• atftp – man(1)

Telnet
An open source implementation of the telnet protocol is available on Github.

When we think of Telnet, we should imagine an initial conversation between the client
and the server where they negotiate the options that each supports. Each possible
option is described by a struct telnet_telopt_t which defines whether "we" support it
or not and whether "he" supports it or not. If we support an option, we supply
TELNET_WILL and if not, we supply TELNET_WONT. If we require that the partner must do
something we specify TELNET_DO otherwise TELNET_DONT.

We initialize a telnet environment with a call to telnet_init(). This has the signature:

telnet_t *telnet_init(
 const telnet_telopts_t *telopts,
 telnet_event_handler_t handler,
 unsigned char flags,
 void *userData)

The returned instance of telnet_t can be released with a call to telnet_free().

On receipt of data from the partner, we pass that into the telnet environment with a call
to telnet_recv(). This has the signature:

telnet_recv(
 telnet_t *telnet,
 const char *buffer,
 unsigned int size)

To send a telnet command, we execute telnet_iac().

To negotiate an option, we use telnet_negotiate().

Page 417

https://linux.die.net/man/1/atftp
https://tools.ietf.org/html/rfc1350
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

To send data, we use telnet_send() or telnet_printf().

For sub-option negotiation we have the pair telnet_begin_sb() and
telnet_finish_subnegotiation().

Th event handler is an instance of a telnet_event_handler_t which is a function with
the following signature:

void handler(telnet_t *telnet, telnet_event_t *event, void *userData)

A telnet_event always contains a field called type which identifies what type of event it
is. The choices are:

• data

◦ type

◦ buffer

◦ size

• error

◦ type

◦ file

◦ func

◦ msg

◦ line

◦ errcode

• iac

◦ type

◦ cmd

• neg

◦ type

◦ telopt

• sub

◦ type

◦ buffer

◦ size

◦ telopt

Page 418

The telnet types are:

• TELNET_EV_DATA – Data received from the partner.

• TELNET_EV_SEND – Request to send data to the partner.

See also:

• Github: seanmiddleditch/libtelnet

• RFC854

• RFC855

DNS Protocol
The Domain Name Service protocol is responsible for resolving a domain name (eg.
www.google.com) into the IP address that one should use to form a connection to that
service provider. A TCP/IP network doesn't use string names but instead uses IP
addresses which are typically 4 byte values. Since we humans don't want to try and
remember these numbers there is the ability to provide a mapping from text names to
those IP addresses. Servers located on the internet collaborate together to provide the
mapping from names to addresses. Such servers are called "name servers". The
protocol an application uses to resolve a name to a corresponding IP address in the
DNS protocol.

DNS servers typically listen on UDP port 53. When a local application has a domain
name that it wishes to resolve to an IP address, it passes it to a local component
logically called a "resolver". The resolver then works with distributed name servers to
obtain the result.

When a UDP message is received by a DNS server, it has the following header:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID

QR OPCODE AA TC RD RA Z RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

• QR – Query/Response flag

◦ 0 – query

◦ 1 – response

Page 419

https://tools.ietf.org/html/rfc855
https://tools.ietf.org/html/rfc854
https://github.com/seanmiddleditch/libtelnet

• OPCODE

◦ 0 – query

◦ 1 – inverse query

◦ 2 – server status request

• AA – Authoritative Answer

◦ 0 – no

◦ 1 – yes

• TC – Truncated Message

◦ 0 – no

◦ 1 - yes

• RD – Recursion Desired

• RA – Recursion Available

• Z – Reserved (must be 0)

• RCODE – Response code

◦ 0 – no error

◦ 1 – format error

◦ 2 – server failure

◦ 3 – name error

◦ 4 – not implemented

◦ 5 – refused

A Question section record has the format:

• QNAME – a repeating section

◦ Length byte = 0 for last entry

◦ Label for length bytes

• QTYPE – 16 bits

◦ 1 – Host record (A)

◦ 2 – NS record

• QCLASS – 16 bits

Page 420

◦ 1 – Internet

A response should also contain the original request.

An answer to a query is in the resource record format. The format of the record looks
like:

• NAME – The domain name to which this record corresponds. This is the same
format as the QNAME field.

• TYPE – Resource record type.

◦ 1 – IPv4 Address

◦ others ...

• CLASS – The class of data.

◦ 1 – Internet

◦ others ...

• TTL – A 32 bit unsigned supplying the seconds for which this record is valid for. A
value of 0 means valid for this response but not to be cached.

• RDLENGTH – The size of RDATA as an unsigned 16 bit value.

• RDATA – The data of the response.

See also:

• DNS Protocol

• RFC1035

• Network sorcery – DNS protocol

Mobile apps

Blynk
Blynk is reported as being able to work with the ESP32 using the Arduino libraries.

See also:

• Blynk home page

• Blynk – ESP32

• YouTube: thingSoC ESP32 with Blynk

Cloud environments
It is becoming increasingly common to leverage the services of a cloud hosted
environment to process Internet Of Things (IoT) based data. A cloud provider provides

Page 421

https://www.youtube.com/watch?v=nL1G5gELSNw
https://github.com/blynkkk/blynk-library/tree/master/examples/Boards_WiFi/ESP32_WiFi
http://www.blynk.cc/
http://www.networksorcery.com/enp/protocol/dns.htm
https://tools.ietf.org/html/rfc1035
https://technet.microsoft.com/en-us/library/dd197470(v=ws.10).aspx

an end-point on the internet which is managed by the provider. It commonly accepts
incoming data in a variety of protocols over a variety of transports and handles the data
when it arrives. That could be as simple as storing it in a data store or could be more
complex such as running a server side application on the received data. In addition to
receiving the incoming data, some cloud environment provide the mechanics to manage
an IoT based device such as controlling its operation or pushing new firmware to it. All
of this is done at scale. The number of devices and the amounts of data needing to be
transmitted can be as high as needed. Vendors offer these cloud based services for a
fee. After all, running a server and ensuring it is operational requires resources
including time, staff and systems. In addition, to accommodate large volumes of huge
number of devices, these vendors may be managing high end environments including
network redundancy, transparent fail-over and "elasticity" in the provisioned services …
growing as needed and shrinking when idle. The fees charged by the vendors are
commonly "metric" based fees charged as a function of how much resources you
consumed. A customer with 100 devices with 1 message a minute per device doesn't
consume the same resources as a customer with 100000 devices with 10 messages a
second per device. Consult with the vendors for pricing. Typically, many offer
evaluation access (you can play for free for 30 days) or constrained access (you can
submit 100 messages a day).

IBM Bluemix
Bluemix is a quality offering from IBM that provides a wealth of cloud based capabilities
including application hosting and much more. However, for our story, all we concern
ourselves with is the IoT portion. With a Bluemix account, one can create "IoT
Services" which run in the Bluemix cloud. These become the "end-points" of an IoT
client. For our discussions, such a client is an ESP32. When we configure a Bluemix
IoT service we start by defining a logical device type. This allows us to model the
characteristics of our IoT device and its properties. With a template of an IoT device
type created, we can then tell Bluemix that we have device instances. Each instance is
created from the IoT device type model and hence inherits its attributes. When we have
modeled a device instance, Bluemix will supply us a security token which is a string of
characters. When that actual device connects to Bluemix, the connection request will
include the security token plus the identity name of the device. Bluemix will use this pair
to validate that the device is who it claims to be.

We can model each instance of physical ESP32 devices in this manner or, we can have
each instance use the same device identifier. Flexibility is the name of the game. By
giving each device its own device identifier, we can instruct Bluemix to "disallow"
specific connections from specific devices should we choose.

Page 422

The messages sent by the ESP32 to Bluemix are based on the MQTT protocol so if we
wish to write an ESP32 based Bluemix application, we would start by ensuring that we
can publish MQTT messages. There are a variety of technologies to help us achieve
that.

If This Then That – IFTTT
The notion behind the "If This Then That" technology is the simple concept of pairing
sources of events with actions that can be performed. The If This Then That (IFTTT)
web site allows anyone to pair together a trigger (a source of an event) and action (an
action to be performed). The sources of events are rich … extremely rich and there are
hundreds to choose from. However, from the perspective of an ESP32 programmer,
there is one source that stands out … it is called "Maker".

Once configured, we can send in a REST request with a JSON payload to a URL
endpoint. The REST request includes:

• The type of event we are submitting

• A token that identifies the service we are targeting

• Three optional parameter values

Using this as a source of an event, we can then wire that into an action to be performed
when such an event arrives. This takes us to the actions that can be performed by
IFTTT. Once again there are hundreds of choices to choose from including sending
SMS messages, emails, tweets and more … including making a REST request which
itself could be targeted at an ESP32.

See also:

• IFTTT

Storage programming
The notion of storage programming encompasses techniques for storing data for later
retrieval or examination. The ESP32 has RAM but when the ESP32 is switched off, the
RAM content is lost. As such we need a mechanism to make that storage more
permanent. The ESP32 usually has access to flash memory that is electrically

Page 423

https://ifttt.com/discover

connected via a dedicated SPI bus. Typically the flash memory size is 4MBytes. We
can access the flash memory through the SPI Flash APIs.

See also:

• SPI Flash

Partition table
The ESP32 architects a concept called the partition table which is basically a "map" or
"layout" of what is contained within the flash storage. The partition table is found at
0x8000 in flash for a length of 0xC00 bytes providing space for about 95 distinct table
entries. Each entry in the table has a record structure which logically contains:

• type – The type of the partition. One of:

◦ data

◦ app

• subtype – The sub-type of the partition. One of:

◦ nvs – Used for non volatile storage.

◦ phy

◦ factory

◦ coredump – Used to hold core dumps.

◦ ota

◦ fat – Used for the FAT file system.

• address – The offset address (flash) of the start of the partition.

• size – The size of the partition in bytes.

• label – An optional null terminated string (max 16 characters + NULL)

• encrypted – Is the partition encrypted.

The partition table is read-only to our applications and can be accessed with a rich API
provided by the ESP-IDF. The table is written into flash storage by the flash tool.

The offset size is optional. Blank offsets will be placed contiguously after the previous
data. Offsets are 64K aligned.

A tool called "gen_esp32part.py" is available as part of the tooling to build binary
representations of the table. We can build a binary table from a comma separated
value file using:

Page 424

$ gen_esp32part.py –verify input_partitions.csv binary_partitions.bin

We can convert a binary file back to a CSV using:

$ gen_esp32part.py --verify binary_partitions.bin input_partitions.csv

and we can list the content of a binary file using:

$ gen_esp32part.py binary_partitions.bin

The partition table used by your application is defined by make menuconfig in the
Partition Table entry:

Within that section we have three possibilities:

Page 425

If we select to use a custom partition table, there are further options:

• Custom partition CSV file – The Comma Separated Values file that contains
the text description of our partition definitions.

• Factory app partition offset – The location of our factory application.

I recommend starting with the ESP-IDF supplied partition table as a skeleton. Take a
copy of this and place in your project. The supplied file can be found at:

Page 426

<ESP-IDF>/components/partition_table/partitions_singleapp.csv

and copy this to the file:

paritions.csv

See also:

• Partition API

• esp_vfs_fat_spiflash_mount

• esp_vfs_fat_register

Non Volatile Storage
Non volatile storage is memory that can be written to such that after a power off or
restart, the same data can be read from it again without loss. It is preserved over a
restart. Within this data we can store configuration and operational values for our
applications. For example, we might store the network SSID and password such that
when the device is restarted, it know which network to connect to and the password to
present.

The storage is partitioned into named areas. For a given named area, we can then
write name/value pairs to the storage and also read name/value pairs. There are
getter/setter functions for most data types including signed and unsigned integers,
strings and blobs of data.

A named area is opened for access with a call to nvs_open(). The name of the area is
passed in as a parameter. We are returned a logical "handle" that we can subsequently
use to refer to this storage area. Once we have a handle, we can get/set items of
named data. The data items are referenced by a key name … effectively turning the
storage area into a hash map. If we change data by performing a set function, this
does not automatically cause the data to be written to the nonvolatile storage. Instead,
the storage is updated when we call nvs_commit(). It is up to the internal
implementation as to when the actual update is performed and it could happen prior to
nvs_commit(). The contract is that when we return from nvs_commit() then we are
assured that all updates have been processed. When we have done all our sets and
gets, we should call nvs_close() to declare that we are not going to work with storage
any more at this time so that the run-time can clean up any resources it may have
opened.

The details of the algorithms used to manage NVS are exposed in the documentation.
The high level intent of NVS is to store simple strings and integers and other flags as
opposed to be a rich "file system" like structure. There is currently no de-fragmentation
performed on the storage.

Page 427

See also:

• nvs_open

• nvs_commit

• nvs_close

Virtual File System
The Virtual File System (VFS) is the architecture provided by the ESP-IDF that gives us
the capability of saving and loading data from our applications using a file system I/O.
The VFS isn't tied to any one particular technology but is instead an architectural
abstraction used to provide the I/O interface to a variety of different implementations.

The key to the VFS is a data type called esp_vfs_t. This structure contains the
following:

• fd_offset –

• flags – Operational flags. Use ESP_VFS_FLAG_DEFAULT.

• close/close_p – Close a previously opened file.

• closedir/closedir_p – Close a previously opened directory.

• fstat/fstat_p – Get stats/details of a file.

• link/link_p – Create a new link to a file.

• lseek/lseek_p – Change the data pointer within a file.

• mkdir/mkdir_p – Create a new directory entry.

• open/open_p – Open a named file.

• opendir/opendir_p – Open a directory for reading.

• read/read_p – Read the contents of a file.

• readdir/readdir_p – Read a record from a directory.

• rename/rename_p – Rename a file.

• rmdir/rmdir_p – Delete a directory entry.

• seekdir/seekdir_p – Set the position of the next readdir().

• stat/stat_p – Get stats/details of a file.

• telldir/telldir_p – Return the current direction stream.

• unlink/unlink_p – Remove a file.

• write/write_p – Write into a file.

Page 428

After populating the structure, we need to register our new virtual file system with a call
to esp_vfs_register().

We need to be cognizant that the intended caller of file I/O expects a POSIX like
environment.

See also:

• esp_vfs_register

• Virtual filesystem component

VFS Implementations
Since the VFS provides an architectural model, we need to consider actual
implementations of it. As of 2016-11, none are yet available. The first anticipated
implementations will be file systems stored in flash. These will provide persistent
storage of data through a file API. Potential implementations will include FAT or
SPIFFS.

We can also produce our own specialized implementations. One interesting idea is to
allow the ESP32 to be a network client of external file systems. Possibilities include:

• NFS

• SSH

• FTP

• TFTP

• HTTP servers

• Google Drive

• Other cloud based systems

It may seem strange to have a network device access data through a file mechanism
only to have it then farm out the requests as another network call … however there may
be benefits. The ESP32 could cache the received data either in RAM or local flash and
only perform external network requests if the requested data is not available elsewhere.

When working with file I/O, we can use the streams file mechanisms imported via
"stdio.h" or use the lower level file I/O imported through "fcntl.h".

See also:

• VFS mapping to SPIFFS

Page 429

https://github.com/nkolban/esp32-snippets/tree/master/vfs/spiffs
http://esp-idf.readthedocs.io/en/latest/api/vfs.html

FATFS File System
The FatFs file system is an implementation of the FAT/exFAT file system as found in
earlier PC operating systems such as MS-DOS and early Windows (before FAT32 and
NTFS). The implementation is open source and is supplied "pre-ported" to the ESP32
as part of the ESP-IDF distribution.

The ESP-IDF mapping for the FATFS maps the file system to the posix IO functions.
This means that we don't need to learn any special APIs in order to read and write files.
We can use open(), close(), read(), write() and the other methods exposed through
Virtual File System.

Before we can use these APIs, we need to perform some preliminary setup.

1. Call esp_vfs_fat_register

2. Call ff_diskio_register

3. Call f_mount

To unregister

1. Close all open files

2. Call f_mount with NULL

3. Call ff_diskio_register with NULL

4. Call esp_vfs_fat_unregister

By default, the filenames are constrained to the old 8.3 format (short names), however,
should we choose, we can enable long file name control in the make menuconfig
settings.

See also:

• FatFS – Generic FAT File System Module

• Virtual File System

• FatFs file system

Spiffs File System
The SPI Flash File System (SPIFFS) is a file system mechanism intended for
embedded devices. To configure SPIFFs we need to determine some numbers.

First is the physical page size. Next comes the physical block size. Next we decide on
the logical block size. This will be some integer multiplier of the physical block size.

Page 430

http://elm-chan.org/fsw/ff/00index_e.html

The whole SPIFFS file system must be a multiple of the logical block size. Next comes
the logical page size which is some multiplier of the logical block size.

A common ESP32 sizing is 64K for the logical block size and 256 for the logical page
size.

To be clear a 1 block is n x pages.

When a SPIFFS API call is made, a zero or positive response indicates success while a
value < 0 indicates an error. The nature of the error can be retrieved through the
SPIFFS_errno() call.

The SPIFFS implementation does not directly access the flash memory. Instead, a
functional area called a hardware abstraction layer ("hal") provides this service. A
SPIFFS integration requires that three functions be created that have the following
signatures:

s32_t (*spiffs_read)(u32_t addr, u32_t size, u8_t *dst)
s32_t (*spiffs_write)(u32_t addr, u32_t size, u8_t *src)
s32_t (*spiffs_erase)(u32_t addr, u32_t size)

If they succeed, the return code should be SPIFFS_OK (0). On an ESP32, these will map
to the SPI flash APIs.

To use a SPIFFS file system, we must perform a call to SPIFFS_mount(). This takes as
input a configuration structure that tells SPIFFS how much flash is available and a
variety of other properties. In addition, some working storage must be allocated for
various internal operations. These sizes can be tuned.

Here is an example of configuration for mounting a file systems:

#define LOG_PAGE_SIZE 256

static uint8_t spiffs_work_buf[LOG_PAGE_SIZE*2];
static uint8_t spiffs_fds[32*sizeof(uint32_t)];
static uint8_t spiffs_cache_buf[(LOG_PAGE_SIZE+32)*4];

spiffs fs;
spiffs_config cfg;
cfg.phys_size = 512*1024; // use 512K
cfg.phys_addr = 2*1024*1024 - cfg.phys_size; // start spiffs at 2MB - 512K
cfg.phys_erase_block = 65536; // according to datasheet
cfg.log_block_size = 65536; // let us not complicate things
cfg.log_page_size = LOG_PAGE_SIZE; // as we said

cfg.hal_read_f = esp32_spi_flash_read;
cfg.hal_write_f = esp32_spi_flash_write;
cfg.hal_erase_f = esp32_spi_flash_erase;

int res = SPIFFS_mount(&fs,

Page 431

 &cfg,
 spiffs_work_buf,
 spiffs_fds,
 sizeof(spiffs_fds),
 spiffs_cache_buf,
 sizeof(spiffs_cache_buf),
 0);

Once we have mounted the file system, we can then open a file, write content into it and
close it. For example:

char *fileName = "/f1/my_file";
spiffs_file fd = SPIFFS_open(&fs, fileName,
 SPIFFS_CREAT | SPIFFS_TRUNC | SPIFFS_RDWR, 0);
SPIFFS_write(&fs, fd, (u8_t *)"Hello world", 12);
SPIFFS_close(&fs, fd);

Similarly, if we wish to read data from the file we can perform the following:

char buf[12];
spiffs_file fd = SPIFFS_open(&fs, fileName, SPIFFS_RDWR, 0);
SPIFFS_read(&fs, fd, (u8_t *)buf, 12);
SPIFFS_close(&fs, fd);

Using the

The SPIFFS file system could be hierarchical in nature such that it contains both
directories and files but it seems that in reality it is not. There is only one directory
called the root. The root directory is "/". To determine the members of a directory, we
can open a directory for reading with the SPIFFS_opendir() API and, when we are
finished, close the reading operation with a SPIFFS_closedir() API call. We can walk
through the directory entries with calls to SPIFFS_readdir().

For example:

spiffs_DIR spiffsDir;
SPIFFS_opendir(&fs, "/", &spiffsDir);
struct spiffs_dirent spiffsDirEnt;
while(SPIFFS_readdir(&spiffsDir, &spiffsDirEnt) != 0) {
 printf("Got a directory entry: %s\n", spiffsDirEnt.name);
}
SPIFFS_closedir(&spiffsDir);

To make this clear, in Linux, if we created "/a/b/c.txt" this would normally create a file
called "c.txt" in a directory called "b" in a directory called "c". In SPIFFS, this actually
creates a single file called "/a/b/c.txt" where the "/" characters are merely part of the
file name. When we perform SPIFFS_opendir(), there isn't actually a directory structure
but just one single flat list of ALL files which may or may not have "slashes" in their
names.

To create a file, we can use the SPIFFS_open() API by supplying a SPIFFS_CREAT flag.

Page 432

See also:

• SPIFFs API

• Github: pellepl/spiffs

• Github: igrr/mkspiffs – The mkspiffs tool.

• SPI Flash

• Virtual File System mapping to SPIFFS

Building SPIFFs for the ESP32
Under the heading of "let's build on each other", an excellent job has been done of
porting SPIFFs to the ESP32 by the LUA team (Jaume Olivé Petrus). The source code
can be found:

https://github.com/whitecatboard/Lua-RTOS-ESP32/tree/master/components/spiffs.

They have packaged it as an ESP-IDF component.

mkspiffs tool
In addition to the fantastic SPIFFs library, there is also a tool called "mkspiffs" that can
take a directory structure on your file system and build a SPIFFs image from it that can
then be loaded into flash memory to provide pre-loaded data.

One can download the Git repository for mkspiffs and compile it. I found no issues and
it compiled at first go.

The syntax is:

mkspiffs { -c <packdir> | -u <destdir>|-l|-i} \
 -b <number> -p <number> -s <number>

One of:

• -c <directory to pack>

• -u <dest to unpack into>

• -l – list content

• -i – visualize content

and

• -b <number> – Block size in bytes (for example 65536)

• -p <number> – Page size in bytes (for example 256)

• -s <number> – fs image size in bytes.

Page 433

https://github.com/whitecatboard/Lua-RTOS-ESP32/tree/master/components/spiffs
https://github.com/nkolban/esp32-snippets/tree/master/vfs/spiffs
https://github.com/igrr/mkspiffs
https://github.com/pellepl/spiffs

Visualizing an image file shows results such as:

 0 idid___________ era_cnt: 0
 1 _______________ era_cnt: 0
 2 _______________ era_cnt: 0
 3 _______________ era_cnt: 0
 4 _______________ era_cnt: 0
 5 _______________ era_cnt: 0
 6 _______________ era_cnt: 0
 7 _______________ era_cnt: 0
 8 _______________ era_cnt: 0
 9 _______________ era_cnt: 0
 10 _______________ era_cnt: 0
 11 _______________ era_cnt: 0
 12 _______________ era_cnt: 0
 13 _______________ era_cnt: 0
 14 _______________ era_cnt: 0
 15 _______________ era_cnt: 0
era_cnt_max: 1
last_errno: 0
blocks: 16
free_blocks: 15
page_alloc: 4
page_delet: 0
used: 1004 of 52961
total: 52961
used: 1004

Once we have an image file, we can the load it to flash with:

esptool.py --chip esp32 --port "/dev/ttyUSB0" --baud 115200 write_flash -z
--flash_mode "dio" --flash_freq "40m" <address> <file>

See also:

• Github: igrr/mkspiffs – The mkspiffs tool.

The ESP File System – EspFs
Part of the Github project known as "Spritetm/libesphttpd" is a module called "espfs"
which is the "ESP File System". What this module does is allow one to make an image
from a set of files on your PC and store that image in flash memory. From there, a set
of APIs are provided to read and access those files and their content. It is vital to note
that the data in these files is read-only. There is no API to update the content of the
files. Only the data that is initially written to flash is available to be read.

As part of the project there is a utility called "mkespfsimage" that takes as input a set of
file names and streams as output the image data that should be flashed. For example:

find | ./mkespfsimage [-c compressor] [-l compression_level] > out.espfs

(Note that the project has compression capabilities that I am ignoring at this point).

Page 434

https://github.com/igrr/mkspiffs

Once the data is in flash, we can then use the APIs supplied by the component to
perform the underlying data access.

They are:

• EspFsInitResult espFsInit(void *flashAddress)

• int espFsFlags(EspFsFile *fh)

• EspFsFile *espFsOpen(char *fileName)

• int espFsRead(EspFsFile *fh, char *buff, int len)

• void espFsClose(EspFsFile *fh)

An attempt to port the code to utilize ESP32 technologies was undertaken and can be
found here:

https://github.com/nkolban/esp32-snippets/tree/master/filesystems/espfs

This adds a new function called:

• int espFsAccess(EspFsFile *fh, void **buf, size_t *len)

This function returns a pointer to the whole content of the file which is stored in buf.
The length of the file is stored in len and also returned from the function as a whole.
The data is accessed directly from flash without any RAM copies.

In addition, the function called:

• EspFsInitResult espFsInit(void *flashAddress, size_t size)

was augmented to include the size of the flash storage to map.

Here is an example application:

ESP_LOGD(tag, "Flash address is 0x%x", (int)flashAddress);
if (espFsInit(flashAddress, 64*1024) != ESPFS_INIT_RESULT_OK) {
 ESP_LOGD(tag, "Failed to initialize espfs");
 return;
}

EspFsFile *fh = espFsOpen("files/test3.txt");

if (fh != NULL) {
 int sizeRead = 0;
 char buff[5*1024];
 sizeRead = espFsRead(fh, buff, sizeof(buff));
 ESP_LOGD(tag, "Result: %.*s", sizeRead, buff);

 size_t fileSize;
 char *data;

Page 435

https://github.com/nkolban/esp32-snippets/tree/master/filesystems/espfs

 sizeRead = espFsAccess(fh, (void **)&data, &fileSize);
 ESP_LOGD(tag, "Result from access: %.*s", fileSize, data);

 espFsClose(fh);
}

SD, MMC and SDIO interfacing
Secure Digital (SD) is a standard for removable media. These devices are also known
as "flash cards" or "SD cards". The idea is that an SD card contains data that can be
both read and written. The SD cards store the data as raw memory and it is common to
create a file system that lives on top of the data. The FAT16 and FAT32 file system
formats are commonly used. SD cards come in a variety of physical dimensions and
with a variety of capacities and speeds. For the physical dimensions there are three
distinct types known as "SD", "miniSD" and "microSD" ranging from largest to smallest.
For capacity, there are again three distinct types known as "SD", "SDHC" and "SDXC".

SD SDHC SDXC

Capacity x <= 2GB 2GB <= x <=32GB 32GB <= x <= 2TB

File system FAT12, FAT16 FAT32 exFAT

For our story, we will ignore SDXC.

An additional characteristic of SD cards is their rated speed. The common speeds are:

Class 2 2MB/s

Class 4 4MB/s

Class 6 6MB/s

Class 10 10MB/s

The SD specification is large and comprehensive. If we were to try and implement the
SD specification ourselves we would be delving down into a whole host of puzzles. As
such, it is common to leverage pre-existing implementations of the specification and,
thankfully, the ESP-IDF provides us with exactly that.

There is also an excellent example application provide in the examples/storage/sd_card
directory of the ESP-IDF.

The SD card can be used to hold data but can not be used to hold instruction code for
execution. As such, the SD card shouldn't be considered as an alternative to the flash
memory accessible via SPI for code storage. The SD card should be used to store
application data that can be read by or written by running applications.

See also:

Page 436

• Wikipedia: Multi Media Card

• Wikipedia: Secure Digital

• SD Association

ZIP files
The ZIP file format is a common technique for archiving and compressing a set of files
into a single file for subsequent extraction.

On Linux, for example:

$ zip -r mydata.zip mydir

See also:

• libzip

• Github: kuba--/zip

• miniz

• Github: miniz

• man(1) – zip

miniz
mz_zip_zero_struct(mz_zip_archive *pZip)

Initialize a reader

mz_bool mz_zip_reader_init_mem(
 mz_zip_archive *pZip,
 const void *pMem,
 mz_uint64 size,
 mz_uint flags)

mz_zip_reader_get_num_files(mz_zip_archive *pZip)

mz_bool mz_zip_reader_end(mz_zip_archive *pZip)

mz_zip_error mz_zip_get_last_error(mz_zip_archive *pZip);

kuba--/zip
zip_open(const char *fileName, int level, char mode)

zip_close

zip_entry_open

zip_entry_close

zip_entry_read

Charting data
Consider some of the sensors we have been discussing. By definition, a sensor reports
on data that it measures. We can have our ESP32 perform actions based on the
sensed data, however there are other things that we might want to do with that data.

Page 437

https://linux.die.net/man/1/zip
https://github.com/richgel999/miniz
https://code.google.com/archive/p/miniz/
https://github.com/kuba--/zip
https://nih.at/libzip/
https://www.sdcard.org/
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/MultiMediaCard

For example, using a temperature and pressure sensor, we almost immediately have a
weather station and we might like to chart our data over time. This then leads us to
think about different charting options available to us.

The puzzle of charting data can usually be broken up into a set of distinct areas:

1. Reading data from sensors.

2. Recording / transmitting the sensor data.

3. Drawing / updating the charts from the data.

The first of these we won't discuss here. The reason for that is that the techniques for
interacting with a sensor varies by sensor type and, as such, are wide and varied and
covered elsewhere in this book.

Once we have started reading data from the sensor, what are we to do with it? There
are some obvious possibilities. The first is to save it locally on the ESP32 for
subsequent retrieval or analysis. We can write our data into flash memory or into a
micro SD card. This data can then be subsequently processed at a later time on the
ESP32 or in the case of a micro SD card, the card can be extracted and placed in
another reader. While this is of course of some use, the real beauty of the ESP32 is its
ability to form network connections. If the ESP32 were to form a network connection to
a some "consumer" of the data, then the data could either be extracted at a later time
or, as we are about to discuss, could be used to stream the data live from the device.

If we read data from a sensor and have a TCP connection to the ESP32 from some
external computer, the ESP32 could send the data down the TCP connection for
consumption at the receiver. This way the ESP32 would not need to locally save the
data as it is immediately off-loaded to the back-end computer. With cloud based
technologies, we can choose a cloud provider and send the data there. Alternatively,
we can use simple tools to get the data from Windows or Linux as the target of the
ESP32 transmitted readings.

Page 438

An example of such a tool is the Linux "netcat" launched through "nc". This can
connected to an arbitrary IP/port pair and echos the data received to stdout. We can
redirect the output to a file and we end up with a growing file of data. The ESP32 app
reading from the sensor can then send the sensor data (perhaps formatted for output)
down the socket and it will end up in the file.

Kst
The latest version of Kst is launched from Linux using "kst2".

See also:

• Kst home page

Sample Snippets
There are times when all we need is a snippet of code that we can copy to achieve a
task. Here we present a set of such snippets that may of use simply by copying and
pasting them. A repository on Github has been created for hosting the snippets. The
repository may be found at:

https://github.com/nkolban/esp32-snippets

Included in the repository are:

Page 439

https://github.com/nkolban/esp32-snippets
https://kst-plot.kde.org/

• vfs/vfs-skeleton – A sample skeleton app for VFS

Sample applications
Reading and reviewing sample applications is good practice. It allows you to study
what others have written and see if you can understand each of the statements and the
program flow as a whole.

Sample – Ultrasonic distance measurement
The HC SR-04 is an ultrasonic distance measurement sensor.

Send a minimum of a 10us pulse to Trig (low to high to low). Later, Echo will go
low/high/low. The time that Echo is high is the time it takes the sonic pulse to reach a
back-end and bounce back.

Speed of sound is 340.29 m/s (340.29 * 39.3701 inches/sec). Call this Vsound.

Page 440

https://github.com/nkolban/esp32-snippets/tree/master/vfs/vfs-skeleton

If Techo is the time for echo response then d = (Techo * Vsound) / 2.

Also the equation for expected Techo lengths is given by:

Techo = 2d/Vsound

For example:

Distance Time

1cm 2 * 0.01 / 340 = 0.058 msecs = 59 usecs

10cm 2 * 0.1 / 340 = 0.59 msecs = 590 usecs

1m 2 * 1 /340 = 5.9 msecs = 5900 usecs (5.9 msecs)

Because the Echo response is a 5V signal, it is vital to reduce this to 3.3V for input into
into the ESP32. A voltage divider will work. The pins on the device are:

● Vcc – The input voltage is 5V.

● Trig – Pulse (low to high) to trigger a transmission … minimum of 10usecs.

● Echo – Pulses low to high to low when an echo is received. Warning, this is a 5V
output.

● Gnd – Ground.

To drive this device, we need to utilize two pins on the ESP32 that we will logically call
Trig and Echo. In my design, I set Trig to be GPIO17 and Echo to be GPIO16.

Page 441

Our design for the application will not include any networking but it should be
straightforward to ass it as needed. We will setup a timer that fires once a second
which is how often we wish to take a measurement. When the timer wakes up, we will
pulse Trig from low to high and back to low holding high for 10 microseconds. We will
now record the time and start polling the Echo pin waiting for it to go high. When it
does, we will record the time again and subtracting one from the one will tell us how
long it took the sound to bounce back. From that we can calculate the distance to an
object. If no response is received in 20 msecs, we will assume that there was no object
to detect. We will then log the result to the Serial console.

An example program that performs this design is shown next:

void mainThread(void *data) {
 gpio_pad_select_gpio(TRIG);
 gpio_pad_select_gpio(ECHO);
 gpio_set_direction(TRIG, GPIO_MODE_OUTPUT);
 gpio_set_direction(ECHO, GPIO_MODE_INPUT);
 while (1) {
 gpio_set_level(TRIG, 1);
 ets_delay_us(100);
 gpio_set_level(TRIG, 0);
 uint32_t startTime = system_get_time();

Page 442

 // Wait for echo to go high and THEN start the time
 while (gpio_get_level(ECHO) == 0 &&
 (system_get_time() - startTime) < 500 * 1000) {

 }
 startTime = system_get_time();
 while (gpio_get_level(ECHO) == 1 &&
 (system_get_time() - startTime) < 500 * 1000) {
 // Do nothing;
 }
 if (gpio_get_level(ECHO) == 0) {
 uint32_t diff = system_get_time() - startTime; // Diff time in uSecs
 // Distance is TimeEchoInSeconds * SpeedOfSound / 2
 double distance = 340.29 * diff / (1000 * 1000 * 2); // Distance in meters
 printf("Distance is %f cm\n", distance * 100);

 } else {
 // No value
 printf("Did not receive a response!\n");
 }
 // Delay and re run.
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 }
}

Once this has been written and tested, we will make a second pass at the puzzle but
this time using an interrupt to trigger the response to the echo.

See also:

• GPIOs

Sample – WiFi Scanner
A WiFi scanner is an application which periodically scans for available WiFi networks
and shows them to the user. In our design, we will scan periodically and remember the
set of networks we find. When we perform re-scans, we will check to see if each of the
networks located is a network we have previously seen and, if not, list it to the user. We
will also keep a "last seen" time for each network and if a network has not been seen for
a minute, then we will forget about it such that if it appears again, we will once more list
it to the user.

To illustrate our design, we will break the solution into a number of parts. The first part
will be to register a callback function that is called every 30 seconds. This callback will
be responsible for requesting a WiFi scan using wifi_station_scan(). This takes a
callback function which itself will be invoked when the scan is complete.

Page 443

When the scan completes, we will have a new list of detected networks. We will walk
this list and for each network detected, determine if we have seen it before. If we have,
we will update the last seen time. If not, we will add it to the list of previously seen
networks and log it to the user.

A second timer callback will run once a minute and will walk the list of previously seen
networks. If any of them are older than a minute, we will remove them.

See also:

• Scanning for access points

Sample – A changeable mood light
NeoPixels are LEDs that are driven by a single data line of high speed signaling. Most
NeoPixels have a +ve and ground voltage source as well as a data line for input and a
data line for output. The output of one NeoPixel can be fed into the input of the next
one to produce a string of such LEDs. The input data to the LED is a stream of 24 bits
of encoded data which should be interpreted as 8 bits for the red channel, 8 bits for the
green channel and 8 bits for the blue channel. Each channel can thus have a
luminance value of between 0 and 255. By mixing the values for each of the channels
together, you can color an LED to any color you may choose. After sending in a stream
of 24 bits, if we send in a second stream of 24 bits quickly after the first stream, the
second stream is "pushed" through to the next LED in the chain. This can be repeated
as far as desired. If we pause sending in data, the current values are "latched" into
place and each LED them remembers its own value.

The timings of the data signals for these LEDs can be quite tricky but fortunately great
minds have already built fantastic libraries for driving them correctly so we need not
concern ourselves with these low level timings and can instead concentrate on devising
interesting projects and purposes to which the LEDs can be placed. There are a
number of different types of these LEDs with the most common ones being known as
WS2811, WS2812 or PL9823.

Within the Espruino JavaScript environment, a method called neopixelWrite() can be
found. This takes two parameters. The first is the ESP32 GPIO pin that will be used as
the source of the signals to the LEDs. It is to this pin that the LEDs should be wired.
The pin used for data output from the ESP32 to the NeoPixels should be set in GPIO
output mode. For example:

pinMode(pin, "output");

The second parameter is an array of integers. The values of the array should be
supplied in groups of 3 corresponding to the 3 channels of red, green and blue. For
example, if we had one NeoPixel connected to GPIO4 on an ESP32 and we wanted to
set it to all red, we might code:

Page 444

neopixelWrite(new Pin(4), [255, 0, 0]);

If we wanted the next pixel to be green while the first is red, we might write:

neopixelWrite(new Pin(4), [255, 0, 0, 0, 255, 0]);

Again, there is no obvious limit to the number of LEDs we can string together.

Now that we see that we can set the brightness and color of an LED, let us look at how
we might design some code to do something. Let us imagine that we had a string of 16
LEDs and wanted to make them the same color … we might define a function as
follows:

function colorLeds(red, green, blue) {
 var data = [];
 for (var i=0; i<16; i++) {
 data.push(green);
 data.push(red);
 data.push(blue);
 }
 esp8266.neopixelWrite(NodeMCU.D2, data);
}

If we call this function with the correct red, green and blue values, it will set the LEDs
string correctly.

Now let us go one step further. Imagine that we received a network REST request that
described the color that we want the LEDs to show. A complete application may be:

var esp = require("ESP8266");
var NodeMCU = {
 // D0: new Pin(16),
 D1 : new Pin(5),
 D2 : new Pin(4),
 D3 : new Pin(0),
 D4 : new Pin(2),
 D5 : new Pin(14),
 D6 : new Pin(12),
 D7 : new Pin(13),
 D8 : new Pin(15),
 D9 : new Pin(3),
 D10 : new Pin(1)
};

pinMode(NodeMCU.D2, "output");

function colorLeds(red, green, blue) {
 var data = [];
 for (var i=0; i<16; i++) {
 data.push(green);
 data.push(red);
 data.push(blue);
 }

Page 445

 esp.neopixelWrite(NodeMCU.D2, data);
}

function beServer() {
 var http = require("http");
 var httpServer = http.createServer(function(request, response) {
 print(request);
 var partsOfUrl = request.url.split("?");
 if (partsOfUrl.length > 1) {
 var options = partsOfUrl[1].split('&');
 var optionsObj = {};
 for (var i=0; i<options.length; i++) {
 var splitEquals = options[i].split('=');
 optionsObj[splitEquals[0]] = splitEquals[1];
 }
 print("Final obj: " + JSON.stringify(optionsObj));
 if (optionsObj.color !== null) {
 var red = parseInt(optionsObj.color.substr(0,2), 16);
 var green = parseInt(optionsObj.color.substr(2,2), 16);
 var blue = parseInt(optionsObj.color.substr(4,2), 16);
 print("red: " + red + ", green: " + green + ", blue: " + blue);
 colorLeds(red, green, blue);
 }
 }
 print("Result url = " + url);
 response.writeHead(200, {
 "Access-Control-Allow-Origin": "*"
 });
 response.end("");
 }); // End of on new browser request

 httpServer.listen(80);
 print("Now being an HTTP server!");
} // End of beServer

var ssid = "ssid";
var password = "password";

// Connect to the access point
var wifi = require("wifi");
print("Connecting to access point.");
wifi.connect(ssid, password, null, function(err, ipInfo) {
 if (err) {
 print("Error connecting to access point.");
 return;
 }
 var ESP8266 = require("ESP8266");
 print("Connect says that we are now connected!!!");
 print("Starting web server at http://" + ESP8266.getAddressAsString(ipInfo.ip)
+":80");
 beServer();
});

When this application runs, it connects to the local WiFI access point and then starts
listening for incoming REST requests. A rest request is expected to have a query

Page 446

parameter at the end with the format color=value where value is encoded as 6 hex
characters corresponding to the color. Finally, we can write a web page that will present
a color picker and, when we pick a color, send a REST request to the ESP32 to
illuminate the LEDs appropriately. Here is a sample web page to achieve this task:

<!DOCTYPE html>
<html>
<head>
<meta charset="ISO-8859-1">
<title>Set LED colors</title>

<link
 href="http://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.11.2/jquery-ui.min.css"
 rel="stylesheet" type="text/css" />
<script
src="http://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.15/require.min.js"></script>
<link rel='stylesheet' href='spectrum.css' />
<script>
 require
 .config({
 baseUrl : "src",
 paths : {
 "jquery" : "http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.1/jquery.min",
 "jquery-ui" : "http://cdnjs.cloudflare.com/ajax/libs/jqueryui/1.11.2/jquery-
i.min",
 },
 shim : {
 "jquery-ui" : {
 deps : ["jquery"],
 exports : 'jQueryUI'
 }
 }
 // End of shims
 });
 require(["jquery", "spectrum", "jquery-ui"], function($) {
 $(function() {
 var allowHttp = true;
 $("#flat").spectrum({
 flat : true,
 preferredFormat : "rgb",
 move : function(color) {
 if (allowHttp) {
 allowHttp = false;
 $.ajax({
 url : "http://192.168.1.10",
 data : {
 color : color.toHex()
 },
 success: function() {
 allowHttp = true;
 },
 error: function() {

Page 447

 allowHttp = true;
 }
 });
 }
 },
 showInput : true,
 showButtons : false
 });
 }); // End of on load
 }); // End of require
</script>
</head>
<body>
 <div id="flat" style="width:500px; height: 500px;"></div>
</body>
</html>

The end result as seen on the web page looks as follows:

Selecting a new color causes the data to sent to the ESP32 which colors the LEDs
appropriately with the over-all end result being the ability to change the mood light of the
LED string.

Using FreeRTOS
When we think of a modern computer, we quickly realize that it has an operating system
of some sort. Common examples of these are Microsoft Windows or Linux. The
purpose of an operating system is to provide an interface between software applications
and the underlying hardware infrastructure. If it wasn't for an operating system, each
application would likely have to perform its own similar implementation of such functions
which would be a waste. Why not write it once and provide an abstraction layer upon
which higher level functions (such as applications) can be built. The capabilities of
operating systems on PCs are very similar. They handle memory management,
hardware I/O (reading from keyboards and mice and driving graphics cards), task
management (multiple programs running concurrently), disk and file system interactions

Page 448

and much more. Early operating systems provided basic functions while today’s
operating systems have become richer and richer to the point where they may no longer
be considered as just operating systems. Since when did an operating system need to
provide Freecell or Minesweeper?

If we rewind the clock and start again and look to the core aspects of an operating
system, we come to today's FreeRTOS. FreeRTOS is an open source operating
system that provides very basic functions to higher level applications … again … the
core notion of the purpose of an operating system in the first place. However,
FreeRTOS is designed for embedded systems such as the ESP32. It is orders of
magnitude simpler than other operating systems such as Linux but this is by design.

FreeRTOS has been ported to a wide variety of hardware platforms including the
Xtensa CPUs used in the ESP32. When compiled, it results in a library that is under 5K
Bytes in size.

The core functions it provides are:

• memory management

• task management

• API synchronization

See also:

• Free RTOS home page

• Study of an operating system: FreeRTOS

• Github: espressif/ESP32_RTOS_SDK

• Mastering the FreeRTOS real time kernel

The architecture of a task in FreeRTOS
Let us start with the notion of a task. A task is a piece of work that we wish to perform.
If you wish, you can think of this as a C language function. For example:

int add(int a, int b) {
 return a + b;
}

could be considered a task … although this would be ridiculously simple. Generically,
think of a task as the execution of a piece of C code that you have authored. We
normally think of code running from its start all the way through to its end … however,
this is not necessarily the most efficient way to proceed. Consider the idea of an
application which wishes to send some data over the network. It may wish to send a
megabyte of data … however it may also find that it can only send 100K at a time
before it has to wait for the transmitted data to be delivered. In that story, it would send

Page 449

http://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://github.com/espressif/ESP32_RTOS_SDK
http://wiki.csie.ncku.edu.tw/embedded/FreeRTOS_Melot.pdf

100K and wait for the transmission to complete, send the next 100K and wait for that
transmission to complete and so on. But what of those periods of time where the code
is waiting for a previous transmission to complete? What is the CPU doing at those
times?

The chances are that it is doing nothing but monitoring the flag that states that the
transmission has completed. This is a waste. In theory the CPU could be performing
other work (assuming that there is in fact other work that could be performed). If there
is indeed other work available, we could "context switch" between these work items
such that when one blocks waiting for something to happen, control could be passed to
another to do something useful.

If we call each piece of work "a task", that is the value of a task in FreeRTOS. The task
represents a piece of work to be performed but instead of assuming that the work will
quickly go from start to end, we are declaring that there may be times within the work
where it can relinquish control to other work (tasks).

This can be illustrated pictorially in the following. First Task A is running and then it
either blocks or else is preempted and Task B runs. It runs for a bit and then there is a
context switch back to Task A and finally, Task C gets control. At any one time, an
individual core is only ever running one task but because of the context switching, we
achieve the effect that over some measured time period, ALL the tasks ran.

With this in mind, we should think about how a task is created. There is an API
provided by FreeRTOS called "xTaskCreate()" which creates an instance of a task.

Here it is important to realize that a task is a logical abstraction. There isn't anything
specific provided in the CPU that knows what a task is. Instead, it is the operating
system (FreeRTOS in our case) that is providing the model of the task for us.

If we think deeply about a task, we can conceive of the task having a state. At any
given time, either a task is running or it is not running. A task that is running is one that
is actively using the CPU (i.e. not waiting for anything else to happen). A task that is not
running is one that doesn't have the CPU. For example, if we created two tasks, one of
them would be running and the other not running. If the one that is running reaches a
point where it can no longer perform meaningful work, it will relinquish CPU control and
become not running. The other task then has the opportunity to become running.

Going even deeper, when a task is not running, it may be "not running" for a particular
reason … such as:

Page 450

• Blocked waiting for something to complete

• Suspended by the user

• Ready to run such that when the task that is running is no-longer running, this
task is eligible to become running

In FreeRTOS we define a task as a C function that takes a void * parameter. For
example,

void myTask(void *myParameters)

might be a signature for a task function.

A task function is expected to run forever. Should it need to end, it should clean itself up
before returning by invoking vTaskDelete().

When a task relinquishes control back to the OS, the OS then may have a choice
between multiple tasks as to which one should become running. This selection process
is called "scheduling". FreeRTOS uses the concept of a "priority" to determine which
task to run next. Each task that is ready to run is considered a potential candidate and
the one that has the highest priority will become the one that is running.

When coding directly to FreeRTOS in non-ESP32 environment, one would normally
have to make a call to vTaskStartScheduler() to ensure that the task scheduler is
operational. This should not be attempted in the ESP32 environment as the internals of
the ESP32 environment have already registered other tasks and already started the
scheduler.

• vTaskDelete

• xTaskCreatePinnedToCore

• YouTube: Tasks and concurrent Sockets

Stacks and FreeRTOS tasks
Consider a simple fragment of C code that has a couple of functions:

int foo(int a, char b[200]) {
 int c;
 c = bar(a);
 printf("%d %s", c, b);
 return c;
}

int bar(int d) {
 int e;
 e = d * d;
 return e;
}

Page 451

https://www.youtube.com/watch?v=KyCZh9NcinI

Specifically, I want you to think about the variables in the functions. Hopefully we know
that when we create a variable in C that the data that represents the value of the
variable is stored in memory. For example, if I define an "int" variable, then 4 bytes of
storage are required to hold that variable. If I define a variable as "char[200]", then
200 bytes of storage are required to hold the maximum value of the variable. The
question I pose to you is "where is the storage for those variables allocated?".

The answer to that question is the idea of a "stack". A stack is a contiguous area of
storage that contains the "local" or "contextual" variables of your currently executing
function. For example, in the function foo shown above, the storage for variables "a",
"b" and "c" is created on the stack. Now let us consider what happens when foo() calls
bar(). At the point when foo() calls bar(), the address of the currently executing state
is pushed onto the stack. This is subsequently used to determine where the called
function will eventually return to. Next the parameter passed into bar() (i.e. "int d") is
pushed onto the stack. Finally the storage for variable "e" is pushed onto the stack.
Now we pass control to the compiled code that represents the entry point for bar().
Note that the stack has "grown" … this means that the state of the data that was in
place for foo() has not been lost … only new storage has been added to provide the
context for bar().

When bar() eventually returns, the stack allocated storage for the local context is
deleted and we return to the stack structure that was in place at the point in foo()
where we were actually going to call bar(). We have "unwound" the stack.

Here are some stack descriptions at different points in the life of our running program.

First here is what the stack looks like within foo() just before calling bar().

int a

char b[200]

int c

Next here is what it looks like just after calling bar() and while inside the bar() function:

int a

char b[200]

int c

return address into
foo()

int d

int e

Page 452

Notice that the stack held values for the function state of foo() have not been lost …
they are just further back in the stack.

When eventually the code of bar() executes a return, we remove the state of bar()
from the stack and return control to the address of the code within foo() that was the
location where we called bar().

int a

char b[200]

int c

This story repeats for arbitrary nested function calls. Each time we call a function, we
are creating the local context of that function on the stack and passing control to the
target entry point of the function. When the function returns we unwind the stack back
to its state at the point of call.

While all this is interesting, it feels a little academic for our work in ESP32s. Do we
actually have to know this stuff? The answer is "sort of". In the ESP-IDF framework, we
have the concept of "tasks" and each task can be thought of as its own thread of
control. This means that, logically, there can be many functions executing in parallel to
each other. Now let us map that to what we were just talking about relating to stacks
and functions. Each task needs to have its own stack storage space. The variables in
effect for one task are independent and isolated from the variables in effect for a
separate task. Since a task can call arbitrary numbers of functions to an arbitrary depth
and the amount and types of data can vary from one function call to another, the
compiler doesn't know up-front how big the stack might possibly need to be. Instead,
the decision of the amount of space to allocate for a stack for a given task is left to the
programmer. If we look at the FreeRTOS API for creating a new task, we see that a
parameter defines the amount of space to allocate for a stack for this specific task:

BaseType_t xTaskCreate(
 pdTASK_CODE pvTaskCode,
 const signed portCHAR *pcName,
 unsigned portSHORT usStackDepth, // <----- Stack size defined here
 void *pvParameters,
 unsigned portBASE_TYPE uxPriority,
 xTaskHandle *pxCreatedTask)

How big should you make the stack? The answer is a glib "big enough". Look at your
application, estimate how much RAM your application needs to execute and then
allocate some function of the remainder to the stack.

If you size your stack too low, then the internal operation of the ESP-IDF will fail as it will
wish to push more data onto the local task stack than there is space within that stack.

Page 453

The good news is that is "trapped" and your program will stop and report the problem
(as opposed to carrying on but broken).

Timers in FreeRTOS
There are a number of timer related functions within FreeRTOS that work on the notion
of "ticks" where a tick is a unit of time. The default value of the FreeRTOS tick rate is
100 times per second. This can be set in the "make menuconfig" settings found at:

Component config → FreeRTOS → Tick rate (Hz)

While it seems that the ability to change the value is exposed, I would be wary in doing
so. A rate of 100Hz means a tick every 1/100th of a second or every 10msecs.

Rather than think of ticks as absolute numbers, we can thin of them as time durations
relative to time. The duration of a tick can be specified as portTICK_PERIOD_MS which is
the duration of a tick in milliseconds. For example, if I need to wait for 1 second (1000
msecs) then I would wait for 1000 / portTICK_PERIOD_MS ticks.

Within FreeRTOS, we can block for a period of time using vTaskDelay(). This takes the
number of ticks to wait until we unblock. Since the block affects only the current
FreeRTOS task, other tasks will continue to be eligible for execution.

See also:

• xTaskGetTickCount

• xTaskGetTickCountFromISR

• vTaskDelay

• vTaskDelayUntil

Page 454

Blocking and synchronization within FreeRTOS
With the notion of parallel processing tasks within FreeRTOS, we must have a
mechanism to synchronize actions between tasks. For example, imagine a task that
produces data and a second task that consumes data produced by the first. The
producing task must have a mechanism that describes that data has been produced
and the consuming task must have a mechanism to block waiting for data to be
produced.

One way to achieve this is through the notion of an "event group". Think of an event
group as a set of flags that can have the value "0" or "1". A task can set the value of a
flag and a second task can be configured to wait (block) until a flag transitions from "0"
to "1". What this means is that there is an asynchronous and loosely coupled
communication through the use of these flags. From an implementation perspective,
FreeRTOS provides a data type called an "event group handle" that is implemented by
the opaque data type called "EventGroupHandle_t". An instance of this is created
through a call to xEventGroupCreate(). We should assume that that an event group
handle can contain a maximum of 8 distinct flags that are identified as 0 through 7
(however, a note states that there may be up to 24 bits available if
configUSE_16_BIT_TICKS is set to 0). We can set the flags within an event group using
xEventGroupSetBits() and clear flags using xEventGroupClearBits(). Should we need
to obtain the values of an event group, we can call xEventGroupGetBits(). Simply
toggling bits isn't that useful, but we get into the core of the story with the
xEventGroupWaitBits() function call. When invoked, it causes the caller to be blocked
until a named bit or bits becomes set.

For example:

static EventGroupHandle_t eventGroup;
#define EVENT_GROUP_SCAN_COMPLETE (1<<0)

void init() {
 eventGroup = xEventGroupCreate();
 xEventGroupClearBits(eventGroup, 0xff);
}

void doSomething() {
 // Start something in the background and wait
 xEventGroupWaitBits(eventGroup,
 EVENT_GROUP_SCAN_COMPLETE,
 1, // Clear on exit
 0, // Wait for all bits
 portMAX_DELAY);
}

void backgroundEventHandler() {

Page 455

 xEventGroupSetBits(eventGroup, EVENT_GROUP_SCAN_COMPLETE);
}

See also:

• xEventGroupCreate

• xEventGroupSetBits

• xEventGroupWaitBits

• YouTube: ESP32 #25: FreeRTOS – Inter-task Communications – EventGroups

Semaphores and Mutices within FreeRTOS
When we have multiple tasks executing concurrently, we run the risk of those tasks
stepping on each other when it comes to working with shared resources.

Consider the following simple illustrative code:

int globalCount;

void add(int value) {
 int temp = globalCount;
 temp = temp + value;
 globalCount = temp;
}

It adds a value to a global counter. Imagine the counter starts at 0 and two tasks call
add(2) at the same time. Logically, after the two tasks complete we want the
globalCount to equal 4 … we added 2 and 2 to 0 resulting in 4.

However, consider the interleaved execution as follows:

Task Statment Local value of temp Value of globalCount

Task1 int temp = globalCount 0 0

Task 2 int temp = globalCount 0 0

Task 1 temp = temp + value 2 0

Task 2 temp = temp + value 2 0

Task 1 globalCount = temp 2 2

Task2 globalCount = temp 2 2

and as we can see … we have ended up with the wrong resulting value. There are
excellent books and articles written on "multi-threading" theory and practices and we will
not attempt to regurgitate that material here. Instead, we will cut to the chase and
introduce the concept of the "Mutex". The name mutex is a shorthand word for "mutual
exclusion". It basically states that only one task can be executing in a section of code at
a time. An analogy would be the bathroom at a gas station. In order to use the
bathroom, I have to get the key from the clerk. If I visit the clerk and ask for the key he
will either give it to me or tell me that he doesn't have it because someone else is

Page 456

https://www.youtube.com/watch?v=iunw7qd5Wr4

already using the bathroom. In the later case, I wait until the other customer finishes
and returns the key. At that time the clerk will give me the key and I will go and use the
bathroom. While I am using the bathroom, I can be confident that no-one will interrupt
me because I am in possession of the key. In this story, the key is an example of the
mutex and the bathroom is the shared resource that we are guarding for sole use.

In FreeRTOS, we use the method:

SemaphoreHandle_t xSemaphore = xSemaphoreCreateMutex()

to create an instance of a mutex.

When we wish to obtain the mutex, we call:

xSemphoreTake(xSemaphore, portMAX_DELAY)

This will cause the caller to block indefinitely until the mutex is available.

When we are finished with the task that needs guarded, it is vital to call:

xSemaphoreGive(xSemaphore)

to release the mutex and allow anyone else waiting to continue.

See also:

• vSemaphoreGive

• vSemaphoreTake

Queues within FreeRTOS
A queue is a data container abstraction. Think of a queue as holding items. When an
item is added to a queue, it is added to the end. When an item is removed from a
queue, it is removed from the front. This provides a first-in/first-out paradigm. Think of
a queue as the line of folks waiting at the department of motor vehicles. Folks join the
end of the queue and those that have arrived earlier are serviced earlier.

In FreeRTOS queues, all items on the queue are placed there by copy and not by
reference.

When a queue is created, the maximum number of items it can hold is set and fixed at
that time. The storage for the queue is also allocated. This means that we can't run out
of storage for the queues when adding new items.

In RTOS we call xQueueSendToBack() to add an entry at the end of the queue. The
consumer calls xQueueReceive() to retrieve the person at the head of the queue. Items
in the queue are always stored by copy rather than by reference.

Attempt to receive from an empty queue can cause the caller to block. Conversely,
attempting to add an item into a full queue can also cause it to block until space is freed.

Page 457

When we attempt to read an item from the queue and there is no item to read, the call
to read will block. We can specify a timeout value measured in ticks. If no new
message arrives in that interval, we will return with an indication that no message was
retrieved. We can also specify 0 to return immediately if there are no messages. While
a task is blocked reading from a queue that task is placed in the blocked state meaning
that other tasks can run. This means that we won't be blocking the system while waiting
on a queue. When a message arrives, the task that was previously blocked is returned
to the ready state and becomes eligible to be executed by the task scheduler.

See also:

• xQueueCreate

• xQueueCreateStatic

• vQueueDelete

• xQueueOverwrite

• xQueuePeek

• xQueueReceive

• xQueueReset

• xQueueSendToBack

• xQueueSendToFront

• FreeRTOS Queues

• YouTube: ESP32 #20: FreeRTOS – Inter-task Communication – Queues

Ring buffer withing FreeRTOS
A ring buffer is similar to the notion of a queue with a few major distinctions. Firstly, it is
strictly first-in/first-out. There are no options to read from the head of the queue, only
from its tail. In addition, new items can only be added to the head. While the
FreeRTOS queues have slots for a fixed number of items of equal size, the ring buffer
can hold items with distinct sizes but all the items must exist within a configured size
buffer.

To create a ring buffer we call xRingbufferCreate() passing in the size of the buffer we
wish to allocate (in bytes) as well as how we wish to handle items that may need to
wrap-around.

Calls can then be made to insert records of a given length into the buffer using the
xRingbufferSend() function. Depending on our request and the way the buffer was
created, if there is insufficient space in the buffer to insert the record, this call can block
for a given period of time or indefinitely until space becomes available.

A consumer that wishes to process records added to the buffer can call
xRingbufferReceive() to obtain a record if one is available or else block until one does
become available or a time interval elapses. It is important to note that a pointer to the
storage of the record within the buffer is returned. This means that the record has NOT
been removed from the buffer and its space has not yet been reclaimed. When the

Page 458

https://www.youtube.com/watch?v=DLqj01asDM0
http://www.freertos.org/Embedded-RTOS-Queues.html

consumer has received a record and has finished processing it, the consumer should
call xRingbufferReturnItem() to indicate that it is no longer needed. At that time the
storage for it will be released.

• xRingbufferCreate

• xRingbufferReceive

• vRingbufferReturnItem

• xRingbufferSend

Working with queue sets
What if we have multiple source of events such as multiple queues and semaphores?
We could poll each one to see if it has data but this isn't efficient. FreeRTOS adds the
concept of a "queue set". This is a set of items against which we wish to know when
one of them becomes "ready". We use this by creating a queue set by calling
xQueueCreateSet(). Next we add one or more watchable items using the
xQueueAddToSet() API as many times as we wish. Now, when ready, we can call
xQueueSelectFromSet() to ask the set if any of the previously added items are ready to
be read from without blocking. Effectively, we can block on all of these items
simultaneously and the first one to have data ready for us will be acknowledged.

• xQueueCreateSet

• xQueueAddToSet

• xQueueRemoveFromSet

Running untested functions
Some of the FreeRTOS functions have not been tested as fully as necessary to be
claimed "supported" by Espressif. What that means is that you should be cautious
about using them in your applications. If using them causes failures, Espressif can't
assure that a fix will be readily available. By the same token however, there are no
known exposed functions that are known not to work. Again, this does not mean that all
functions work, only that we have the absence of information about them. If you do use
a function that is not flagged as supported, a run-time assertion will be deliberately
thrown to cause you to consider not using that function. If you decide that you do wish
to step off the path and use these un-tested functions, you can flag your desire to do so
by changing a configuration flag set by "make menuconfig" within the "Component config
→ FreeRTOS" settings:

Page 459

The Serial AT command processor
Serial (UART) connections are one of the simplest ways to communicate directly
between two physically close devices. With reasonably high speeds, two devices can
connect easily. There are a variety of serial/USB connectors also on the market which
means that your PC doesn't need to have a dedicated serial port.

The ESP32 natively supports UART connections meaning that you can connect an
ESP32 to your PC and have some application on the PC interact with the ESP32.

Espressif, the markers of the ESP32, have produced a very high level application that
can be downloaded and flashed to the device. This application is called the AT
Command Processor. Its purpose is to send and receive ASCII serial commands over a
serial link and process them. What kinds of commands? The answer is networking
commands. This means that the ESP32 can "off-load" networking from other devices.
While it would be unlikely you would off-load networking from a PC, other devices such
as, for example, an Arduino, could benefit from the simple off-loading of networking with
the translation of such command to serial mappings.

See also:

• ESP32 AT Instruction Set and Examples

Mongoose OS
Mongoose OS is …

To install on Linux, run

This will result in the installation of the command called "mos".

The mos command has the following options:

• ui

• init

• build

Page 460

https://espressif.com/sites/default/files/documentation/esp32_at_instruction_set_and_examples_en.pdf

• flash

• flash-read

• console

• ls

• get

• put

• rm

• config-get

• config-set

• call

• aws-iot-setup

• update

• wifi

When we run mos, it wishes to connect to the ESP32 and needs to know which serial
port to use. We can supply this with the "--port <port>" flags. We can also use the
MOS_PORT environment variable to supply a default.

Next we must load the Mongoose OS firmware into the ESP32 using:

$ mos flash esp32

On my system this took only a few minutes and resulted in the following output:

$./mos --port /dev/ttyUSB1 flash mos-esp32
Fetching https://mongoose-os.com/downloads/mos-esp32.zip...
Loaded mjs_base/esp32 version 1.0 (20170529-125521/???)
Opening /dev/ttyUSB1...
Connecting to ESP32 ROM, attempt 1 of 10...
 Connected
Running flasher @ 460800...
 Flasher is running
Flash size: 4194304, params: 0x0220 (dio,32m,40m)
Deduping...
 16384 @ 0x9000 -> 12288
 816624 @ 0x10000 -> 746992
Writing...
 16384 @ 0x1000
 4096 @ 0x8000
 8192 @ 0x9000
 4096 @ 0xc000
 8192 @ 0xd000

Page 461

 4096 @ 0x10000
 188416 @ 0x20000
 557056 @ 0x50000
 131072 @ 0x190000
Wrote 921600 bytes in 20.32 seconds (354.38 KBit/sec)
Verifying...
 16320 @ 0x1000
 3072 @ 0x8000
 16384 @ 0x9000
 8192 @ 0xd000
 816624 @ 0x10000
 131072 @ 0x190000
Booting firmware...
All done!

See also:

• Mongoose OS home page

• Mongoose OS Documentation

• Github: cesanta/mongoose-os

The Mongoose OS file system
A file system is present within the Mongoose OS. We can access this from the
command line using:

• mos ls – List files.

• mos get <file> – Retrieve the named file.

• mos put <file> – Store the named file.

Setting up Mongoose OS WiFi
Mongoose OS can use the ESP32 WiFi but needs to know the access point SSID and
password. We can set this from the command line using:

$./mos wifi <SSID> <PASSWORD>

Building a Mongoose OS App
Create a directory and run:

$ mos init --arch esp32

This will populate the current directory with:

• ./mos.yml

• ./fs

• ./src/main.c

• ./src/conf_schema.yaml

Page 462

https://github.com/cesanta/mongoose-os
https://mongoose-os.com/docs/
https://mongoose-os.com/

AWS IoT
• Device gateway

• Message broker

• Rule engine

• Security and Identity service

• Thing registry

• Thing shadow

• Thing Shadows service

AWS IoT can connect an ESP32 to the AWS IoT servers using MQTT, HTTP or
WebSockets protocols. An SDK is available for devices in C, JavaScript, and Arduino.

The target of an ESP32 request the AWS Device Gateway which is located on the cloud
and managed by Amazon.

Each device that can connect to the AWS Device Gateway has a record of it stored in
the AWS IoT Registry. This registry can store meta data about the device.

A device may not be powered up or it may not be networked connected when a
message is to be sent to it. Rather than have to worry about detecting that the
message was not delivered, AWS IoT provides the concept of a "device shadow". Think
of this as the model of the device as known by the AWS Device Gateway. Your
application can request a message to be sent to the device and it is the shadow that
remembers this request. When the device does power on and connects to the network,
the shadow's state is pushed to the device such that we "eventually" synchronize the
desired states.

A component called the Rule Engine can quickly examine data contained in incoming
messages sent from the device and route/process the request based on the content.

To work with AWS IoT, we work through the AWS IoT Console:

Page 463

In order for a device to interact with the AWS IoT servers in the cloud, the devices must
communicate over a network. To make such communication easier, Amazon has
provided a set of SDKs that can be used. These include:

• C-SDK – C programming

• JS-SDK – JavaScript programming

• Java – Java programming

• Python – Python programming

• Mobile SDK – Android and iOS programming

In order for a device to communicate with AWS IoT in the cloud, there must be mutual
authentication. This is performed using TLS 1.2. This means that the device will have:

• A private key

• A public certificate

The important concept here is that there is mutual proof of identity. AWS IoT knows the
device and trusts that it is who it claims to be and the device knows that it is actually
talking to AWS IoT.

Page 464

Each device has an identity called an "Amazon Resource Name" which is abbreviated
to an "ARN". For example:

arn:aws:iot:us-east-2:521670688398:thing/ESP32-1

See also:

• AWS IoT – Developers Guide

• Github: aws/aws-iot-device-sdk-embedded-C

• Video: Getting started with AWS IoT

The ESP-IDF aws_iot component
The ESP-IDF provides a component that is a pre-cooked mechanism to interact with
AWS IoT.

See also:

• AWS-IoT

• ESP-IDF AWS IoT Example

Developing solutions on Linux
When working in a Linux environments, there are certain tips and techniques which
might be useful/valuable.

• When connecting to an ESP32 board using a USB→UART connector, the device
may show up under /dev as ttyUSB0. If we examine the permissions upon this
file, we may find that it is configured as:

crw-rw---- root dialout

This means that it is accessible by root and users in the dialout group. If you
wish to flash the ESP32 through this device, your userid should thus be a
member of this group. To add your user to the group, the following Linux
command may be used:

sudo usermod -a -G dialout <yourUserid>

after making the change, you must log out and log back in again.

• A useful terminal client is GtkTerm. This tool provides a terminal viewer that can
be used to monitor the USB→UART connector to view log and debug messages.
It creates a configuration file in $HOME/.gtktermrc that can be edited to change
the default serial port (eg. /dev/ttyUSB0) as well as changing the baud rate to
your desired value.

• Another good terminal client is screen. Screen is a full screen terminal emulator.

Page 465

https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://www.youtube.com/watch?v=BfvieRwulvc
https://github.com/aws/aws-iot-device-sdk-embedded-C
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

• Yet another terminal client is the classic cu command. Again, very easy to use.
An example of use would be:

$ cu --line /dev/ttyUSB0 --speed 115200

To quit a cu session, enter "~.".

Building a Linux environment
If you don't run Linux natively you may wish to consider running Oracle VirtualBox to
host a Linux environment on your Windows or Mac machine. Oracle VirtualBox is an
Open Source implementation of an operating system virtualization product. One can
download VirtualBox from here:

https://www.virtualbox.org/

In my tests, I ran Ubuntu 15.10.

I define a disk size of at least 20GBytes and 2GBytes of RAM. If you have multiple
cores, you may want to define those as being available.

After building an image, make sure that you enable the ability to copy and paste
between the host OS and the guest OS.

Also make sure that the VirtualBox guest tools are installed.

There are some packages that you really can't do without including:

• git

You can install new packages with:

Page 466

https://www.virtualbox.org/

sudo apt-get install <package>

Once you have a Linux OS installed, next we want to build a compilation environment.

I would also install:

• Chrome

See also:

• Oracle Virtual Box

• Ubuntu downloads

Hardware architecture
The majority of this book describes programming the device at the software level
through driver libraries. However, let us take a step back. The ESP32 is a low-level
hardware component. It is basically a low level System On a Chip (SOC) device.

The CPU and cores
There are two cores within the ESP32 CPU named "PRO" and "APP".

Intrinsic data types
When we program in C, we are programming pretty close to the metal of the
environment. Data type sizes and other considerations can and do come into
consideration. Let us now examine the data sizes of some of the core types:

Type Size (bytes) Size (bits)

short 2 16

int 4 32

long 4 32

long long 8 64

int64_t 8 64

float 4 32

double 8 64

Native byte order, endian and network byte order
When we wish to represent a number, for example 9876 (in decimal) we find that it will
not fit in a single byte since a byte can hold only 8 bits of data and hence has a value
from 0-255. As such, we need to split it across multiple bytes. If we think of two bytes,

Page 467

http://www.ubuntu.com/download/desktop
https://www.virtualbox.org/
https://www.google.com/intl/en-US/chrome/browser/desktop/index.html

that is 16 bits of information and hence can represent a number from 0-65535. When
we think of a 16 bit number we can think of that as two 8 bit numbers such that the
result is a * 256 + b. For example 9876 is 38 * 256 + 148 … and in our equation a=38
and b=148. No great mystery yet. Now we can see that a 16 bit number can be
represented by two distinct 8 bit numbers. Now imagine a piece of memory where we
wish to store our 16 bit number. We can immediately see that we will store our 16 bit
number as two consecutive bytes. One byte representing "a" and one representing "b".
The question becomes should we store "a" then "b" or "b" then "a"? From an underlying
technical perspective both are equally valid … however we need to be consistent across
our architecture. Storing "a" then "b" is called a "big endian" architecture while storing
"b" then "a" is called a "little endian" architecture"

… a b …

or

… b a …

Here is a simple program fragment to test for ourselves what is in play in the ESP32
environment:

char *p = malloc(2);
*(unsigned short *)p = (unsigned short)9876;
printf("low: %d high %d\n", *(p), *(p+1));

And when we run, the result is:

low: 148 high 38

Showing that the byte ordering for storing integers is "little endian". This concept
becomes exceptionally important when reading binary data that was written on a
different system. If we do not handle this correctly, we can interpret data in an incorrect
fashion. For example 38*256+148 is a very different number from 38+148*256.

Note that network data transport uses big endian format which means that the data
format for native data on an ESP32 is not the same format as network byte order which
means that we must transform data using htons(), htonl(), ntohs() and ntohl().

A more precise terminology for byte ordering uses the phrases "Most Significant Byte"
and "Least Significant Byte". With big endian encoding, the most significant byte is first
while with little endian, the least significant byte is first.

Page 468

Memory mapping and address spaces
When we program to the APIs exposed by Espressif provided libraries, we are taking
advantage of the higher level APIs and internals that they expose. But let us now
contemplate how those libraries work and what we can do with that knowledge.

As a SOC, there is a processor (well, actually two of them), RAM and an address
space. Being a 32 bit processor, the address space of the ESP32 is 32 bits in length.
This means that, in theory, an application can read or write a byte at memory location
0x0000 0000 or 0xffff ffff or any address in between. At the hardware mapping
level, some of these addresses are mapped to RAM, some to an internal ROM, some to
peripherals and some to flash memory. By consulting the ESP32 Technical Reference
manual, we can start to learn more.

Page 469

Within the ESP32 there are four segments of internal memory:

• ROM – 448KB – Read only memory with the content provided by Espressif.

• SRAM – 520KB – Internal RAM that is supplied inside the ESP32.

• RTC FAST – 8KB

• RTC SLOW – 8KB

There is also external memory. This is memory that can be addressed but that is
provided by components outside of the ESP32 IC itself such as SPI flash or SPI ram.

The architecture of an ESP32 is called the "Harvard Architecture" and we need to
explain that a bit more. When we think of a classic architecture, we usually think of the
existence of a memory bus that reads and writes from RAM based storage. Both
instructions and data can be found in the memory. The CPU retrieves the next
instruction by requesting the data at a specific RAM address. When the instruction is
retrieved, the CPU executes the instruction which may read or write data at other
addresses in RAM. When the instruction completes, the story repeats for the next
instruction.

The Harvard Architecture introduces a second memory bus. The thinking is that RAM
will either be used to hold instructions to be executed or will hold data to be
manipulated. By separating RAM into these two categories, a number of interesting
things start to happen. Instructions are read from the instruction bus and data is read
and written from the data bus. The actual RAM at the ends of these buses is now
categorized by function. We have IRAM for RAM that holds instructions to be executed
and we have DRAM for RAM that holds data.

We can catch a badly behaving application should it try and write into the instruction
area of RAM. Since this bus is considered (for the most part) read only, the hardware
can detect and trap invalid access.

A second benefit of having two buses is that during the execution of an instruction, the
next instruction can be started to be read without impacting access to any data needing
to be accessed by the current instruction as that access will be happening over the
database. Effectively this allows us to perform certain operations in parallel and allows
us to perceive an increase in performance.

Reading and writing registers
We can the value of a peripheral register using the macro READ_PERI_REG(name). This
is defined in <soc/soc.h>.

• REG_WRITE

Page 470

• REG_READ

• REG_GET_BIT

• REG_SET_BIT

• REG_CLR_BIT

• REG_SET_BITS

• REG_GET_FIELD

• REG_SET_FIELD

• VALUE_GET_FIELD

• VALUE_GET_FIELD2

• VALUE_SET_FIELD

• VALUE_SET_FIELD2

• FIELD_TO_VALUE

• FIELD_TO_VALUE2

• READ_PERI_REG

• WRITE_PERI_REG

• CLEAR_PERI_REG_MASK

• SET_PERI_REG_MASK

• GET_PERI_REG_MASK

• GET_PERI_REG_BITS

• SET_PERI_REG_BITS

• GET_PERI_REG_BITS2

Pads and multiplexing
A pad is an externalized input or output on the ESP32 device. The ESP32 has a total of
40 pads but only a subset of them are exposed. Within the ESP32 there is a logical
component called the "IO_MUX". This is an "Input/Output Multiplexer". In English
imagine this as a logical "switch board" with some fixed number of actual telephones
attached to it. When caller wishes to communicate with a telephone, it has to pass
through the IO_MUX which decides which physical telephone to pass the call to. This
means that there is a separation between logical "calls" and physical "phones".

Page 471

• Pads 0-39 can be input

• Pads 0-33 can be output

GPIO Pad Name Function 1 Function 2 Function 3 Function 4 Function 5 Function 6

0 GPIO0 GPIO0 CLK_OUT1 GPIO0

1 U0TXD U0TXD CLK_OUT3 GPIO1

2 GPIO2 GPIO2 HSPIWP GPIO2 HS2_DATA0 SD_DDATA0

3 U0RXD U0RXD CLK_OUT2 GPIO3

4 GPIO4 GPIO4 HSPIHD GPIO4 HS2_DATA1 SD_DATA1

5 GPIO5 GPIO5 VSPICS0 GPIO5 HS1_DATA6

6 SD_CLK SD_CLK SPICLK GPIO6 HS1_CLK U1CTS

7 SD_DATA_0 SD_DATA_0 SPIQ GPIO7 HS1_DATA0 U2RTS

8 SD_DATA_1 SD_DATA_1 SPID GPIO8 HS1_DATA1 U2CTS

9 SD_DATA_2 SD_DATA_2 SPIHD GPIO9 HS1_DATA2 U1RXD

10 SD_DATA_3 SD_DATA_3 SPIWP GPIO10 HS1_DATA3 U1TXD

11 SD_CMD SD_CMD SPICS0 GPIO11 HS1_CMD U1RTS

12 MTDI MTDI HSPIQ GPIO12 HS2_DATA2 SD_DATA2

13 MTCK MTCK HSPID GPIO13 HS2_DATA3 SD_DATA3

14 MTMS MTMS HSPICLK GPIO14 HS2_CLK SD_CLK

15 MTDO MTDO HSPICS0 GPIO15 HS2_CMD SD_CMD

16 GPIO16 GPIO16 GPIO16 HS1_DATA4 U2RXD

17 GPIO17 GPIO17 GPIO17 HS1_DATA5 U2TXD

18 GPIO18 GPIO18 VSPICLK GPIO18 HS1_DATA7

19 GPIO19 GPIO19 VSPIQ GPIO19 U0CTS

20 GPIO20 GPIO20 GPIO20

21 GPIO21 GPIO21 VSPIHD GPIO21

22 GPIO22 GPIO22 VSPIHD GPIO22 U0RTS

23 GPIO23 GPIO23 VSPID GPIO23 HS1_STROBE

24

25 GPIO25 GPIO25 GPIO25

26 GPIO26 GPIO26 GPIO26

27 GPIO27 GPIO27 GPIO27

28

29

30

31

32 32K_XP GPIO32 GPIO32

33 32K_XN GPIO33 GPIO33

34 VDET_1 GPIO34 GPIO34

35 VDET_2 GPIO35 GPIO35

Page 472

36 SENSOR_VP GPIO36 GPIO36

37 SENSOR_CAPP GPIO37 GPIO37

38 SENSOR_CAPN GPIO38 GPIO38

39 SENSOR_VN GPIO39 GPIO39

Now let us think of the "things" that wish to read and write from these pad pins. Some
of them need to be really fast while others can afford to be slower. For the fast ones,
we say that these need direct I/O. Examples of fast components include Ethernet,
SDIO, SPI, JTAG and UART. The other ones we say are GPIO based and can be used
by slower functions. Examples of these include I2C, I2S, PWM, LEDC and others.

Schematically, this might look as follows:

What this means is that input/output from the digital pads is governed directly by the
IO_MUX controller. Each of the 40 digital pads can be thought of as having a control
register that says "For a given pad, is this pad connected to GPIO or is it connected to a
Direct I/O device and, if a direct I/O device … which one?".

Now let us add another twist. There is the concept of a "signal". Think of a signal as
being either output from an internal component or input from an internal component.
We can map a signal to a GPIO for input or output. This effectively allows us to matrix
map anything to anything. In the following diagram, we show this component.

Page 473

To say that a signal will appear on a particular GPIO, we execute the following logic:

PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO);
gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpioNum, signal, 0, 0);

What we do is say that a particular pad (PIN) is going to be used for GPIO which means
that its data will come from a signal as opposed to direct I/O. Then we say that a
particular signal is mapped to a GPIO.

See also:

• gpio_matrix_out

• gpio_set_direction

Register based GPIO
There are 34 usable GPIO pins on the ESP32. We should also remember that there
are 40 pads on an ESP32. Some of the GPIOs are in the 0-31 pad range and some in
the 32-39 pad range. Since the ESP32 is a 32bit processor, this means that a single
register can only hold 32 bits of information. As such, we have pairs of registers for
working with GPIO functions. The first in the pair corresponds to GPIOs on pads 0-31
and the second on pads 32-39.

The registers called GPIO_ENABLE_REG (0-31) and GPIO_ENABLE1_REG (32-39)
control whether or not a GPIO is input or output. If the corresponding bit is high then
the GPIO is output while if it is low then the GPIO is input.

When working with GPIO, there are registers that we can use as follows:

• Setting a bit in a register causes the output value of the corresponding GPIO to
be high

• Setting a bit in a register causes the output value of the corresponding GPIO to
be low

An individual GPIO pin can be defined as either input or output. Input means we can
read the signal present on that pin. Output means that we can set the signal that is
present on the pin. A GPIO can be either input or output at a given time but, obviously,
can not be both.

A very useful data structure is defined in soc/gpio_struct.h. The type of the structure
is called gpio_dev_t and it is exposed via the global GPIO. It contains:

Page 474

bt_select

GPIO_OUT_REG out GPIO 0-31 output

GPIO_OUT_W1TS_REG out_w1ts GPIO 0-31 set

GPIO_OUT_W1TC_REG out_w1tc GPIO 0-31 clear

GPIO_OUT1_REG out1 GPIO 32-39 output

GPIO_OUT1_W1TS_REG out1_w1ts GPIO 32-39 set

GPIO_OUT_W1TC_REG out1_w1tc GPIO 32-39 clear

sdio_select

GPIO_ENABLE_REG enable GPIO 0-31 output enable

GPIO_ENABLE_W1TS_REG enable_w1ts GPIO 0-31 output set

GPIO_ENABLE_W1TC_REG enable_w1tc GPIO 0-31 output clear

GPIO_ENABLE1_REG enable1 GPIO 32-39 output enable

GPIO_ENABLE1_W1TS_REG enable1_w1ts GPIO 32-39 output set

GPIO_ENABLE1_W1TC_REG enable1_w1tc GPIO 32-39 output clear

GPIO_STRAP_REG strap Boot strapping input data

GPIO_IN_REG in GPIO 0-31 input

GPIO_IN1_REG in1 GPIO 32-39 input

GPIO_STATUS_REG status GPIO 0-31 interrupt status

GPIO_STATUS_W1TS_REG status_w1ts GPIO 0-31 interrupt status set

GPIO_STATUS_W1TC_REG status_w1tc GPIO 0-31 interrupt status cleat

GPIO_STATUS1_REG status1 GPIO 32-39 interrupt status

GPIO_STATUS1_W1TS_REG status1_w1ts GPIO 32-39 interrupt status set

GPIO_STATUS1_W1TC_REG status1_w1tc GPIO 32-39 interrupt status clear

acpu_int GPIO 0-31 APP CPU interrupt status

acpu_nmi_int GPIO 0-31 APP CPU non-maskable interrupt status

pcpu_int GPIO 0-31 PRO CPU interrupt status

pcpu_nmi_int GPIO 0-31 PRO CPU non-maskable interrupt status

cpusdio_int

acpu_int1

acpu_nmi_int1

pcpu_int1

pcpu_nmi_int1

cpusdio_int1

pin[]

cali_conf

cali_data

Page 475

GPIO_FUNCm_IN_SEL_CFG_REG func_in_sel_cfg[]

GPIO_FUNCn_OUT_SEL_CFG_REG func_out_sel_cfg

IO_MUX_x_REG

x is 0 to 39.

IO_x_MCU_SEL Select the IO_MUX function.

IO_x_FUNC_DRV Drive strength of the pad

IO_x_FUNC_IE Input Enable of the pad.

IO_x_FUNC_WPU Internal pull-up.

IO_x_FUNC_WPD Internal pull-down.

IO_x_MCU_DRV Drive strength in sleep mode.

IO_x_MCU_IE Input enable during sleep mode.

IO_x_MCU_WPU Internal pull-up during sleep mode.

IO_x_MCU_WPD Internal pull-down during sleep mode.

IO_x_SLP_SEL Sleep mode selection.

IO_x_MCU_OE Output enable in sleep mode.

IO_x_MCU_SEL

GPIO_OUT_REG
C Struct: GPIO.out

The values of the output signal on GPIO pins 0-31.

GPIO_OUT_W1TS_REG
C Struct: GPIO.out_w1ts

W1TS is Write One To Set. Setting the corresponding bit to 1, cause the GPIO output to
be 1.

GPIO_OUT_W1TC_REG
C Struct: GPIO.out_w1tc

W1TC is Write One To Clear. Setting the corresponding bit to 1, cause the GPIO output
to be 0.

Page 476

GPIO_OUT1_REG
C Struct: GPIO.out1.data, GPIO.out1.val

The values of the output signal on GPIO pins 32-39.

GPIO_OUT1_W1TS_REG
C Struct: GPIO.out1_w1ts.data, GPIO.out1_w1ts.val

W1TS is Write One To Set. Setting the corresponding bit to 1, cause the GPIO output to
be 1.

GPIO_OUT1_W1TC_REG
C Struct: GPIO.out1_w1tc.data, GPIO.out1_w1tc.val

W1TC is Write One To Clear. Setting the corresponding bit to 1, cause the GPIO output
to be 0.

GPIO_ENABLE_REG
C Struct: GPIO.enable

The enable register is oddly named. It defines whether or not a pin will be output or
input. If the corresponding bit is 1, the pin will be output while if the corresponding bit is
0, the pin will be input. This register covers pins 0-31.

GPIO_ENABLE_W1TS_REG
C Struct: GPIO.enable_w1ts

GPIO_ENABLE_W1TC_REG
C Struct: GPIO.enable_w1tc

GPIO_ENABLE1_REG
C Struct: GPIO.enable1.data, GPIO.enable1.val

The enable register is oddly named. It defines whether or not a pin will be output or
input. If the corresponding bit is 1, the pin will be output while if the corresponding bit is
0, the pin will be input. This register covers pins 32-39.

Page 477

GPIO_ENABLE1_W1TS_REG
C Struct: GPIO.enable_w1ts.data, GPIO.enable_w1ts.val

GPIO_ENABLE1_W1TC_REG
C Struct: GPIO.enable_w1tc.data, GPIO.enable_w1tc.val

GPIO_STRAP_REG
C Struct: GPIO.strap.strapping, GPIO.strap.val,

The values of strapping pins at boot:

MTDI, GPIO0, GPIO2, GPIO4, MTDO, GPIO5

GPIO_IN_REG
C Struct: GPIO.in

The values of the input signal on GPIO pins 0-31. This is a read only register. It makes
no sense to try and change the value of the register that reflects the current value found
on the pins.

GPIO_IN1_REG
C Struct: GPIO.in1.data, GPIO.in1.val

The values of the input signal on GPIO pins 32-39. This is a read only register. It
makes no sense to try and change the value of the register that reflects the current
value found on the pins.

GPIO_STATUS_REG
C Struct: GPIO.status

GPIO_STATUS_W1TS_REG
C Struct: GPIO.status_w1ts

GPIO_STATUS_W1TC_REG
C Struct: GPIO.status_w1tc

Page 478

GPIO_STATUS1_REG
C Struct: GPIO.status1.intr_st, GPIO.status1.val

GPIO_STATUS1_W1TS_REG
C Struct: GPIO.status1_w1ts.intr_st, GPIO.status1_w1ts.val

GPIO_STATUS1_W1TC_REG
C Struct: GPIO.status1_w1tc.intr_st, GPIO.status1_w1tc.val

GPIO_PCPU_NMI_INT1_REG

GPIO_PCPU_NMI_INT1_REG

GPIO_PINn_REG
GPIO_PINn_INT_ENA

GPIO_PINn_WAKEUP_ENABLE

GPIO_PINn_INT_TYPE

GPIO_PINn_PAD_DRIVER

GPIO_FUNCm_IN_SEL_CFG_REG
C Struct: GPIO.func_in_sel_cfg[m]

m is 0 to 255.

There are 256 different possible functions. There is a register for each of the functions.
The register defines which of the 40 GPIOs is mapped as input to that function signal.

The field GPIO_FUNCm_IN_SEL defines the GPIO pad for the corresponding function. This
will be 0-39 for the pads with special values of 0x38 for always high and 0x30 for always
low.

If we want to invert the incoming signal, we can set the GPIO_FUNCm_IN_INV_SEL field to
1.

If we wish to bypass the GPIO matrix, set the GPIO_SIGm_IN_SEL to 1.

Page 479

Field Bits Struct field

GPIO_SIGm_IN_SEL [7] GPIO.func_in_sel_cfg[n].sig_in_sel

GPIO_FUNCm_IN_INV_SEL [6] GPIO.func_in_sel_cfg[n].sig_in_inv

GPIO_FUNCm_IN_SEL [5:0] GPIO.func_in_sel_cfg[n].func_sel

GPIO_FUNCn_OUT_SEL_CFG_REG
C Struct: GPIO.func_out_sel_cfg[n]

n is 0 to 39.

If GPIO_FUNCn_OEN_INV_SEL is set to 1, then the output signal is inverted.

Field Bits Struct field

GPIO_FUNCn_OEN_INV_SEL [11] GPIO.func_out_sel_cfg[n].oen_inv_sel

GPIO_FUNCn_OEN_SEL [10] GPIO.func_out_sel_cfg[n].oen_sel

GPIO_FUNCn_OUT_INV_SEL [9] GPIO.func_out_sel_cfg[n].inv_sel

GPIO_FUNCn_OUT_SEL [8:0] GPIO.func_out_sel_cfg[n].func_sel

See also:

• GPIOs

Strapping pins
When an ESP32 is powered on, we may wish to control/configure how it boots. To
achieve this, a set of pins are defined that are read for the very short time that is
considered the bootstrap time. For the sake of discussion, we should image this as the
instantaneous time at which the device is powered up.

The values of these pins are "remembered" and available in the ESP32 register called
GPIO_STRAPPING. The boot-loader will examine these values and act accordingly. We
can also read this register later to see what values were in effect at boot time.

The pins have prescribed meanings in the ESP32 architecture:

Boot mode source
We can boot from flash memory for normal operation or we can boot to read a new
program into flash memory for loading an application.

• GPIO0 = 1 – Boot from flash.

• GPIO0 = 0 – Boot for loading a new program.

The floating state is 1 and hence will boot from flash.

Page 480

Debugging on U0TX0 at boot
When the ESP32 boot, it can write debugging information out through UART0 and its
TX pin. This is useful during development but if we want to use this UART in our
solutions, this diagnostic information will be treated as data over the UART and may
interfere or confuse any devices attached. We can disable diagnostics from the UART
by setting a strapping pin value:

• MTDO = 1 – Use UART0 for debugging (default).

• MTDO = 0 – Do not use UART0 for debugging.

The floating state is 1 and hence will use UART0 for debugging.

Timing of SDIO slave
A couple of pins are used to configure the SDIO slave interfacing.

Boot-loader
The booting mechanism of the ESP32 examines the settings of the "strapping" pins and
based on their configuration we got into SPI boot mode or UART download mode or
some other mode that isn't specified. In normal boot mode we examine address 0x1000
for the image of a software boot-loader. The standard software boot-loader reads the
partition table to find the "app" image to give control to.

If we look at an example run of the esptool.py tool, we find that it loads the following:

bootloader.bin 0x1000
app.bin 0x10000
partitions.bin 0x4000

The in-built ROM in the ESP32 looks in flash address space at 0x1000 and expects to
find a mapping table. This table lists a set of "segments". Each segment consists of:

• Offset from start of flash area (0x1000) of where the segment starts.

• Length in bytes of the segment.

• Location in ESP32 processor address space where the segment should be
copied.

For example, if we run esptool.py --chip image_info bootloader.bin we will find:

esptool.py v2.0-dev
Image version: 1
Entry point: 40098200

Page 481

4 segments

Segment 1: len 0x00000 load 0x3ffc0000 file_offs 0x00000018
Segment 2: len 0x00a08 load 0x3ffc0000 file_offs 0x00000020
Segment 3: len 0x01068 load 0x40078000 file_offs 0x00000a30
Segment 4: len 0x00378 load 0x40098000 file_offs 0x00001aa0
Checksum: 92 (valid)

We can also run xtensa-esp32-elf-objdump -h bootloader.elf:

Idx Name Size VMA LMA File off Algn
 0 .iram1.text 00000378 40098000 40098000 00001b24 2**2
 1 .dram0.bss 00000000 3ffc0000 3ffc0000 00000abc 2**0
 2 .dram0.data 00000000 3ffc0000 3ffc0000 000000b4 2**0
 3 .dram0.rodata 00000a08 3ffc0000 3ffc0000 000000b4 2**2
 4 .iram_pool_1.text 00001065 40078000 40078000 00000abc 2**2
 5 .debug_frame 00000230 00000000 00000000 00001e9c 2**2
 6 .debug_info 00002a37 00000000 00000000 000020cc 2**0
 7 .debug_abbrev 000008fc 00000000 00000000 00004b03 2**0
 8 .debug_loc 00000cac 00000000 00000000 000053ff 2**0
 9 .debug_aranges 00000118 00000000 00000000 000060ab 2**0
 10 .debug_ranges 00000110 00000000 00000000 000061c3 2**0
 11 .debug_line 000016a7 00000000 00000000 000062d3 2**0
 12 .debug_str 00000d36 00000000 00000000 0000797a 2**0
 13 .comment 00000022 00000000 00000000 000086b0 2**0
 14 .xtensa.info 00000038 00000000 00000000 000086d2 2**0

As a further example, here is an image_info listing of an application

esptool.py v2.0-dev
Image version: 1
Entry point: 40080868
8 segments

Segment 1: len 0x0ffe8 load 0x00000000 file_offs 0x00000018
Segment 2: len 0x049b0 load 0x3f400010 file_offs 0x00010008 → .flash.rodata
Segment 3: len 0x01aa8 load 0x3ffbf2c0 file_offs 0x000149c0 → .dram0.data
Segment 4: len 0x00400 load 0x40080000 file_offs 0x00016470 → .iram0.vectors
Segment 5: len 0x163b0 load 0x40080400 file_offs 0x00016878 → .iram0.text
Segment 6: len 0x00000 load 0x400c0000 file_offs 0x0002cc30 → .rtc.test
Segment 7: len 0x033d0 load 0x00000000 file_offs 0x0002cc38
Segment 8: len 0x2965c load 0x400d0018 file_offs 0x00030010 → .flash.text
Checksum: c5 (valid)

and an edited version of the objdump:

Idx Name Size VMA LMA File off Algn
 0 .iram0.vectors 00000400 40080000 40080000 00006538 2**2
 1 .iram0.text 000163ae 40080400 40080400 00006938 2**2
 2 .dram0.bss 0000f2c0 3ffb0000 3ffb0000 00004a90 2**3
 3 .dram0.data 00001aa8 3ffbf2c0 3ffbf2c0 00004a90 2**4

Page 482

 4 .flash.rodata 000049b0 3f400010 3f400010 000000e0 2**4
 5 .flash.text 00029659 400d0018 400d0018 0001cce8 2**2
 6 .rtc.text 00000000 400c0000 400c0000 00046341 2**0
 7 .debug_frame 00005590 00000000 00000000 00046344 2**2
 8 .debug_info 00070fbb 00000000 00000000 0004b8d4 2**0
 9 .debug_abbrev 000101a2 00000000 00000000 000bc88f 2**0
 10 .debug_loc 000231ce 00000000 00000000 000cca31 2**0
 11 .debug_aranges 000024c0 00000000 00000000 000efc00 2**3
 12 .debug_ranges 00002a20 00000000 00000000 000f20c0 2**3
 13 .debug_line 0002d918 00000000 00000000 000f4ae0 2**0
 14 .debug_str 00012101 00000000 00000000 001223f8 2**0
 15 .comment 00000062 00000000 00000000 001344f9 2**0
 16 .xtensa.info 00000038 00000000 00000000 0013455b 2**0

Power modes
The ESP32 can operate in different power modes. The distinguishing feature is how
much current is consumed. Ideally we want the ESP32 to consume as little power as
possible and the trade off on this is the amount of function that can be performed
against current consumption. The items that affect current consumption includes

• Radio on or off

• CPUs on or off

• RAM being maintained

The distinct modes of operation have names associated with them:

• Active mode – This is the normal operational mode. The radio is on and it can
both transmit and receive.

• Modem-sleep mode – In this mode the radio is powered off but other functions
remain enabled. Radio is the biggest consumer of power.

• Light-sleep mode – The CPUs are paused however the RTC and ULP-co-
processor remain operational. A variety of events can wake up the processor
including timers or external interrupts.

• Deep-sleep mode – Only the RTC has power.

• Hibernation mode – Only one timer or an external RTC interrupt can wake us up.

Bootloader
When a device is powered up, control is given in a raw state to an area of code called
the "bootloader". The responsibility of a bootloader is to bring the system up to a usable
state and then load and give control to a user written application. The bootloader for

Page 483

ESP32 is supplied as the bootloader component within the ESP-IDF environment.
Studying the bootloader provides us great incite into how the ESP32 operates.

Control starts at call_start_cpu0

call_start_cpu0 {
 reset CPU caches;
 call bootloader_main()
}

The bootloader_main() is responsible for much of the work:

bootloader_main() {
 // Load the bootloader header data from SPI address 0x1000
 call esp_image_load_header();

 // Load the partition table.
 call load_patition_table();
}

Peripherals

Remote Control Peripheral – RMT
The primary purpose of this component of the ESP32 is to generate pulses sent via an
infrared LED. When you point your TV remote control at your TV and press a button, an
infrared LED at the front sends a sequence of pulses that are received by the TV and
decoded. Since an infrared LED can be either "on" or "off" at any given time, the signal
is encoded in the duration that the LED is either on or off. Whether the LED is on or off
and for how long we call a data item. To use the RMT component, we build an array of
data items and pass those to the RMT with the intent that it will then own the generation
of the correct signals.

A data item is composed of a 16 bit value.

level [15] period [14:0]

The level bit is either 1 or 0 describing the output signal while the period (15 bits in
length) is the duration in clock ticks. 15 bits give us a range from 1-32767. A value of 0
for the period is used as an end marker. The normal maximum number of data item
records is 128.

The RMT has 8 distinct channels with each channel having 128 16 bit records. Should
we wish to send more than 128 records, we can extend a channel to use the channel
data of subsequent adjacent channels. For example, if we are using only channel 0
then the data available for it can be that of channel 0, channel 1 up to channel 7 giving
us a total of 1024 value records (1024 data items or 2048 bytes). The number of
channels of data used by a specific channel is set in the register RMT_MEM_OWNER_CHn.

Page 484

There is also an interesting mechanism that involves the buffer for a channel wrapping
around. Imagine that we have a default buffer size of 128 * 16bit records. If we need to
send more than 128 records, we can pre-load a buffer with our first 128 values and set
the RMT transmitting. When it has transmitted the first 128 values, it will generate an
interrupt that can be used to re-fill the buffer with the new values and progress will
continue.

The RAM for these blocks starts at RMT base address + 0x800.

Assuming each channel uses just its own block, the channels start at:

Channel Address

0 RMT base address + 0x800

1 RMT base address + 0x800 + 0x100

2 RMT base address + 0x800 + 0x200

3 RMT base address + 0x800 + 0x300

4 RMT base address + 0x800 + 0x400

5 RMT base address + 0x800 + 0x500

6 RMT base address + 0x800 + 0x600

7 RMT base address + 0x800 + 0x700

Each channel has two control registers associated with it called RMT_CHnCONF0_REG and
RMT_CHnCONF1_REG.

Register – RMT_CHnCONF0_REG

Name Bits Field Description

reserved [31] clk_en Reserved. Set to 0.

RMT_MEM_PD [30] mem_pd Power down memory.
• 0 – memory is powered up
• 1 – memory is powered down

RMT_CARRIER_OUT_LV_CHn [29] carrier_out_lv Carrier present on:
• 0 – transmit on high
• 1 – transmit on low

RMT_CARRIER_EN_CHn [28] carrier_en Is carrier signal enabled?
• 0 – disabled
• 1 – enabled

RMT_MEM_SIZE_CHn [27:24] mem_size Memory blocks allocated to channel. 4bits. (0x01)

RMT_IDLE_THRESH_CHn [23:8] idle_thres Clock cycles of no change indicates an end of reception in receive
mode. (0x1000)

RMT_DIV_CNT_CHn [7:0] div_cnt Divider for channel clock. (0x02)

Register – RMT_CHnCONF1_REG

Page 485

Name Bits Field Description

reserved [31:20] reserved20 Reserved. Set to 0.

RMT_IDLE_OUT_EN_CHn [19] idle_out_en Output enable. (0)

RMT_IDLE_OUT_LV_CHn [18] idle_out_lv Output signal in idle state. (0)

RMT_REF_ALWAYS_ON_CHn [17] ref_always_on Selection of channel base clock:
• 0 – clk_ref.
• 1 – clk_apb.

RMT_REF_CNF_RST_CHn [16] ref_cnf_rst Reset the clock divider. (0)

RMT_RX_FILTER_THRES_CHn [15:8] rx_filter_thres Threshold for of pulse width in receive mode. (0x0f)

RMT_RX_FILTER_EN_CHn [7] rx_filter_en Enable receive filter. (0)

RMT_TX_CONTI_MODE_CHn [6] tx_conti_mode Enable repeating transmission.
• 0 – Go idle at end of transmission.
• 1 – Repeat at end of transmission.

RMT_MEM_OWNER_CHn [5] mem_owner Block used for receive or transmit?
• 0 – RAM used for transmission.
• 1 – RAM used for reception.

reserved [4] apb_mem_rst Reserved. Set to 0.

RMT_MEM_RD_RST_CHn [3] mem_rd_rst Reset read ram for transmitter access. (0)

RMT_MEM_WR_RST_CHn [2] mem_wr_rst Reset write ram for receiver access. (0)

RMT_RX_EN_CHn [1] rx_en Enable receiving on channel.
1 – Start receiving. (0)

RMT_TX_START_CHn [0] tx_start Start sending on channel.
1 – Start transmitting. (0)

Let us imagine we want to send 8 bits of square wave through channel 0. This means
we will want 17 records (one for each value transition and a terminator). We will then
want to set RMT_CH0CONF0_REG to

• RMT_MEM_PD = 0 (Power up memory)

• RMT_CARRIER_EN_CH0 = 0 (carrier disabled)

• RMT_MEM_SIZE_CH0 = 1 (1 memory block)

• RMT_DIV_CNT_CH0 = 1 (divider for clock)

We will also want to set RMT_CH0CONF1_REG to:

• RMT_IDLE_OUT_EN_CH0 = 1 (Output enable)

• RMT_IDLE_OUT_LV_CH0 = 0 (0 in idle state)

• RMT_REF_ALWAYS_ON_CH0 = 0 (channel base clock)

• RMT_MEM_OWNER_CH0 = 0 (used for transmission)

• RMT_MEM_RD_RST_CH0 = 1 (Reset read ram)

• RMT_RX_EN_CH0 = 0 (Enable transmit on channel)

• RMT_TX_START_CH0 = 1 (Start transmitting)

Page 486

Within the header file called "soc/rmt_struct.h" we have a global variable defined
called RMTMEM that contains definitions of the data buffers.

There is also a variable called RMT that contains the

The signal mapping for GPIOs is:

Function Signal Constant

rmt_sig_out0 87 RMT_SIG_OUT0_IDX

rmt_sig_out1 88 RMT_SIG_OUT1_IDX

rmt_sig_out2 89 RMT_SIG_OUT2_IDX

rmt_sig_out3 90 RMT_SIG_OUT3_IDX

rmt_sig_out4 91 RMT_SIG_OUT4_IDX

rmt_sig_out5 92 RMT_SIG_OUT5_IDX

rmt_sig_out6 93 RMT_SIG_OUT6_IDX

rmt_sig_out7 94 RMT_SIG_OUT7_IDX

To say that a signal will appear on a particular GPIO, we execute the following logic:

include "soc/gpio_sig_map.h"

int gpioNum = 17;
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO);
gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX, 0, 0);

SPI
The header file called "soc/spi_struct.h" provides a data type called "spi_dev_t" that
is a memory map into the registers that control SPI. There are four instances of this
structure, one for each of the hardware SPIs available on an ESP32. These are called
SPI0, SPI1, SPI2 and SPI3. SPI0 is reserved for internal use and should be ignored.

If one looks there, you will find a bewilderingly large number of settings. Poking those
values correctly to achieve SPI is not a trivial matter and documentation on those
features is still a while away.

See also:

• Error: Reference source not found

• The Arduino Hardware Abstraction Layer SPI

PID Controller
I have no idea what this is.

Page 487

UART
Read the UART status register?

READ_PERI_REG(UART_INT_ST_REG(??))

UART_FRM_ERR_INT_ENA ---?

UART_RXFIFO_TOUT_INT_ENA – Timeout interrupt enable

UART_RXFIFO_FULL_INT_ENA – RX FIFO length is > than threshold

UART_GET_RXFIFO_CNT → #define to

#define UART_GET_RXFIFO_CNT(i)
GET_PERI_REG_BITS2(UART_STATUS_REG(i) , UART_RXFIFO_CNT_V,
UART_RXFIFO_CNT_S)

Number of bytes in RX queue

UART_GET_RXFIFO_RD_BYTE → #define to

#define UART_GET_RXFIFO_RD_BYTE(i)
GET_PERI_REG_BITS2(UART_FIFO_REG(i) , UART_RXFIFO_RD_BYTE_V,
UART_RXFIFO_RD_BYTE_S)

Read a byte from the RX queue

I2S
The I2S peripheral is more than just working with the I2S protocol. It is also a powerful
data mover of parallel data into and out of RAM without application involvement.

First, let us realize that there are two I2S buses called I2S0 and I2S1.

The I2S bus can output a high precision clock.

A very special mode of the I2S bus is called the "LCD mode". This deviates
dramatically from any I2S audio protocols but gives us access to driving an external
parallel display (LCD) or receiving parallel data from a camera.

See also:

• AMBA 3 AHB-Lite Protocol

Page 488

http://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf

I2S Clock
The I2S_CLK signal is an output signal used to communicate with the partner. The clock
is derived from either the PLL_D2_CLK or the APLL_CLK as defined by the I2S_CLKA_ENA bit
of I2S_CLCKM_CONFIG_REG. The default is PLL_D2_CLK.

The frequency of the clock is given by the following formula:

Fi2 s= Fpll

N+ b
a

For the PLL_D2_CLK, Fpll will be 160MHz.

• N is the value REG_CLKM_DIV_NUM of I2S_CLKM_CONF_REG

• b is I2S_CLKM_DIV_A of I2S_CLCKM_CONF_REG

• a is I2S_CLKM_DIV_B of I2S_CLCKM_CONF_REG

Camera mode
The I2S peripheral has a mode called "camera" mode. In that mode, it is able to
retrieve data from a camera. To do this, we need some logical pins:

Logical Name ESP32 Identity WROOM Dev Kit

Data 0 I2S0I_DATA_IN0_IDX GPIO4

Data 1 I2S0I_DATA_IN1_IDX GPIO5

Data 2 I2S0I_DATA_IN2_IDX GPIO18

Data 3 I2S0I_DATA_IN3_IDX GPIO19

Data 4 I2S0I_DATA_IN4_IDX GPIO36

Data 5 I2S0I_DATA_IN5_IDX GPIO39

Data 6 I2S0I_DATA_IN6_IDX GPIO34

Data 7 I2S0I_DATA_IN7_IDX GPIO35

VSYNC I2S0I_V_SYNC_IDX GPIO25

HREF I2S0_H_ENABLE_IDX GPIO23

PCLK I2S0_WS_IN_IDX GPIO22

Consider a logical camera input. It would consist of:

Page 489

The way to read this is that the camera has input from an external clock (XCLK) and
generates 8 parallel lines of data output (the camera data bus) plus three additional
interrupt signals for vertical sync, horizontal sync and pixel clock.

So far, so good. Now let us consider the ESP32 I2S peripheral as consuming this data
… and it is here that things get interesting. While one might imagine that the I2S
peripheral should behave as a master (providing the clock) that isn't how it is designed
to be used. Instead the I2S peripheral should be placed into slave mode which means
that it is the consumer of a clock signal. That seems OK as we have a PCLK signal to
use. However, that's not how the story works. The ESP32 (acting as a slave) does not
synchronize clocks with the master (the camera). Instead, the ESP32 runs its own
internal clock which must be at least twice as fast as the master (camera) clock. (Is this
true?) For technical reasons the ESP32 I2S peripheral has a maximum value of 40MHz
which means that the master (camera) clock can never be greater than 20MHz. With
this in mind, we now learn that the ESP32 isn't actually "interrupted" by the master
(camera's) clock, instead the ESP32 is sampling the incoming clock signal. As long as
the sampling is fast enough, the ESP32 can detect a clock transition by seeing that the
signal has gone from a previous high to a current reading of low or a previous low to a
current reading of high.

This design is known in digital electronics as a "synchronizer stage". Thankfully, we do
not need to understand all the mechanical details but what we do have to get right is the
setting of the ESP32 I2S clock. The I2S clock is known as the I2S_CLK signal. We do

Page 490

not need to expose this on an IO pin since it need not be connected to anything.
However, we do need to set its speed. We do this through three settings in the
I2S_CLKM_CONF_REG as follows:

Set REG_CLKM_DIV_NUM to be 2

Set REG_CLKM_DIV_A to 1

Set REG_CLKM_DIV_B to 0

From the clock speed calculation formula for I2S which is:

Fi2 s= Fpll

N+ b
a

This gives us a clock speed value of:

Fi2 s= Fpll

2+ 0
1

which is:

Fi2 s=Fpll
2

Since Fpll is the PLL_D2_CLK which runs at 160MHz, this then gives us the final result of
80MHz as the sampling rate of the external clock.

In actual code, we would write:

// Configure clock divider
I2S0.clkm_conf.clkm_div_a = 1;
I2S0.clkm_conf.clkm_div_b = 0;
I2S0.clkm_conf.clkm_div_num = 2;

WAIT … SOMETHING IS NOW WRONG WITH THE STORY

Reading the Tech Ref, there are some "rules" to put the I2S into camera mode.
Specifically:

Page 491

Field Register Value

I2S_CAMERA_EN I2SCONF2_REG 1

I2S_LCD_EN I2SCONF2_REG 1

I2S_RX_SLAVE_MOD I2SCONF_REG 1

I2S_RX_MSB_RIGHT IS2CONF_REG 0

I2S_RX_RIGHT_FIRST IS2CONF_REG 0

I2S_RX_CHAN_MOD I2SCONF_CHAN_REG 1

I2S_RX_FIFO_MOD I2S_FIFO_CONF_REG 1

Studying the sample made available from Ivan at Espressif, we find that it performs the
following logical functions:

Toggles the reset flags in I2S_LC_CONF_REG register:

I2S_IN_RST – Reset the RX DMA finite state machine.

I2S_AHBM_RST – Reset the AHB interface of DMA.

I2S_AHBM_FIFO_RST – Reset the AHB interface cmdFIFO of DMA.

Next it toggles further reset flags:

I2S_RX_RESET

I2S_RX_FIFO_RESET

I2S_TX_RESET

I2S_TX_FIFO_RESET

We then block until some state changes.

Next set:

I2S_RX_SLAVE_MOD=1 rx_slave_mode = 1

I2S_LCD_EN = 1

I2S_CAMERA_EN = 1

The Clock

I2S_DSCR_EN = 1 (Enable I2S DMA mode)

I2S_RX_FIFO_MOD_FORCE_EN = 1

I2S_RX_CHAN_MOD = 1

I2S_RX_BITS_MOD = 16

Page 492

Registers
The registers are:

Page 493

Name Description Access

I2S_CONF_REG Configuration and start/stop bits R/W

I2S_CONF1_REG PCM configuration R/W

I2S_CONF2_REG ADC/LCD/Camera configuration R/W

I2S_TIMING_REG Signal delay and timing R/W

I2S_FIFO_CONF_REG FIFO configuration R/W

I2S_CONF_SINGLE_DATA_REG Static channel output value R/W

I2S_CONF_CHAN_REG Channel configuration R/W

I2S_LC_HUNG_CONF_REG Timeout detection configuration R/W

I2S_CLKM_CONF_REG Bitclock configuration R/W

I2S_SAMPLE_RATE_CONF_REG Sample rate configuration R/W

I2S_PD_CONF_REG Power down register R/W

I2S_LC_CONF_REG DMA configuration R/W

I2S_RXEOF_NUM_REG Receive data count R/W

I2S_OUT_LINK_REG DMA transmit linked list configuration address R/W

I2S_IN_LINK_REG DMA receive linked list configuration and address R/W

I2S_OUT_EOF_DES_ADDR_REG Address of transmit link descriptor producing EOF RO

I2S_IN_EOF_DES_ADDR_REG Address of receive link descriptor producing EOF RO

I2S_OUT_EOF_BFR_DES_ADDR_REG Address of transmit buffer producing EOF RO

I2S_INLINK_DSCR_REG Address of current inlink descriptor RO

I2S_INLINK_DSCR_BF0_REG Address of next inlink descriptor RO

I2S_INLINK_DSCR_BF1_REG Address of next inlink data buffer RO

I2S_OUTLINK_DSCR_REG Address of current outlink descriptor RO

I2S_OUTLINK_DSCR_BF0_REG Address of next outlink descriptor RO

I2S_OUTLINK_DSCR_BF1_REG Address of next outlink data buffer RO

I2S_LC_STATE0_REG DMA receive status RO

I2S_LC_STATE1_REG DMA transmit status RO

I2S_PDM_CONF_REG PDM configuration R/W

I2S_PDM_FREQ_CONF_REG PDM frequencies R/W

I2S_INT_RAW_REG Raw interrupt status RO

I2S_INT_ST_REG Masked interrupt status RO

I2S_INT_ENA_REG Interrupt enable bits R/W

I2S_INT_CLR_REG Interrupt clear bits RO

See also:

• soc/esp32/include/soc/i2s_reg.h

• soc/esp32/include/soc/i2s_struct.h

Page 494

https://github.com/espressif/esp-idf/blob/master/components/soc/esp32/include/soc/i2s_struct.h
https://github.com/espressif/esp-idf/blob/master/components/soc/esp32/include/soc/i2s_reg.h

I2S_CONF_REG
This field is conf in the struct.

I2S_SIG_LOOPBACK

I2S_RX_MSB_RIGHT

I2S_TX_MSB_RIGHT

I2S_RX_MONO

I2S_TX_MONO

I2S_RX_SHORT_SYNC

I2S_TX_SHORT_SYNC

I2S_RX_MSB_SHIFT

I2S_TX_MSB_SHIFT

I2S_RX_RIGHT_FIRST Set this bit receiver right channel data first.

I2S_TX_RIGHT_FIRST Set this bit to transmit right channel data first.

I2S_RX_SLAVE_MOD Set this bit to enable slave receiver mode.

I2S_TX_SLAVE_MOD Set this bit to enable slave transmitter mode.

I2S_RX_START Set this bit to start receiving.

I2S_TX_START Set this bit to start transmitting.

I2S_RX_FIFO_RESET Set this bit to reset the receive FIFO.

I2S_TX_FIFO_RESET Set this bit to reset the transmit FIFO/

I2S_RX_RESET Set this bit to reset the receiver.

I2S_TX_RESET Set this bit to reset the transmitter.

I2S_CONF2_REG
This field is conf2 in the struct.

I2S_INTER_VALID_EN Enable internal validation.

I2S_EXT_ADC_START_EN Enable external ADC.

I2S_LCD_EN Enable LCD mode.

I2S_LCD_TX_SDX2_EN Duplicate data pairs.

I2S_LCD_TX_WRX2_EN Write data in duplicate in LCD mode.

I2S_CAMERA_EN Enable camera mode.

Looking at the struct there also appears to be "data_enable" and
"data_enable_test_en".

Page 495

I2S_CLKM_CONF_REG
This is field clkm_conf.

The high level function which sets these values is i2s_set_clk().

I2S_CLKA_ENA [21] • 0 – Use PLL D2
• 1 – Use clk_apll

I2S_CLKM_DIV_A [19:14] Divider denominator

I2S_CLKM_DIV_B [13:8] Divider numerator

I2S_CLKM_DIV_NUM[7:0] Divider integral value

I2S_CONF_CHAN_REG
This field is conf_chan in the struct.

I2S_RX_CHAN_MOD [4:3]

I2S_TX_CHAN_MOD [2:0]

I2S_LC_CONF_REG
This field is lc_conf in the struct.

I2S_MEM_TX_EN

I2S_CHECK_OWNER

I2S_OUT_DATA_BURST_EN

I2S_INDSCR_BURST_EN

I2S_OUTDSCR_BURST_EN DMA outlink descriptor transfer mode configuration.

I2S_OUT_EOF_MODE Interrupt config.

I2S_OUT_AUTO_WRBACK Set to 1 to enable automatic outlink-writeback when all the data in tx buffer has
been transmitted.

I2S_OUT_LOOP_TEST Set to loop test outlink.

I2S_IN_LOOP_TEST Set to loop test inlink.

I2S_AHBM_RST Toggle to 1 to reset the AHB interface of DMA.

I2S_AHBM_FIFO_RST Toggle to 1 to reset the AHB interface cmdFIFO of DMA.

I2S_OUT_RST Toggle to 1 to reset the outgoing DMA state machine.

I2S_IN_RST Toggle to 1 to reset the incoming DMA state machine.

I2S_FIFO_CONF_REG
This field is fifo_conf in the struct.

Page 496

I2S_RX_FIFO_MOD_FORCE_EN Should always be 1.

I2S_TX_FIFO_MOD_FORCE_EN Should always be 1.

I2S_RX_FIFO_MOD [19:16] Receive FIFO mode config.
• 0 – 16 bit dual channel data
• 1 – 16 bit single channel data
• 2 – 32 bit dual channel data
• 3 – 32 bit single channel data

I2S_TX_FIFO_MOD [15:13] Transmit FIFO mode config.
• 0 – 16 bit dual channel data
• 1 – 16 bit single channel data
• 2 – 32 bit dual channel data
• 3 – 32 bit single channel data

I2S_DSCR_EN Set this to enable I2S DMA mode.

I2S_TX_DATA_NUM [11:6] Threshold of data length in the transmit FIFO.

I2S_RX_DATA_NUM [5:0] Threshold of data length in the receive FIFO.

I2S_IN_LINK_REG
This field is in_link in the struct.

I2S_INLINK_RESTART

I2S_INLINK_START

I2S_INLINK_STOP

I2S_INLINK_ADDR

I2S_RXEOF_NUM_REG
This field is rx_eof_num in the struct.

This defined the length of the data to be received. After receiving this data, an
I2S_IN_SUC_EOF_INT interrupt will be triggered. This will indicate that all the data
expected to have been received has been received.

I2S_CONF_CHAN_REG
This field is conf_chan in the struct.

I2S_RX_CHAN_MOD [4:3] I2S receiver channel mode.

I2S_TX_CHAN_MOD [2:0] I2S transmitter channel mode.

I2S_SAMPLE_RATE_CONF_REG
This field is sample_rate_conf in the struct.

Page 497

I2S_RX_BITS_MOD [23:18] Bit length of I2S receiver channel.

I2S_TX_BITS_MOD [17:12] Bit length of I2S transmitter channel.

I2S_RX_BCK_DIV_NUM [11:6] Bit clock configuration in receiver.

I2S_TX_BCK_DIV_NUM [5:0] Bit clock configuration in transmitter.

I2S_INT_RAW_REG
This field is int_raw in the struct.

I2S_OUT_TOTAL_EOF_INT_RAW

I2S_IN_DSCR_EMPTY_INT_RAW

I2S_OUT_DSCR_ERR_INT_RAW

I2S_IN_DSCR_ERR_INT_RAW

I2S_OUT_EOF_INT_RAW

I2S_OUT_DONE_INT_RAW

I2S_IN_SUC_EOF_INT_RAW

I2S_IN_DONE_INT_RAW

I2S_TX_HUNG_INT_RAW

I2S_RX_HUNG_INT_RAW

I2S_TX_REMPTY_INT_RAW

I2S_TX_WFULL_INT_RAW

I2S_RX_REMPTY_INT_RAW

I2S_RX_WFULL_INT_RAW

I2S_TX_PUT_DATA_INT_RAW

I2S_RX_TAKE_DATA_INT_RAW

I2S_INT_ENA_REG
This field is int_ena in the struct.

Page 498

I2S_OUT_TOTAL_EOF_INT_RAW

I2S_IN_DSCR_EMPTY_INT_RAW

I2S_OUT_DSCR_ERR_INT_RAW

I2S_IN_DSCR_ERR_INT_RAW

I2S_OUT_EOF_INT_RAW

I2S_OUT_DONE_INT_RAW

I2S_IN_SUC_EOF_INT_RAW

I2S_IN_DONE_INT_RAW

I2S_TX_HUNG_INT_RAW

I2S_RX_HUNG_INT_RAW

I2S_TX_REMPTY_INT_RAW

I2S_TX_WFULL_INT_RAW

I2S_RX_REMPTY_INT_RAW

I2S_RX_WFULL_INT_RAW

I2S_TX_PUT_DATA_INT_RAW

I2S_RX_TAKE_DATA_INT_RAW

I2S_INT_CLR_REG
This field is int_clr in the struct.

I2S_OUT_TOTAL_EOF_INT_ENA

I2S_IN_DSCR_EMPTY_INT_ENA

I2S_OUT_DSCR_ERR_INT_ENA

I2S_IN_DSCR_ERR_INT_ENA

I2S_OUT_EOF_INT_ENA

I2S_OUT_DONE_INT_ENA

I2S_IN_SUC_EOF_INT_ENA

I2S_IN_DONE_INT_ENA

I2S_TX_HUNG_INT_ENA

I2S_RX_HUNG_INT_ENA

I2S_TX_REMPTY_INT_ENA

I2S_TX_WFULL_INT_ENA

I2S_RX_REMPTY_INT_ENA

I2S_RX_WFULL_INT_ENA

I2S_TX_PUT_DATA_INT_ENA

I2S_RX_TAKE_DATA_INT_ENA

Page 499

Electronics

Transistors as switches
If we consider that a GPIO pin can produce a signal of high or low we see that the
signal can be used to perform work. However there is a maximum current that can be
drawn from any given I/O pin. If, for example, we wished to attach a device to a pin
which would draw more current than the pin is rated to supply, we may very easily
damage our ESP32. This is where a transistor can come into play. A transistor can be
thought of as an electronic switch. A transistor has three pins labeled emitter, base and
collector. If a small current flows between base and emitter a correspondingly higher
current will be allowed to flow between collector and emitter. There are two types of
transistor we will come across called NPN and PNP. The difference between them is
whether or not the "switch" is triggered by a high signal or a low signal. The following is
the schematic symbol for an NPN transistor. Normally we connect the emitter to ground
and a load between the collector and +ve. If we then connect the base to the output of
an I/O pin (through a resistor(, then when the pin goes high, a small current will flow
between B and E and a much higher current will flow between C and E.

For the other type of transistor (PNP) whose symbol is shown in the following diagram,
the emitter is usually connected to +ve and the collector to the load and then ground.
With the base pin connected to a GPIO (through a resistor), when the base goes low,
the small current flowing from the emitter through the base will be greatly amplified as
the current flowing through the emitter to the collector.

By using a transistor, we are no longer directly drawing load through the GPIO pin but
instead simply using the signal present on the pin to energize the transistor.

Common transistors that can easily be obtained include:

Page 500

Name Type Style

2N3904 (Signal transistor) – 200mA
max current

NPN TO-92

2N3906 (Signal transistor) PNP TO-92

PN2222 NPN TO-92

TIP120 – 5A max current NPN TO-220

TIP125 – 5A max current PNP TO-220

BC547 – 100mA max current NPN TO-92

BC557 – 100mA max current PNP TO-92

2N3055 – 15A max current NPN TO-3

TO-3

See also:

• 2N3904 Data Sheet

• 2N3906 Data Sheet

• PN2222 Data Sheet

• TIP120 Data Sheet

• TIP125 Data Sheet

• BC547 Data Sheet

• BC557 Data Sheet

• You Tube: Electronic Basics #22: Transistor (BJT) as a switch

• Using bipolar transistors as switches

Logic Level Shifting
We have already read that the ESP32 GPIO pins are 3.3V tolerant. This means that the
maximum input voltage must be 3.3V. If you go higher than that, you are at risk for
frying your device. But what if we have a peripheral device that outputs a 5V signal?
Conversely, the maximum output voltage on a Pi GPIO is 3.3V. If we feed that as input

Page 501

http://www.rason.org/Projects/transwit/transwit.htm
https://www.youtube.com/watch?v=WRm2oUw4owE
https://www.fairchildsemi.com/datasheets/BC/BC557.pdf
https://www.fairchildsemi.com/datasheets/BC/BC547.pdf
https://www.fairchildsemi.com/datasheets/TI/TIP125.pdf
https://www.fairchildsemi.com/datasheets/TI/TIP120.pdf
https://www.fairchildsemi.com/datasheets/pn/pn2222.pdf
https://www.sparkfun.com/datasheets/Components/2N3906.pdf
https://www.sparkfun.com/datasheets/Components/2N3904.pdf

to a peripheral that is expecting a 5V input, there is no assurance that it will detect the
signal correctly. Fortunately there is a solution in a circuit called a logic level shifter.
This circuit can convert a 3.3V signal to a 5V signal and can also convert a 5V signal to
a 3.3V signal.

The module takes as input +ve and ground of the high level and +ve and ground of the
low level and provides bi-directional switching.

If you don't have access to such logic level circuits, an alternative solution is to create a
voltage divider. This will protect 3V Pi inputs from over voltage from a 5V source. This
is a simple circuit made with two resistors. A higher voltage is provided to input than
output and using a correct combination of resistors, the input voltage is proportionally
scaled to the output voltage.

There is an equation available to us:

V out=
V i n×R2
R1+R2

As an example of a solution to this equation, if Vin is 5V and we want Vout to be 3.3V and
choose 1KΩ for R2 then …

3.3= 1000
R1+1000

×5

Which evaluates to R1 having a value of 515Ω. We can use a higher value for R1 but
not lower.

Expressing the equation in a different order we have:

Page 502

R1=
(V i n−V out)×R2

V out

See also:

• Sparkfun – Bi-Directional Logic Level Converter Hookup Guide

• Wikipedia – Voltage divider

Projects

JerryScript library for ESP32
JerryScript is JavaScript for embedded devices including the ESP32. However, just like
JavaScript on other platforms, it provides only the language. What this means is that
there are no libraries of higher functions supplied by default. Projects such as IoT.js
would be perfect, but it appears that their requirements and dependencies are currently
too function rich for a trivial port to ESP32.

As a result of that, we now look to see if we can't do something more pragmatic. We
will borrow wherever possible from the semantics and descriptions of Node.js which is
the industry de-facto standard.

The "require" capability
The concept is that we can load "modules" by name. A module is the dynamic sourcing
of function which returns a JavaScript object that services that function.

Generically, we will code:

let myVar = require("<Module Name>");

Our implementation will be general enough to return built-in modules as well as external
modules.

See also:

• JerryScript

API Reference
Now we have a mini reference to the syntax of many of the ESP32 exposed APIs as
well as related libraries. Do not use this reference exclusively. Please also refer to the
published Espressif SDK Programming Guide and other sources of literature. Part of
the purpose of recreating this quick listing is so that it can be cross referenced in the
examples as well as serving as a place where notes about using an API in the context
of an ESP32 can be captured.

Page 503

https://en.wikipedia.org/wiki/Voltage_divider
https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

Some acronyms and other names are used in the naming of APIs and may need some
explanation to fully appreciate them:

• dhcpc – DHCP client

• dhcps – DHCP server

• softap – Access point implemented in software

• wps – WiFi Protected Setup

• sntp – Simple Network Time Protocol

• mdns – Multi-cast Domain Name System

• uart – Universal asynchronous receiver/transmitter

• pwm – Pulse width modulation

Configuration, status and operational retrieval
There are certain APIs available to us that can be used to interrogate the operation of
an ESP32 and some of its distinct parts and components. The detailed documentation
for these APIs are found in the corresponding links … but here we list their existence
and brief description of what they provide:

• system_get_time - Get the system time measured in microseconds since last device start-up.

• esp_chip_info - Get information about the chip.

• esp_get_free_heap_size - Get the amount of free heap size.

• esp_get_idf_version - Get the version of the ESP-IDF in use.

• esp_wifi_scan_get_ap_records - Retrieve the access points found in a previous scan.

• esp_wifi_scan_get_ap_num - Retrieve the count of found access points from a previous scan.

• esp_wifi_get_auto_connect - Determine whether or not auto connect at boot is enabled.

• esp_wifi_get_bandwidth - Get the current bandwidth setting.

• esp_wifi_get_channel - Get the current channel.

• esp_wifi_get_config - Retrieve the current connection information associated with the specified WiFi interface.

• esp_wifi_get_country - Retrieve the currently configured WiFi country.

• esp_wifi_get_mac - Retrieve the current MAC address for the interface.

• esp_wifi_get_mode - Get the WiFi operating mode.

• esp_wifi_get_promiscuous

• esp_wifi_get_protocol - Get the 802.11 protocol (b/g/n).

• esp_wifi_get_ps - Get the power save type.

• esp_wifi_get_station_list - Get the list of stations connected to ESP32 when it is behaving as an access point.

• tcpip_adapter_get_ip_info

• tcpip_adapter_get_sta_list

• tcpip_adapter_get_wifi_if

Arduino Mapping
The Arduino APIs are a library of functions available within the Arduino ecosystem.
There may be times when we want to port an Arduino library to the ESP-IDF

Page 504

environment. This section lists some of the more common Arduino APIs and how they
can be mapped to the ESP-IDF.

bitRead
bitRead(x, n)

The equivalent is:

(x & 1<<n) != 0

bitWrite
bitWrite(x, n, b)

x = (x & (~(1<<n)) | (b << n))

delay
delay(ms)

The equivalent in ESP-IDF is:

vTaskDelay(ms/portTICK_PERIOD_MS)

See also:

• vTaskDelay

• Arduino – delay()

digitalWrite
digitalWrite(pin, value)

The equivalent in ESP-IDF is:

gpio_set_level()

Parameter mappings:

HIGH 1

LOW 0

See also:

• gpio_set_level

• Arduino – digitalWrite()

Page 505

https://www.arduino.cc/en/Reference/pinMode
https://www.arduino.cc/en/Reference/Delay

pinMode
pinMode(pin, mode)

The equivalent in ESP-IDF is:

gpio_set_direction()

Parameter mappings:

mode=INPUT GPIO_MODE_INPUT

mode=OUTPUT GPIO_MODE_OUTPUT

mode=INPUT_PULLUP GPIO_MODE_INPUT with an additional call to gpio_set_pull_mode().

See also:

• gpio_set_direction

• Arduino – pinMode()

SPI.begin
SPI.begin()

The equivalent in ESP-IDF is:

spi_bus_initialize();
spi_bus_add_device();

See also:

• spi_bus_add_device

• spi_bus_initialize

• Arduino – SPI.begin()

SPI.setBitOrder
SPI.setBitOrder

The equivalent in ESP-IDF is:

spi_bus_add_device()

and setting the flags properties. The default is MSB but within the flags we can specify
LSB for either or both of the RX or TX.

See also:

• spi_bus_add_device

• Arduino – SPI.setBitOrder()

SPI.setClockDivider
SPI.setClockDivider()

Page 506

https://www.arduino.cc/en/Reference/SPISetBitOrder
https://www.arduino.cc/en/Reference/SPIBegin
https://www.arduino.cc/en/Reference/pinMode

The equivalent in ESP-IDF is:

spi_bus_add_device()

and setting the clock speed in Hz.

See also:

• spi_bus_add_device

• Arduino – SPI.setClockDivider()

SPI.setDataMode
SPI.setDataMode()

The equivalent in ESP-IDF is:

spi_bus_add_device()

and setting the mode property of the structure.

See also:

• spi_bus_add_device

• Arduino – SPI.setDataMode()

SPI.transfer
SPI.transfer(val)
SPI.transfer(buffer, size)

The equivalent in ESP-IDF is:

spi_device_transmit()

See also:

• spi_device_transmit

• Arduino – SPI.transfer()

Wire.begin
Initialize the I2C interface.

Wire.begin()
Wire.begin(address)

The equivalent ESP-IDF is

i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (address << 1) | I2C_MASTER_WRITE, 1 /* expect ack */);

Wire.beginTransmission
Wire.beginTransmission(address)

Page 507

https://www.arduino.cc/en/Reference/SPITransfer
https://www.arduino.cc/en/Reference/SPISetDataMode
https://www.arduino.cc/en/Reference/SPISetClockDivider

The equivalent ESP-IDF is:

i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (address << 1) | I2C_MASTER_WRITE, 1 /* expect ack */);

Wire.endTransmission
Wire.endTransmission()

The equivalent ESP-IDF is:

i2c_master_stop(cmd);
i2c_master_cmd_begin(0, cmd, 0);
i2c_cmd_link_delete(cmd);

Wire.read
Wire.read()

The equivalent ESP-IDF is:

i2c_master_read(cmd, data, length, ack)
i2c_master_read_byte(cmd, data, ack)

Wire.requestFrom
Wire.requestFrom(address, quantity)

Wire.write
Wire.write(string)
Wire.write(data, length)

The equivalent ESP-IDF is:

i2c_master_write(cmd, data, length, 1);

FreeRTOS API reference
See also:

• Using FreeRTOS

portENABLE_INTERRUPTS
Enable interrupts and context switching.

portDISABLE_INTERRUPTS
Disable interrupts and context switching.

xPortGetCoreID
This is a macro that returns the current core ID on which we are running.

uint32 xPortGetCoreID()

Since the ESP32 has two cores, the result will either only ever be 0 or 1.

Page 508

pvPortMalloc
Allocate storage.

void *pvPortMalloc(size_t size)

See also:

• malloc

pvPortFree
Release storage.

void vPortFree(void *data)

xEventGroupClearBits
Clear one or more bits in an event group.

EventBits_t xEventGroupClearBits(
 EventGroupHandle_t eventGroup,
 const EventBits_t bitsToClear)

• eventGroup – The event group that contains the bits to be cleared.

• bitsToClear – The set of bits to be cleared within the event group.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/event_groups.h>

See also:

• Blocking and synchronization within FreeRTOS

xEventGroupCreate
Create a new FreeRTOS event group.

EventGroupHandle_t xEventGroupCreate()

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/event_groups.h>

See also:

• Blocking and synchronization within FreeRTOS

Page 509

xEventGroupSetBits
Set one or more bits in an event group.

EventBits_t xEventGroupSetBits(
 EventGroupHandle_t eventGroup,
 const EventBits_t bitsToSet)

• eventGroup – The event group that contains the bits to be set.

• bitsToSet – The set of bits to be set within the event group. This is a bit mask.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/event_groups.h>

See also:

• Blocking and synchronization within FreeRTOS

xEventGroupWaitBits
Block waiting for one or more "bits" to become set.

EventBits_t xEventGroupWaitBits(
 const EventGroupHandle_t eventGroup,
 const EventBits_t bitsToWaitFor,
 const BaseType_t clearOnExit,
 const BaseType_t waitForAllBits,
 TickType_t ticksToWait)

Calling this function can cause the caller to block until bits are set or a timeout is met.
Bits can be set through xEventGroupSetBits().

• eventGroup – The event group that references the bits to be watched.

• bitsToWaitFor – The set of bits within the event group that we are waiting upon.
This is a bit mask.

• clearOnExit – Should the bits that we are waiting on be cleared automatically
when set and this method returns?

• waitForAllBits – Should we unblock on the first bit that is set that we are
watching for or alternatively should we wait on all the bits being set?

• ticksToWait – How many ticks should we wait for before returning? This
provides a timeout (if needed). The RTOS variable "portMAX_DELAY" can be used
to specify that we wish to wait indefinitely.

Includes:

• #include <freertos/FreeRTOS.h>

Page 510

• #include <freertos/event_groups.h>

See also:

• xEventGroupSetBits

• Blocking and synchronization within FreeRTOS

xQueueAddToSet
Add a queue to the set of queues monitored by this queue set.

BaseType_t xQueueAddToSet(
 QueueSetMemberHandle_t xQueueOrSemaphore,
 QueueSetHandle_t xQueueSet)

See also:

• xQueueCreateSet

• xQueueRemoveFromSet

• xQueueSelectFromSet

xQueueCreate
Create a queue for holding items.

QueueHandle_t xQueueCreate(
 UBaseType_t uxQueueLength,
 UBaseType_t uxItemSize)

This call creates a queue for holding queue items. The maximum number of items that
the queue can hold is supplied as well as the size of each item in a queue. On return, a
handle to the new queue is supplied or has a value of NULL on error.

If the queue is no longer needed, it can be deleted with a call to vQueueDelete().

• uxQueueLength – The maximum number of items that the queue can contain.

• uxItemSize – The size in bytes reserved for each element in the queue.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

See also:

• vQueueDelete

• xQueueCreate

xQueueCreateSet
Create a queue set.

Page 511

http://www.freertos.org/a00116.html

QueueSetHandle_t xQueueCreateSet(const UBaseType_t uxEventQueueLength)

The uxEventQueueLength must be at least the size of all the queues that will be
concurrently watched by this queue set.

See also:

• xQueueAddToSet

• xQueueRemoveFromSet

• xQueueSelectFromSet

xQueueCreateStatic
Create a queue for holding items but allow the application to own the management of
queue records.

QueueHandle_t xQueueCreateStatic(
 UBaseType_t uxQueueLength,
 UBaseType_t uxItemSize,
 uint8_t *queueStorageBuffer,
 StaticQueue_t pxQueueBuffer)

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

vQueueDelete
Delete a previously created queue.

void vQueueDelete(xQueueHandle xQueue)

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

See also:

• xQueueCreate

• xQueueCreateStatic

xQueueGenericReceive
BaseType_t xQueueGenericReceive(QueueHandle_t xQueue, void * const pvBuffer,
TickType_t xTicksToWait, const BaseType_t xJustPeek)

uxQueueMessagesWaiting
Return the count of messages on the queue.

Page 512

UBaseType_t uxQueueMessagesWaiting(QueueHandle_t xQueue)

The return is the number of messages currently on the queue.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

xQueueOverwrite
BaseType_t xQueueOverwrite(QueueHandle_t xQueue, const coid *pvItemToQueue)

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

xQueuePeek
BasType_t_TYPE xQueuePeek(
 QueueHandle_t xQueue,
 void *pvBuffer,
 TickType_t xTicksToWait)

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

xQueuePeekFromISR
BaseType_t xQueuePeekFromISR(QueueHandle_t xQueue, void * const pvBuffer)

xQueueReceive
Retrieve an item from the head of the queue.

BaseType_t xQueueReceive(
 QueueHandle_t xQueue,
 void *pvBuffer,
 TickType_t xTicksToWait)

The xQueue is the handle to the queue we wish to receive from. The pvBuffer is a
pointer to storage that will receive the item from the queue. The xTicksToWait is how
long we wish to wait for an item to become available assuming the queue is empty.

Page 513

Specifying 0 means return immediately while specifying portMAX_DELAY means block
indefinitely.

The return is pdPASS if we receive an item or errQUEUE_EMPTY is no item was retrieved.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

xQueueReceiveFromISR
BaseType_t xQueueReceiveFromISR(
 QueueHandle_t xQueue,
 void *pvBuffer,
 BaseType_t *pxHigherPriorityTaskWoken
)

xQueueRemoveFromSet
BaseType_t xQueueRemoveFromSet(
 QueueSetMemberHandle_t xQueueOrSemaphore,
 QueueSetHandle_t xQueueSet)

xQueueReset
BaseType_t xQueueReset(QueueHandle_t xQueue)

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

xQueueSelectFromSet
Watch a queue set for a member becoming ready.

QueueSetMemberHandle_t xQueueSelectFromSet(
 QueueSetHandle_t xQueueSet,
 const TickType_t xTicksToWait)

The return is the handle of the queue which is ready for reading without blocking.

See also:

• xQueueAddToSet

• xQueueCreateSet

• xQueueRemoveFromSet

Page 514

xQueueSelectFromSetFromISR
QueueSetMemberHandle_t xQueueSelectFromSetFromISR(QueueSetHandle_t xQueueSet)

xQueueSend
This is a macro for backwards compatibility only. Do not use for new projects.

BaseType_t xQueueSend(
 QueueHandle_t xQueue,
 const void* pvItemToQueue,
 TickType_t xTicksToWait
);

xQueueSendFromISR
This is a macro for backwards compatibility only. Do not use for new projects.

BaseType_t xQueueSendFromISR(
 QueueHandle_t xQueue,
 const void* pvItemToQueue,
 BaseType_t* pxHigherPriorityTaskWoken
);

xQueueSendToBack
Place an item at the end of the queue.

BaseType_t xQueueSendToBack(
 QueueHandle_t xQueue,
 const void* pvItemToQueue,
 TickType_t xTicksToWait)

The xQueue is the reference to the queue into which we are going to place the item. The
pvItemToQueue is a pointer to the item we are going to copy into the queue. Note that
this is indeed a copy and not saved as a reference. The xTicksToWait is how long we
are prepared to wait if the queue is currently full. Specifying 0 returns immediately while
portMAX_DELAY blocks indefinitely.

On return the value pdPASS indicates that the message was queued while
errQUEUE_FULL indicates that the message was not queued and we timed out waiting for
space to become available.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

Page 515

xQueueSendToBackFromISR
Place an item at the end of the queue.

BaseType_t xQueueSendToBackFromISR(
 QueueHandle_t xQueue,
 const void* pvItemToQueue,
 BaseType_t* pxHigherPriorityTaskWoken
)

This function is an ISR safe version of the xQueueSendToBack() function. The xQueue
is the reference to the queue into which we are going to place the item. The
pvItemToQueue is a pointer to the item we are going to copy into the queue. Note that
this is indeed a copy and not saved as a reference.

The pxHigherPriorityTaskWoken is a pointer to a flag that is set on return. If its value is
pdTRUE then a higher priority task is ready and a context switch is possible. It can be
NULL to be ignored.

The return is pdPASS if the item was queued otherwise errQUEUE_FULL to indicate that the
queue was full.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

See also:

• xQueueSendToBackFromISR

xQueueSendToFront
BaseType_t xQueueSendToFront(
 QueueHandle_t xQueue,
 const void * pvItemToQueue,
 TickType_t xTicksToWait)

The xQueue is the reference to the queue into which we are going to place the item. The
pvItemToQueue is a pointer to the item we are going to copy into the queue. Note that
this is indeed a copy and not saved as a reference. The xTicksToWait is how long we
are prepared to wait if the queue is currently full. Specifying 0 returns immediately while
portMAX_DELAY blocks indefinitely.

On return the value pdPASS indicates that the message was queued while
errQUEUE_FULL indicates that the message was not queued and we timed out waiting for
space to become available.

Includes:

• #include <freertos/FreeRTOS.h>

Page 516

http://www.freertos.org/xQueueSendToBackFromISR.html

• #include <freertos/queue.h>

xQueueSendToFrontFromISR
BaseType_t xQueueSendToFrontFromISR(
 QueueHandle_t xQueue,
 const void* pvItemToQueue,
 BaseType_t* pxHigherPriorityTaskWoken
)

uxQueueSpacesAvailable
UBaseType_t uxQueueSpacesAvailable(QueueHandle_t xQueue)

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/queue.h>

xRingbufferAddToQueueSetRead
BaseType_t xRingbufferAddToQueueSetRead(
 RingbufHandle_t ringbuf,
 QueueSetHandle_t xQueueSet)

xRingbufferAddToQueueSetWrite
Add the ring buffer as an indicator item to the queue set.

BaseType_t xRingbufferAddToQueueSetWrite(
 RingbufHandle_t ringbuf,
 QueueSetHandle_t xQueueSet)

Making this call adds the ring buffer to the queue set such that a write to the ring buffer
will cause a trigger of any queue set being watched.

See also:

• xQueueCreateSet

• xQueueSelectFromSet

xRingbufferCreate
Create a new ring buffer.

RingbufHandle_t xRingbufferCreate(
 size_t buf_length,
 ringbuf_type_t type)

Page 517

• length – The size in bytes that we wish to allocate for the ring buffer.

• type – The type of ring buffer with respect to how wrapping is to occur. The
choices are:

◦ RINGBUF_TYPE_NOSPLIT

◦ RINGBUF_TYPE_ALLOWSPLIT

◦ RINGBUF_TYPE_BYTEBUF

vRingbufferDelete
Delete a ring buffer.

void vRingbufferDelete(RingbufHandle_t ringbuf)

Delete a ring buffer previously created with a call to xRingbufferCreate().

xRingbufferGetMaxItemSize
Get the maximum size of an item that will fit within the remaining space in the ring
buffer.

size_t xRingbufferGetMaxItemSize(RingbufHandle_t ringbuf)

xRingBufferPrintInfo
void xRingbufferPrintInfo(RingbufHandle_t ringbuf)

xRingbufferReceive
Retrieve an item from the ring buffer.

void* xRingbufferReceive(
 RingbufHandle_t ringbuf,
 size_t* item_size,
 TickType_t ticks_to_wait)

• ringbuf – The ringbuf to receive an item from.

• item_size – The size of the item received.

• ticks_to_wait – How long to wait. Specify portMAX_DELAY for an indefinite block.

The return from this call is a pointer to storage that is the next item within the buffer.
Since items in a ring buffer can be of distinct sizes, the item_size variable is populated
with the size of the data in this returned record instance. We must subsequently call
vRingbufferReturnItem() to release the storage when we are finished with it.

Page 518

xRingbufferReceiveFromISR
void *xRingbufferReceiveFromISR(
 RingbufHandle_t ringbuf,
 size_t* item_size)

xRingbufferReceiveUpTo
Return data from the ring buffer up to a maximum size.

void *xRingbufferReceiveUpTo(
 RingbufHandle_t ringbuf,
 size_t* item_size,
 TickType_t ticks_to_wait,
 size_t wanted_size)

xRingbufferReceiveUpToFromISR
void *xRingbufferReceiveUpToFromISR(
 RingbufHandle_t ringbuf,
 size_t* item_size,
 size_t wanted_size)

xRingbufferRemoveFromQueueSetRead
BaseType_t xRingbufferRemoveFromQueueSetRead(
 RingbufHandle_t ringbuf,
 QueueSetHandle_t xQueueSet)

xRingbufferRemoveFromQueueSetWrite
BaseType_t xRingbufferRemoveFromQueueSetWrite(
 RingbufHandle_t ringbuf,
 QueueSetHandle_t xQueueSet)

vRingbufferReturnItem
Release the storage for a previously retrieved item.

void vRingbufferReturnItem(
 RingbufHandle_t ringbuf,
 void* item)

When we make a call to xRingbufferReceive() we are supplied a pointer to storage
that is contained within the ring buffer. That storage is not released until we invoke
vRingbufferReurnItem().

Page 519

vRingbufferReturnItemFromISR
void vRingbufferReturnItemFromISR(
 RingbufHandle_t ringbuf,
 void* item,
 BaseType_t* higher_prio_task_awoken)

xRingbufferSend
Insert an item into the ring buffer.

BaseType_t xRingbufferSend(
 RingbufHandle_t ringbuf,
 void* data,
 size_t data_size,
 TickType_t ticks_to_wait)

• ringbuf – A ring buffer handle.

• data – Pointer to the data to be inserted into the buffer.

• data_size – Size of the data to insert into the buffer.

• ticks_to_wait – Ticks to wait before giving up for enough space to be available
in the buffer to insert the item.

xRingbufferSendFromISR
Insert an item into the ring buffer from an ISR.

BaseType_t xRingbufferSendFromISR(
 RingbufHandle_t ringbuf,
 void* data,
 size_t data_size,
 BaseType_t* higher_prio_task_awoken)

• ringbuf – A ring buffer handle.

• data – Pointer to the data to be inserted into the buffer.

• data_size – Size of the data to insert into the buffer.

• higher_prio_task_awoken

vSemaphoreCreateBinary
Includes:

• #include <freertos/semphr.h>

Page 520

xSemaphoreCreateCounting
Includes:

• #include <freertos/semphr.h>

xSemaphoreCreateMutex
Create a mutex.

SemaphoreHandle_t xSeamphoreCreateMutex()

Create an instance of a semaphore.

Includes:

• #include <freertos/semphr.h>

vSemaphoreDelete
Delete a semaphore.

void vSemaphoreDelete(SemaphoreHandle_t semaphore);

Release resources for the given semaphore.

Includes:

• #include <freertos/semphr.h>

vSemaphoreGive
Release a mutex.

xSemaphoreGive(SemaphoreHandle_t semaphore)

Release a mutex.

Includes:

• #include <freertos/semphr.h>

xSemaphoreGiveFromISR
xSemaphoreGive(SemaphoreHandler_t semaphore, BaseType_t *pxHigherPriorityTaskWoken)

Includes:

• #include <freertos/semphr.h>

Page 521

vSemaphoreTake
Take a semaphore/mutex.

bool xSemaphoreTake(SemaphoreHandle_t semaphore, TickType_t ticksToWait)

• semaphore – A semaphore handle.

• ticksToWait – How long to wait before returning due to a timeout because we
didn't obtain the semaphore. The value portMAX_DELAY will block indefinitely. A
value of 0 will return immediately, effectively polling the semaphore.

Returns true if the semaphore was taken and false otherwise.

Includes:

• #include <freertos/semphr.h>

xTaskCreate
Create a new instance of a task.

BaseType_t xTaskCreate(
 pdTASK_CODE pvTaskCode,
 const signed portCHAR* pcName,
 unsigned portSHORT usStackDepth,
 void* pvParameters,
 unsigned portBASE_TYPE uxPriority,
 xTaskHandle* pxCreatedTask)

• pvTaskCode – Pointer to the task function. In C programming, we can simply
supply the name of a function or, as has been seen in some samples, the
address of the name of the function. Apparently these equate to items that are
close enough to be used interchangeably.

• pcName – Debugging name of the task.

• usStackDepth – Size of the stack for the task.

• pvParameters – Parameters for the task instance. This may be NULL.

• uxPriority – Priority of the task instance.

• pxCreatedTask – Reference to the newly created task instance. This may be
passed in as NULL if no task handle is required to be returned.

In an ESP32 environment, an example, we might have:

void myTask(void *parms) {
 // Do something
 vTaskDelete(NULL);
}

Page 522

main() {
 xTaskCreate(&myTask, "myTask", 2048, NULL, 5, NULL);
}

When a created task is invoked and then decides to end via a return, it is essential that
the task call vTaskDelete(NULL) before it completes. Calling this is an indication to
FreeRTOS that the task is finished and need no longer be considered for context
switching. Experience seems to show that if we don't do this then the ESP32 will crash.
In summary, end your return logic in your task functions with:

{
 // Previous code here.
 vTaskDelete(NULL);
 return;
}

Include:

• #include <freertos/FreeRTOS.h>

• #include <freertos/task.h>

See also:

• vTaskDelete

• xTaskCreate

xTaskCreatePinnedToCore
BaseType_t xTaskCreatePinnedToCore(
 TaskFunction_t pxTaskCode,
 const char* pcName,
 const uint16_t usStackDepth,
 void* pvParameters,
 UBaseType_t uxPriority,
 TaskHandle_t* pxCreatedTask,
 const BasType_t xCoreID)

This is a mysterious function that appears to be ESP32 specific.

When a created task is invoked and then decides to end via a return, it is essential that
the task call vTaskDelete(NULL) before it completes. Calling this is an indication to
FreeRTOS that the task is finished and need no longer be considered for context
switching. Experience seems to show that if we don't do this then the ESP32 will crash.
In summary, end your return logic in your task functions with:

{
 // Previous code here.
 vTaskDelete(NULL);

Page 523

http://www.freertos.org/a00125.html

 return;
}

In an ESP32 environment, an example, we might have:

void myTask(void *parms) {
 // Do something
 vTaskDelete(NULL);
}

main() {
 xTaskCreatePinnedToCore(&myTask, "myTask", 2048, NULL, 5, NULL, 0);
}

The xCoreID specifies which core to run on. Choices are 0 (PRO CPU) or 1 (APP CPU)
to "tskNO_AFFINITY".

Include:

• #include <freertos/FreeRTOS.h>

• #include <freertos/task.h>

See also:

• vTaskDelete

vTaskDelay
Delay a task for a specified number of ticks.

void vTaskDelay(const TickType_t xTicksToDelay)

The constant called portTICK_PERIOD_MS provides the number of ticks in a millisecond.
If we wished to delay for 1 second, we could then supply 1000 / portTICK_PERIOD_MS.

Include:

• #include <freertos/FreeRTOS.h>

• #include <freertos/task.h>

See also:

• vTaskDelay

• Timers in FreeRTOS

vTaskDelayUntil
Delay a task until a specified absolute time.

void vTaskDelayUntil(
 const TickType_t* pxPreviousWakeTime,
 const TickType_t xTimeIncrement)

Note: This is flagged as an un-tested FreeRTOS function.

Page 524

http://www.freertos.org/a00127.html

This function blocks a task until some absolute time in the future.

• pxPreviousWakeTime – The base time which the increment will be relative from.

• xTimeIncrement – The time in ticks which, when added to the
pxPreviousWakeTime, will be the time that the task is ready to run again.

Include:

• #include <freertos/FreeRTOS.h>

• #include <freertos/task.h>

See also:

• vTaskDelayUntil

• Timers in FreeRTOS

vTaskDelete
Delete an instance of a task.

void vTaskDelete(TaskHandle_t pxTask)

This function will delete an instance of a task. If the pxTask handle is NULL then the
current task will be deleted.

Include:

• #include <freertos/FreeRTOS.h>

• #include <freertos/task.h>

See also:

• vTaskDelete

vTaskGetInfo
void vTaskGetInfo(
 TaskHandle_t xTask,
 TaskStatus_t* pxTaskStatus,
 BaseType_t xGetFreeStackSpace,
 eTaskState eState)

The calculation of the current state that is returned can be time consuming, to calculate
its value, pass in eState with a value of eInvalid.

The calculation of the minimum amount of free stack space we have seen is also
expensive so pass in a value of pdTRUE to retrieve it and pdFALSE to ignore it.

The TaskStatus_t contains:

Page 525

http://www.freertos.org/a00126.html
http://www.freertos.org/vtaskdelayuntil.html

• TaskHandle_t xHandle –

• const signed char *pcTaskname –

• UBaseType_t xTaskNumber –

• eTaskState eCurrentState –

• UBaseType_t uxCurrentPriority –

• UBaseType_t uxBasePriority –

• unsigned long ulRunTimeCounter –

• StackType_t *pxStackBase –

• unsigned short usStackHighWaterMark –

xTaskGetCurrentTaskHandle
Get the current task handle.

TaskHandle_t xTaskGetCurrentTaskHandle()

pcTaskGetTaskName
Get the name of the task.

char *pcTaskGetTaskName(TaskHandle_t xTaskToQuery)

If we supply NULL for the task handle, we get our own task name.

uxTaskGetNumberOfTasks
Get the number of tasks.

UBaseType_t uxTaskGetNumberOfTasks()

Once we know the number of tasks, we can retrieve the details of them through a call to
uxTaskGetSystemState().

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/task.h>

See also:

• uxTaskGetSystemState

Page 526

eTaskGetState
Retrieve the state of a task.

eTaskState eTaskGetState(TaskHandle_t xTask)

The possible values are:

• eReady –

• eRunning –

• eBlocked –

• eSuspended –

• eDeleted –

uxTaskGetSystemState
Note: This is disabled by default. To enable the configUSE_TRACE_FACILITY definition in
FreeRTOSConfig.h must be set to 1. When enabled, we still get an assert as this is
flagged as an "untested" function.

Retrieve the task state for all tasks in the environment.

UBaseType_t uxTaskGetSystemState(
 TaskStatus_t* pxTaskStatusArray,
 const UBaseType_t uxArraySize,
 uint32_t* pulTotalRunTime)

The TaskStatus_t contains:

• TaskHandle_t xHandle –

• const signed char *pcTaskname –

• UBaseType_t xTaskNumber –

• eTaskState eCurrentState –

• UBaseType_t uxCurrentPriority –

• UBaseType_t uxBasePriority –

• unsigned long ulRunTimeCounter –

• StackType_t *pxStackBase –

• unsigned short usStackHighWaterMark –

The return type is the number of tasks populated. We can call
uxTaskGetNumberOfTasks() to determine how many tasks are present.

Page 527

The pulTotalRunTime is set to the total run time since booted. We can pass NULL if we
don't need the value.

Includes:

• #include <freertos/FreeRTOS.h>

• #include <freertos/task.h>

See also:

• uxTaskGetNumberOfTasks

• vTaskGetInfo

xTaskGetTickCount
Get the current tick count.

TickType_t xTaskGetTickCount()

Return the number of ticks that have occurred since the task scheduler was started.

The macro called portTICK_PERIOD_MS defines the duration of a single tick in
milliseconds.

Include:

• #include <freertos/task.h>

See also:

• Timers in FreeRTOS

xTaskGetTickCountFromISR
Get the current tick count from an Interrupt Service Routine.

TickType_t xTaskGetTickCountFromISR()

Include:

• #include <freertos/task.h>

vEventGroupDelete
Delete an event group.

void vEventGroupDelete(EventGroupHandle_t eventGroup)

Includes:

• #include <freertos/event_groups.h>

Page 528

vTaskList
void vTaskList(char *pcWriteBuffer)

NOT AVAILABLE

uxTaskPriorityGet
Get the priority of the task.

UbaseType_t uxTaskPriorityGet(TaskHandle_t xTask)

vTaskPrioritySet
void vTaskPrioritySet(TaskHandle_t pxTask, UBaseType_t uxNewPriority)

Include:

• #include <freertos/task.h>

See also:

• Error: Reference source not found

vTaskResume
Resume a task that was previously suspended.

void vTaskResume(TaskHandle_t pxTaskToResume)

Include:

• #include <freertos/task.h>

See also:

• vTaskSuspend

xTaskResumeAll
Include:

• #include <freertos/task.h>

See also:

• vTaskResumeAll

vTaskResumeFromISR
void xTaskResumeFromISR(TaskHandle_t pxTaskToResume)

Include:

• #include <freertos/task.h>

Page 529

http://www.freertos.org/a00135.html

vTaskSuspend
Suspend the given task.

void vTaskSuspend(TaskHandle_t pxTaskToSuspend)

The identified task is suspended until it is allowed to continue.

Include:

• #include <freertos/task.h>

See also:

• vTaskResume

• xTaskResumeAll

vTaskSuspendAll
Include:

• #include <freertos/task.h>

See also:

• vTaskSuspendAll

xTimerChangePeriod
Change the period of an existing timer.

BaseType_t xTimerChangePeriod(
 TimerHandle_t xTimer,
 TickType_t xNewPeriod,
 TickType_t xBlockTime)

When a timer is created through a call to xTimerCreate(), we can subsequently change
the period of that timer.

• xTimer – The handle to the existing timer.

• xNewPeriod – The new period value for the timer.

• xBlockTime – The duration that this function can maximally wait for processing.

Includes:

• #include <freertos/timers.h>

xTimerChangePeriodFromISR
Change the period of an existing timer from within an Interrupt Service Routine.

Page 530

http://www.freertos.org/a00134.html

BaseType_t xTimerChangePeriodFromISR(
 TimerHandle_t xTimer,
 TickType_t xNewPeriod,
 BaseType_t* pxHigherPriorityTaskWoken)

• xTimer – The handle to the existing timer.

• xNewPeriod – The new period value for the timer.

• pxHigherPriorityTaskWoken – Flag indicating that a context switch should occur.

Includes:

• #include <freertos/timers.h>

xTimerCreate
Create a new timer.

TimerHandle_t xTimerCreate(
 const char* pcTimerName,
 const TickType_t xTimerPeriod,
 const UBaseType_t uxAutoReload,
 void* pvTimerID,
 TimerCallbackFunction_t pxCallbackFunction)

• pcTimerName – The name of the timer used for debugging and reporting.

• xTimerPeriod – The period, measured in ticks, after which the timer should fire.

• uxAutoReload – A flag which indicates whether or not the timer should restart
once fired. If restarted, it will start again using the xTimerPeriod value for the
next interval.

• pvTimerID – Data available to the timer callback function when fired.

• pxCallbackFunction – Function called when the timer expires. The signature of
this function is:

void vCallbackFunction(TimerHandle_t xTimer)

The return from the xTimerCreate function is a handle that can be used to refer to this
timer in the future.

Includes:

• #include <freertos/timers.h>

Page 531

xTimerCreateStatic
TimerHandle_t xTimerCreateStatic(
 const char* pcTimerName,
 const TickType_t xTimerPeriod,
 const UBaseType_t uxAutoReload,
 void* pvTimerID,
 TimerCallbackFunction_t pxCallbackFunction
 StaticTimer_t* pxTimerBuffer)

Includes:

• #include <freertos/timers.h>

xTimerDelete
Delete an existing timer.

BaseType_t xTimerDelete(TimerHandle_t xTimer, TickType_t xBlockTime)

This call deletes a timer that was previous created by an xTimerCreate() call.
Following a successful call, we should not attempt to refer to this timer again.

• xTimer – The handle to the timer to delete.

• xBlockTime – The length of timer we should block waiting for the delete to be
processed.

Includes:

• #include <freertos/timers.h>

pcTimerGetName
Get the name of the timer.

const char * pcTimerGetName(TimerHandle_t xTimer)

When we created a timer using xTimerCreate() we supplied a name identity for the
timer. This call returns that value.

• xTimer – The handle to a previously created timer.

Includes:

• #include <freertos/timers.h>

xTimerGetExpiryTime
Note: Not implemented in ESP-IDF.

Return the time at which the timer will fire.

Page 532

TickType_t xTimerGetExpiryTime(TimerHandle_t xTimer)

For an active timer, this call will return the tick value at which the timer will fire. This is
an absolute value. If we want to know how many ticks in the future this will be, we can
obtain the current tick value and subtract one from the other.

• xTimer – The handle to a previously created timer.

Includes:

• #include <freertos/timers.h>

See also:

• xTaskGetTickCount

xTimerGetPeriod
Note: Not implemented in ESP-IDF.

Get the period value for a timer.

TickType_t xTimerGetPeriod(TimerHandle_t xTimer)

Return the period value for the timer. This is the value passed in when xCreateTimer()
was initially created. It is a relative value rather than an absolute expiry time. If the
timer is configured to restart, this is the value that will be used to fire the next instance
of the timer.

• xTimer – The handle to a previously created timer.

Includes:

• #include <freertos/timers.h>

pvTimerGetTimerDaemonTaskHandle
Retrieve the task handle to the timer daemon.

TaskHandle_t xTimerGetTimerDaemonTaskHandle(void)

Behind the scenes, FreeRTOS is running a task that is managing the timers. There
may be times when we want to get access to the handle for this task. This API returns
the handle.

Includes:

• #include <freertos/timers.h>

Page 533

pvTimerGetTimerID
Retrieve the data associated with an instance of the timer.

void *pvTimerGetTimerID(TimerHandle_t xTimer)

When a timer is created, we can associate data with it. We can also update that data at
a later timer. This API retrieves the current value of the data.

• xTimer – The handle to a previously created timer.

Includes:

• #include <freertos/timers.h>

xTimerIsTimerActive
Determine if the timer is active.

BaseType_t xTimerIsTimerActive(TimerHandle_t xTimer)

An active timer is one that is ticking down to a time when it will fire.

• xTimer – The handle to a previously created timer.

Includes:

• #include <freertos/timers.h>

xTimerPendFunctionCall
Execute a function on the timer daemon task.

BaseType_t xTimerPendFunctionCall(
 PendedFunction_t xFunctionToPend,
 void* pvParameter1,
 uint32_t ulParameter2,
 TickType_t xTicksToWait)

Calling this API causes the function supplied to execute on the timer daemon task.

• xFunctionToPend – The function to be executed in the context of the timer
daemon task. The function has the following signature:

void vPendableFunction(void *pvParameter1, uint32_t ulParameter2)

• pvParameter1 – A parameter to be passed to the function.

• ulParameter2 – A parameter to be passed to the function.

• xTicksToWait – A duration to wait for the function to be started.

Includes:

• #include <freertos/timers.h>

Page 534

xTimerPendFunctionCallFromISR
BaseType_t xTimerPendFunctionCallFromISR(
 PendedFunction_t xFunctionToPend,
 void* pvParameter1,
 uint32_t ulParameter2,
 BaseType_t* pxHigherPriorityTaskWoken)

Includes:

• #include <freertos/timers.h>

xTimerReset
Reset the value of the timer.

BaseType_t xTimerReset(TimerHandle_t xTimer, TickType_t xBlockTime)

Reset the value of the timer to start ticking from the time when this API was called with
the period associated with the timer.

• xTimer – The handle to a previously created timer.

• xBlockTime – The time to wait for the reset to complete.

Includes:

• #include <freertos/timers.h>

xTimerResetFromISR
BaseType_t xTimerResetFromISR(
 TimerHandle_t xTimer,
 BaseType_t* pxHigherPriorityTaskWoken)

vTimerSetTimerID
Note: Not implemented in ESP-IDF.

Associate data with the timer.

void vTimerSetTimerID(TimerHandle_t xTimer, void *pvNewID)

• xTimer – The handle to a previously created timer.

• pvNewID – Reference to data to be associated with the timer.

Includes:

• #include <freertos/timers.h>

Page 535

xTimerStart
Start a timer ticking.

BaseType_t xTimerStart(TimerHandle_t xTimer, TickType_t xBlockTime)

The timer can be stopped before expiration with a call to xTimerStop().

• xTimer – The handle to a previously created timer.

• xBlockTime – The time to wait for the start request to complete.

Includes:

• #include <freertos/timers.h>

xTimerStartFromISR
BaseType_t xTimerStartFromISR(
 TimerHandle_t xTimer,
 BaseType_t *pxHigherPriorityTaskWoken)

Includes:

• #include <freertos/timers.h>

xTimerStop
Stop a timer ticking.

BaseType_t xTimerStop(TimerHandle_t xTimer, TickType_t xBlockTime)

• xTimer – The handle to a previously created timer.

• xBlockTime – The time to wait for the stop request to complete.

Includes:

• #include <freertos/timers.h>

xTimerStopFromISR
BaseType_t xTimerStopFromISR(
 TimerHandle_t xTimer,
 BaseType_t *pxHigherPriorityTaskWoken)

Includes:

• #include <freertos/timers.h>

Page 536

List Processing

vListInitialise
Initialize a list.

void vListInitialise(xList * const pxList)

The pxList is a list that should be initialized.

vListInitialiseItem
Initialize an item for insertion into a list.

void vListInitialiseItem(xListItem * const pxItem)

Initialize an item that can be added to a list.

vListInsert
Insert an item into a list.

void vListInsert(xList * const pxList, xListItem * const pxNewListItem)

vListInsertEnd
Insert an item at the end of a list

void vListInsertEnd(xList * const pxList, xListItem * const pxNewListItem)

Sockets APIs
For the TCP/IP protocol, the programming API originally developed for the Unix platform
and written in C was called "sockets". The notion of a socket is that it logically
represents an endpoint of a network connection. A sender of data sends data through
the socket and the receiver of data receives data through the socket. The
implementation of the "socket" itself is provided by the libraries but the logical notion of
the socket remains. You will find yourself working with an "instance" of a socket and
you should think of it as an opaque data type that refers to a communication link.

Sockets remains the primary API and is present in the majority of languages. Here we
discuss some of the variants for some of the more common languages.

See also:

• TCP/IP Sockets

Page 537

accept
Accept an incoming request.

int accept(int socket_fd, struct sockaddr* addr, socklen_t* addrlen)

Here we can block waiting for an incoming connection request from the server socket.
We will return immediately if there is a client connection awaiting acceptance. The
address of the client is returned to us along with its length.

If we try and accept too many concurrent sockets, the ESP32 may return ENFILE to
indicate that we have an overflow.

The return is the accepted socket connection to the client or -1 if an error.

See also:

• TCP/IP Sockets

• man(2) – accept

bind
Associate a socket with an address.

int bind(int s, const struct sockaddr* name, socklen_t namelen)

The name parameter is the socket address to be bound to the socket. The namelen
provides the length of the address. If the sin_add.s_addr is htonl(INADDR_ANY) then we
are being a server listening on any incoming IP address.

A return of < 0 on error.

Here is an example of us defining ourselves as a server:

struct sockaddr_in serverAddr;
serverAddr.sin_family = AF_INET;
serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddr.sin_port = htons(80);

int rc = bind(serverSocket, (struct sockaddr*)&serverAddr, sizeof(serverAddr));

If we have bound a socket to a local port and then close that bound socket, the port
number remains reserved for a period of time to "cleanup" any in-flight traffic. This
prevents the socket from being re-used and a bind() attempt can result in an "address
already in use" error. We can request that the bind() succeed even if the port is in this
timed wait state. We do this by running:

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &(int){ 1 }, sizeof(int));

which sets the sockets level "SO_REUSEADDR" flag.

See also:

Page 538

https://linux.die.net/man/2/accept

• TCP/IP Sockets

• man(2) – bind

close
Close the corresponding socket.

int close(int s)

Close the socket. After closing a socket, no further sockets APIs should be called
against it. This is the last call in the chain. Take care to realize that when a socket is
created with the socket() API call the return is a socket handle that is also known as a
file descriptor. A socket handle is unique only for the lifetime of the socket. For
example, if you call socket(), you might get back a handle that has a value of 3. While
that socket is alive, no other caller of socket() will be issued the same handle.
However, once you close the socket(), it is entirely possible that the next caller of
socket() will itself be issued the value of 3 because, at that time, the socket handle is
unused. The reason for spending time on this is that if you are saving socket handles it
is not difficult to close a handle and then forget that you have closed it and later make a
sockets API call against the value of the handle when in fact it has been assigned to a
different socket in the intervening time period. No technical errors will be thrown as at
the time you are making a socket API call, it is indeed a valid socket handle you are
using … it just happens to not be the one your were expecting to use.

See also:

• man(2) – close

• socket

closesocket
Close the corresponding socket.

closesocket(int s)

Close the socket.

connect
Connect to a server.

int connect(int sockFd, const struct sockaddr* partnerAddr, socklen_t addrlen)

Connect the socket to a partner. The address of the partner is supplied in the
partnerAddr field. This is a client initiated call and is expected to connect with a
listening server.

Page 539

https://linux.die.net/man/2/close
https://linux.die.net/man/2/bind

For example:

struct sockaddr_in serverAddress;
serverAddress.sin_family = AF_INET;
inet_pton(AF_INET, "192.168.1.200", &serverAddress.sin_addr.s_addr);
serverAddress.sin_port = htons(9999);

int rc = connect(sock, (struct sockaddr *)&serverAddress, sizeof(struct sockaddr_in));

Includes:

• #include <lwip/sockets.h>

See also:

• man(2) – connect

fcntl
Perform control functions.

fcntl(int s, int cmd, int val)

We can set control functions on sockets here.

Command Value Description

F_SETFL O_NONBLOCK Set the socket non blocking.

See also:

• man(2) – fcntl

freeaddrinfo
Release storage allocated by getaddrinfo().

void freeaddrinfo(struct addrinfo* res)

Includes:

• #include <lwip/netdb.h>

See also:

• getaddrinfo

getaddrinfo
Build an address structure for a desired target.

int getaddrinfo(
 const char* node,
 const char* service,
 const struct addrinfo* hints,
 struct addrinfo** res)

Page 540

https://linux.die.net/man/2/fcntl
https://linux.die.net/man/2/connect

The node parameter is the host-name if the target server. The service is the name of a
service used to look-up the target port number. It isn't clear how that would work on an
ESP32. Where would the service to port mappings be kept?

The hints provides a filter for what to return. I can be NULL. If it is supplied, it is a
pointer to a struct addrinfo with the following fields filled in:

The ai_family can be one of:

• AF_INET

• AF_INET6

• AF_UNSPEC

The ai_socktype can be one of:

• SOCK_STREAM

• SOCK_DGRAM

The addrinfo structure is defined as follows:

struct addrinfo {
 int ai_flags;
 int ai_family;
 int ai_socktype;
 int ai_protocol;
 socklen_t ai_addrlen;
 struct sockaddr* ai_addr;
 char* ai_canonname;
 struct addrinfo* ai_next;
};

A return code of 0 indicates success otherwise it returns an error code. Note that errno
is not used as that is not thread safe.

The res pointer points to an allocate struct addrinfo storage area that must be
subsequently released with a call to freeaddrinfo().

The struct sockaddr is common cast to a struct sockaddr_in which is defined as:

struct sockaddr_in {
 short sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

struct in_addr {
 unsigned long s_addr;
};

Page 541

What this means is that the IP address can be found at var.sin_addr or
var.sin_addr.s_addr.

Includes:

• #include <lwip/netdb.h>

See also:

• freeaddrinfo

• gethostbyname

• gethostbyname_r

• man(3) – getaddrinfo

gethostbyname
Look-up a host name through name resolution.

struct hostent *gethostbyname(const char *name)

Most likely a wrapper around the lwip dns_gethostbyname() implementation provided by
the underlying lwip implementation.

A pointer to a struct hostent is returned. This is a buffer maintained by the network
layer and will be changed in the next call. The members of a struct hostent are:

Member Description

char* h_name The name of the host.

char** h_aliases An array of alternative names. Last entry is a NULL pointer.

int h_addrtype The type of addresses. One of AF_INET or AF_INET6.

int h_length The length of an address in bytes.

char** h_addr_list An array of network addresses for the host. Last entry is a NULL pointer.

Includes:

• #include <lwip/netdb.h>

See also:

• dns_getserver

• dns_setserver

• inet_ntop

• inet_pton

• LWIP Wiki – DNS

• man(3) – gethostbyname

gethostbyname_r
A re-entrant version of name resolution.

Page 542

https://linux.die.net/man/3/gethostbyname
http://lwip.wikia.com/wiki/DNS
https://linux.die.net/man/3/getaddrinfo

int gethostbyname_r(
 const char* name,
 struct hostent* ret,
 char* buf,
 size_t buflen,
 struct hostent** result,
 int* h_errnop)

See here for an example of use.

See also:

• man(3) – gethostbyname_r

getpeername
Retrieve the address associated with the partner/peer to which the socket is connected.

int getpeername(int s,
 struct sockaddr* peerAddr,
 socklen_t* namelen)

Note that namelen must be primed with the size of the available address buffer.

See also:

• man(2) – getpeername

getsockname
Retrieve the current local address to which the socket is bound.

getsockname(int s,
 struct sockaddr* name,
 socklen_t* namelen)

Note that namelen must be primed with the size of the available address buffer.

See also:

• man(2) – getsockname

getsockopt
int getsockopt(
 int s,
 int level,
 int optname,
 void* optval,
 socklen_t* optlen)

An important example of using this function is to retrieve the last error associated with
the socket. The following code fragment illustrates this:

Page 543

https://linux.die.net/man/2/getsockname
https://linux.die.net/man/2/getpeername
https://linux.die.net/man/3/gethostbyname_r
http://www.delorie.com/gnu/docs/glibc/libc_319.html

int espx_last_socket_errno(int socket) {
 int ret = 0;
 u32_t optlen = sizeof(ret);
 getsockopt(socket, SOL_SOCKET, SO_ERROR, &ret, &optlen);
 return ret;
}

See also:

• man(2) - getsockopt

htonl
Convert a host formatted long integer to network byte order.

uint32_t htonl(uint32_t netLong)

See also:

• man(3) – htonl

htons
Convert a host formatted short integer to network byte order.

uint16_t htons(uint16_t hostShort)

See also:

• man(3) – htons

inet_ntop
Convert an IP address structure into a character string.

char *inet_ntop(int af, const char* src, char* dst, socklen_t size)

The af parameter specified the address family. It may have a value of:

• AF_INET – IPv4 network addresses.

• AF_INET6 – IPv6 network addresses.

The src is the pointer to the address structure. The dst is the buffer that will be filled
with the text and size is the length of that buffer available to be filled. For AF_INET, the
buffer should be at least INET_ADDRSTRLEN bytes long while for AF_INET6, it should be at
least INET6_ADDRSTRLEN bytes long.

Includes:

• #include <lwip/sockets.h>

See also:

• man(3) – inet_ntop

Page 544

https://linux.die.net/man/3/inet_ntop
https://linux.die.net/man/3/htons
https://linux.die.net/man/3/htonl
https://linux.die.net/man/2/getsockopt

inet_pton
Convert an IP address from string to binary form.

int inet_pton(int af, const char* src, void* dst)

The af parameter is the address family. It must be one of:

• AF_INET – IPv4 network address.

• AF_INET6 – IPv6 network address.

The src is the pointer to a null terminate string that represents the text format of the
address.

Returns 1 on success.

Includes:

• #include <lwip/sockets.h>

See also:

• man(3) – inet_pton

ioctlsocket
ioctl(int s, long cmd, void *argp)

listen
Start listening for incoming connections.

int listen(int socket_fd, int backlog)

If we are bound as a server, we will start to listen for incoming connections requests on
the socket. The backlog parameter defines how many sockets we can keep a handle to
before we accept them.

A return value < 0 means an error.

See also:

• TCP/IP Sockets

• man(2) – listen

read
Receive data from a partner.

ssize_t read(int s, void* mem, size_t len)

Page 545

https://linux.die.net/man/2/listen
https://linux.die.net/man/3/inet_pton

Similar to the recv() function.

See also:

• recv

• recvfrom

• man(2) – read

recv
Receive data from a partner.

ssize_t recv(int s,
 void* mem,
 size_t len,
 int flags)

This function returns the number of bytes actually received. A value of -1 indicates an
error. A value of zero indicates the partner having closed the connection.

The flags is the boolean combination of:

• MSG_CMSG_CLOEXEC –

• MSG_DONTWAIT – Indicate that we don't want to block waiting for data. If there is
no data immediately available for us to receive, we return -1 to indicate an error
and the error code is "EAGAIN".

• MSG_ERRQUEUE –

• MSG_OOB –

• MSG_PEEK –

• MSG_TRUNC –

• MSG_WAITALL –

Includes:

• #include <lwip/sockets.h>

See also:

• read

• recvfrom

• man(2) – recv

recvfrom
Receive a datagram from another machine/device.

ssize_t recvfrom(int sock,
 void* mem,
 size_t len,

Page 546

http://man7.org/linux/man-pages/man2/recv.2.html
https://linux.die.net/man/2/read

 int flags,
 struct sockaddr* from,
 socklen_t* fromlen)

The sock is a socket handle that was previously opened by calling socket(). The mem is
a pointer to a buffer that will hold the incoming data. The len parameter supplies the
length of the buffer. The from is a pointer to a storage area that will hold the address of
the partner and fromLen will be the length of that address. On initial call, it should
contain the length of the from address. If we don't need the return address of the caller,
we can supply NULL for both from and fromlen.

The flags can be specified as:

• MSG_DONTWAIT – Don't block waiting for a message not yet arrived.

• MSG_OOB – Check for an out of band message.

• MSG_PEEK – Receive the first message without consuming it.

The return value is the number of bytes actually received or -1 on an error.

Includes

• #include <sys/types.h>

See also:

• read

• recv

• socket

• sendto

• man(2) – recvfrom

select
Check for data available for reading or writing.

int select(int maxfdp1,
 fd_set* readset,
 fd_set* writeset,
 fd_set* exceptset,
 struct timeval* timeout)

The notion of "ready" is that an operation could be performed without blocking.

The maxfdp1 is the maximum value of the file descriptor plus 1.

On some Linux systems, to use selected, one would include <sys/select.h>. In ESP-
IDF that is not present but does not appear to be needed.

Each of the fd_set variables defines a set of file descriptors. To include a file descriptor
in a set we can run FD_SET(fd, &set). To remove an entry we can call FD_CLR(fd,

Page 547

https://linux.die.net/man/2/recvfrom

&set). To test if a file descriptor is in a set we can run FD_ISSET(fd, *set) and to clear
a complete set we can run FD_ZERO(&set). If we aren't interested in some of the sets,
we can supply NULL to have them ignored.

If timeout is NULL, then there will be no timeout and select will wait indefinitely. If both
fields in the timeval are 0, then we return immediately.

On return, select() returns the number of bits set in the various sets (which may be 0 if
there was a timeout). An error of -1 is returned on an error.

A socket that is a server socket is considered "ready" if a call to accept() would not
block. This socket should be supplied in the readset.

Take care with the first parameter. This is the number of file descriptor bits to check in
the file descriptor mask set. If the highest file descriptor value we have is "n" then the
number of file descriptor bits we are examining is "n+1".

See also:

• Using select()

• man(2) – select

send
Send a set of bytes down the socket to the partner.

ssize_t send(int s, const void* dataptr, size_t size, int flags)

The data pointed to by dataptr for size bytes is transmitted.

See also:

• man(2) – send

sendmsg
ssize_t sendmsg(int s, const struct msghdr* msg, int flags)

See also:

• man(2) – sendmsg

sendto
Send data to a UDP partner.

ssize_t sendto(int sock,
 const void* dataptr,
 size_t size,
 int flags,
 const struct sockaddr* to,
 socklen_t tolen)

Page 548

https://linux.die.net/man/2/sendmsg
http://man7.org/linux/man-pages/man2/send.2.html
https://linux.die.net/man/2/select

The sock is the socket handle that was previously opened by a call to socket(). The
dataptr is a pointer to a buffer of data that we wish to send. The size is the size of the
datagram that we wish to send. It can be a maximum of 64K. The to is the address of
the destination of the message and tolen is the length of the address structure.

The flags can be one or more of:

• MSG_DONTWAIT – Do not wait if waiting would be needed.

• MSG_OOB – Send a message out of band.

The return is the number of bytes actually sent or -1 on an error.

See also:

• recvfrom

• socket

• man(2) – sendto

setsockopt
int setsockopt(
 int s,
 int level,
 int optname,
 const void* optval,
 socklen_t optlen)

The options that are anticipated to be available are:

• TCP_NODELAY – Disable the Nagle algorithm.

• SO_KEEPALIVE – Enable liveness pinging.

See also:

• man(2) – setsockopt

shutdown
Shutdown parts of a socket.

int shutdown(int s, int how)

Shutdown all or part of the socket.

The socket is shutdown based on the how parameter which may be one of:

• SHUT_RD – No further receives are allowed.

• SHUT_WR – No further writes are allowed.

• SHUT_RDWR – No further reads or writes are allowed.

Page 549

https://linux.die.net/man/2/setsockopt
https://linux.die.net/man/2/sendto

See also:

• man(2) – shutdown

socket
Create a new socket for the specific domain, type and protocol.

int socket(int domain, int type, int protocol)

Domain can be one of:

• AF_INET – TCP/IP

• Others …

Type can be one of:

• SOCK_STREAM
• SOCK_DGRAM
• SOCK_RAW

Protocol can be one of:

• IPPROTO_IP
• IPPROTO_TCP
• IPPROTO_UDP

A common usage pattern is:

int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

Returns a new socket descriptor or a value < 0 on error.

Includes:

• #include <lwip/sockets.h>

See also:

• TCP/IP Sockets

• man(2) – socket

write
ssize_t write(int s, const void* dataptr, size_t size)

See also:

• man(2) – write

Page 550

https://linux.die.net/man/2/write
https://linux.die.net/man/2/socket
https://linux.die.net/man/2/shutdown

writev
See also:

• man(2) – writev

Socket data structures

Sockets – struct sockaddr

Sockets – struct sockaddr_in

• sin_family – AF_INET

• sin_port

• struct in_addr sin_addr – This structure has a member called s_addr which is
an IP address. Special values have special meanings. For example INADDR_ANY
is any address.

Working with WiFi
In the ESP32 environment, we include the header <esp_wifi.h> which provides the
signatures for the WiFi functions we will be using. Prior to working with any WiFi
components, we want to call esp_wifi_init(). This function initializes the WiFi
subsystem. Internally it will allocate resources. We have a partner function called
esp_wifi_deinit() which will destroy our WiFi environment and release the resources.
We should not call any other WiFi functions prior to esp_wifi_init() and call no further
WiFi functions following an esp_wifi_deinit(). There is a mandatory parameter to the
esp_wifi_init() which is a pointer to an instance of wifi_init_config_t. We can
supply a useful default to this call using the WIFI_INIT_CONFIG_DEFAULT macro.

wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();
err = esp_wifi_init(&config);

Since an ESP32 can be simultaneously both a station and an access point, that means
it has two interfaces. Two interfaces means two distinct mac addresses. We can set or
get the values for these 6 byte mac addresses using esp_wifi_set_mac() and
esp_wifi_get_mac(). The first parameter of these calls defines which interface we wish
to interact. The value can either be WIFI_IF_STA for the station interface or WIFI_IF_AP
for the access point interface.

Page 551

https://linux.die.net/man/2/writev

If we are acting as an access point, we can ask what stations are connected to us with a
call to esp_wifi_get_station_list(). This returns us a list of stations that is based on
the ESP32 queuing structure.

Once we have performed an access point scan, the ESP32 has a notion of the access
points out there. We can then ask for a copy of this information. We need to
understand that each access point is identified by a record of type wifi_ap_record_t
which is composed of:

uint8_t bssid[6]

uint8_t ssid[32]

uint8_t primary

wifi_second_chan_t second

int8_t rssi

wifi_auth_mode_t authmode

When we call esp_wifi_get_station_list() we pass in a pointer to storage which will
be populated by these records. We also pass in the maximum number of records we
will accept. On return, we are told how many records were populated. We are
managing the storage for these records and ESP32 neither allocates nor releases this
data.

For example:

wifi_ap_record_t apList[10];
uint16_t count = 10;
esp_wifi_get_station_list(&count, apList);
printf("Number of stations populated = %d\n", count);

DNS
The DNS component of ESP32 is provided by the underlying LWIP implementation.

See also:

• lwip – DNS – Doxygen

dns_getserver
Retrieve one of the defined DNS servers.

const ip_addr_t dns_getserver(u8_t numdns)

• numdns – The index of the defined DNS server. ESP32 defined 0 and 1.

Includes:

Page 552

http://www.nongnu.org/lwip/2_0_0/group__dns.html

• #include <lwip/dns.h>

See also:

• gethostbyname

• lwip – DNS – Doxygen

dns_setserver
Set one of the defined DNS servers.

void dns_setserver(u8_t numdns, const ip_addr_t *dnsserver)

• numdns – The index of the defined DNS server. ESP32 defines 0 and 1.

Here is an example of usage:

ip_addr_t dnsserver;
inet_pton(AF_INET, "8.8.8.8", &dnsserver);
dns_setserver(0, &dnsserver);
inet_pton(AF_INET, "8.8.4.4", &dnsserver);
dns_setserver(1, &dnsserver);

Includes:

• #include <lwip/dns.h>

See also:

• gethostbyname

• lwip – DNS – Doxygen

System Functions

esp_chip_info
Retrieve information about this instance of the ESP32.

void esp_chip_info(esp_chip_info_t *outInfo)

The outInfo is a structure which contains:

• esp_chip_model_t model – Which model of chip are we?

◦ CHIP_ESP32 – We are an ESP32

• uint32_t features – A bit mask describing a set of features:

◦ CHIP_FEATURE_EMB_FLASH – Do we have embedded flash?

◦ CHIP_FEATURE_WIFI_BGN – Do we have Wifi?

◦ CHIP_FEATURE_BLE – Do we have BLE?

Page 553

http://www.nongnu.org/lwip/2_0_0/group__dns.html
http://www.nongnu.org/lwip/2_0_0/group__dns.html

◦ CHIP_FEATURE_BT – Do we have bluetooth?

• uint8_t cores – The number of cores present on the device.

• uint8_t revision – The revision of the device.

Includes:

• #include <esp_system.h>

esp_cpu_in_ocd_debug_mode
Determine if a JTAG debugger is attached to CPU.

bool esp_cpu_in_ocd_debug_mode()

esp_efuse_read_mac
esp_err_t system_efuse_read_mac(uint8_t mac[6])

esp_get_free_heap_size
Get the size of the available memory heap.

uint32_t esp_get_free_heap_size()

For example 40544.

As a test I wrote an app that logged the free heap size after boot. This is as of 2016-10-
05. The result was 195568.

Includes:

• #include <esp_system.h>

See also:

• RAM Utilization

esp_get_idf_version
Return a representation of the ESP-IDF version against which the application was
compiled.

const char *esp_get_idf_version()

An example of the return might be:

v2.0-rc1-930-g058eb26

Includes:

• #include <esp_system.h>

Page 554

esp_random
Get a hardware based random number.

uint32_t esp_random()

Includes

• #include <esp_system.h>

esp_restart
Restart the system.

void esp_restart()

Includes

• #include <esp_system.h>

system_rtc_mem_write
Storage space for saving data during a deep sleep in RTC storage.

Includes:

• #include <esp_system.h>

rtc_get_reset_reason
Get the reset reason for a CPU.

RESET_REASON rtc_get_reset_reason(int cpuNo)

The RESET_REASON that is returned may be one of:

• NO_MEAN –

• POWERON_RESET –

• SW_RESET –

• OWDT_RESET –

• DEEPSLEEP_RESET –

• SDIO_RESET –

• TG0WDT_SYS_RESET –

Page 555

• TG1WDT_SYS_RESET –

• RTCWDT_SYS_RESET –

• INTRUSION_RESET –

• TGWDT_CPU_RESET –

• SW_CPU_RESET –

• RTCWDT_CPU_RESET –

• EXT_CPU_RESET –

• RTCWDT_BROWN_OUT_RESET –

• RTCWDT_RTC_RESET –

software_reset
void software_reset()

Includes:

• #include <rom/rtc.h>

software_reset_cpu
void software_reset_cpu(int cpuNo)

The CPU numbers supplied by cpuNo are 0 for the PRO CPU and 1 for the APP CPU.

Includes:

• #include <rom/rtc.h>

system_deep_sleep
Puts the device to sleep for a period of time.

void system_deep_sleep(uint32 microseconds)

The device goes to sleep and when it awakes, it will start at the user_init location.

Includes

• #include <esp_system.h>

system_get_time
Note: system_get_time() has been deprecated. Use gettimeofday() as a replacement.

Page 556

Get the system time measured in microseconds since last device start-up.

uint32_t system_get_time()

This timer will roll over after 71 minutes.

Note: Experimentation seems to show that as of 2016-10, the timer does not tick until
after a call to esp_wifi_init().

Includes:

• #include <esp_system.h>

See also:

• Timers and time

• gettimeofday

system_restore
Reset some system settings to defaults.

void system_restore()

The settings returned to defaults include:

• wifi_station_set_auto_connect

• wifi_set_phy_mode

• wifi_softap_set_config

• wifi_station_set_config

• wifi_set_opmode

Includes

• #include <esp_system.h>

system_rtc_mem_read
Read data from RTC available storage.

Includes:

• #include <esp_system.h>

system_rtc_mem_write
Storage space for saving data during a deep sleep in RTC storage.

Page 557

Includes:

• #include <esp_system.h>

system_rtc_mem_read
Read data from RTC available storage.

Includes:

• #include <esp_system.h>

WiFi
The WiFi function provide access to the WiFi capabilities of the device.

See also:

esp_event_loop_init
Initialize the WiFi event loop processing and specify an event handler.

esp_err_t esp_event_loop_init(system_event_cb_t cb, void* ctx)

Initialize the WiFi event loop processing.

The callback function for the event handler is defined as:

esp_err_t (*system_event_cb_t)(void* ctx, system_event_t* event)

See also:

• Handling WiFi events

• esp_event_loop_set_cb

esp_event_loop_set_cb
Change the event handler used for WiFi events.

system_event_cb_t esp_event_loop_set_cb(system_event_cb_t cb, void* ctx)

Specify an event handler to be invoked when a WiFi event occurs. The previous event
handler is returned.

The callback function for the event handler is defined as:

esp_err_t (*system_event_cb_t)(void* ctx, system_event_t* event)

Includes:

• #include <esp_event_loop.h>

See also:

Page 558

• Handling WiFi events

• esp_event_loop_init

esp_wifi_ap_get_sta_list
esp_err_t esp_wifi_ap_get_sta_list(wifi_sta_list_t* sta)

esp_wifi_clear_fast_connect
Not implemented.

esp_err_t esp_wifi_clear_fast_connect()

esp_wifi_connect
Connect to an access point.

esp_err_t esp_wifi_connect()

Prior to calling this function we should have:

• Initialized WiFi – esp_wifi_init()

• Set our mode to be either a station or station+ap – esp_wifi_set_mode()

• Set our desired access point connection information – esp_wifi_set_config()

• Started the WiFi subsystem – esp_wifi_start()

We can disconnect from an access point by calling esp_wifi_disconnect(). Experience
seems to show that before we can connect to a new access point, we must first
explicitly disconnect from a previous access point.

Includes:

• #include <esp_wifi.h>

See also:

• Connecting to an access point

• esp_wifi_init

• esp_wifi_set_mode

• esp_wifi_set_config

• esp_wifi_start

• esp_wifi_disconnect

esp_wifi_deauth_sta
esp_err_t esp_wifi_deauth_sta(uint16_t aid)

Page 559

esp_wifi_deinit
Release the ESP32 WiFi environment.

esp_err_t esp_wifi_deinit()

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_init

esp_wifi_disconnect
Disconnect from an access point.

esp_err_t esp_wifi_disconnect()

We assume that we have previously connected to an access point using
esp_wifi_connect().

Includes:

• #include <esp_wifi.h>

See also:

• Connecting to an access point

• esp_wifi_connect

esp_wifi_free_station_list
Release the storage for the previously returned list of stations.

esp_err_t esp_wifi_free_station_list()

Includes:

• #include <esp_wifi.h>

See also:

• Working with connected stations

• esp_wifi_get_station_list

esp_wifi_get_auto_connect
Determine whether or not auto connect at boot is enabled.

esp_err_t esp_wifi_set_auto_connect(bool *enabled)

Page 560

Includes:

• esp_wifi.h

See also:

• Connecting to an access point

• esp_wifi_set_auto_connect

esp_wifi_get_bandwidth
Get the current bandwidth.

esp_err_t esp_wifi_get_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t *bandWidth)

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_set_bandwidth

esp_wifi_get_channel
Get the current channel.

esp_err_t esp_wifi_get_channel(uint8_t *primary, wifi_second_chan_t *second)

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_set_channel

esp_wifi_get_config
Retrieve the current connection information associated with the specified WiFi interface.

esp_err_t esp_wifi_get_config(wifi_interface_t interface, wifi_config_t *conf)

The interface is one of:

• WIFI_IF_STA – The station interface.

• WIFI_IF_AP – The access point interface.

The conf parameter is populated with the current configuration. See the details of
esp_wifi_set_config for the nature and content of this data type.

Includes:

Page 561

• #include <esp_wifi.h>

See also:

• esp_wifi_set_config

esp_wifi_get_country
Retrieve the currently configured WiFi country.

esp_err_t esp_wifi_get_country(wifi_country_t *country)

The default WiFi country is China. Allowable values are:

• WIFI_COUNTRY_CN

• WIFI_COUNTRY_JP

• WIFI_COUNTRY_US

• WIFI_COUNTRY_EU

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_set_country

esp_wifi_get_mac
Retrieve the current MAC address for the interface.

esp_err_t esp_wifi_get_mac(wifi_interface_t interface, uint8_t mac[6])

The interface is one of:

• WIFI_IF_STA – The station interface.

• WIFI_IF_AP – The access point interface.

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_set_mac

esp_wifi_get_mode
Get the WiFi operating mode.

esp_err_t esp_wifi_get_mode(wifi_mode_t *mode)

Get the operating WiFi mode. The choices available are:

Page 562

• WIFI_MODE_NULL – No WiFi.

• WIFI_MODE_STA – A station.

• WIFI_MODE_AP – An access point.

• WIFI_MODE_APSTA – Both a station and an access point.

Includes:

• #include <esp_wifi.h>

See also:

• Setting the operation mode
• Station configuration
• esp_wifi_set_mode

• esp_wifi_set_config

esp_wifi_get_promiscuous
esp_err_t esp_wifi_get_promiscuous(uint8_t *enable)

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_set_promiscuous

esp_wifi_get_protocol
Get the 802.11 protocol (b/g/n).

esp_err_t esp_wifi_get_protocol(wifi_interface_t ifx, uint8_t *protocolBitmap)

The possible protocols are:

• WIFI_PROTOCOL_11B

• WIFI_PROTOCOL_11G

• WIFI_PROTOCOL_11N

• WIFI_PROTOCOL_LR

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_set_protocol

Page 563

esp_wifi_get_ps
Get the power save type.

esp_err_t esp_wifi_get_ps(wifi_ps_type_ t *type)

The type of power save will be one of:

• WIFI_PS_NONE –

• WIFI_PS_MODEM –

• WIFI_PS_LIGHT –

• WIFI_PS_MAC –

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_set_ps

esp_wifi_get_station_list
Get the list of stations connected to ESP32 when it is behaving as an access point.

esp_err_t esp_wifi_get_station_list(wifi_sta_list_t **station)

The structure of a "struct station_info" is:

STAILQ_ENTRY(station_info) next

uint8_t bssid[6]

To walk through this list we can use the following algorithm:

wifi_sta_list_t *stations;
//
while (stations != NULL) {
 printf("bssid: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n",
 stations->bssid[0],stations->bssid[1],stations->bssid[2],
 stations->bssid[3],stations->bssid[4],stations->bssid[5]);
 stations = STAILQ_NEXT(stations, next);
}

Includes:

• #include <esp_wifi.h>

See also:

• Working with connected stations

• esp_wifi_free_station_list

Page 564

• tcpip_adapter_get_sta_list

esp_wifi_init
Initialize the ESP32 WiFi environment.

esp_err_t esp_wifi_init(wifi_init_config_t *config)

This API call should be invoked before all other WiFi related calls. The
wifi_init_config_t contains:

void * event_q

uint8_t rx_ba_win

uint8_t rx_ba_win

uint8_t rx_ba_win

A macro called WIFI_INIT_CONFIG_DEFAULT can be used to initialize the configuration
structure. For example:

wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();
esp_wifi_init(&config);

Includes:

• #include <esp_wifi.h>

See also:

• Initializing the WiFi environment

• esp_wifi_start

• esp_wifi_deinit

esp_wifi_restore
esp_err_t esp_wifi_restore()

esp_wifi_reg_rxcb
esp_err_t esp_wifi_reg_rxcb(wifi_interface_t ifx, wifi_rxcb_t fn)

Includes:

• #include <esp_wifi.h>

esp_wifi_scan_get_ap_records
Retrieve the access points found in a previous scan.

esp_err_t esp_wifi_get_ap_records(uint16_t *number, wifi_ap_record_t *apRecords);

Page 565

The apList is a contiguous chunk of storage capable of holding objects of type
wifi_ap_record_t. The number of such records is the initial value of the number
parameter. On return, the actual number of items will be updated. A wifi_ap_record_t
record contains:

uint8_t bssid[6]

uint8_t ssid[32]

uint8_t primary

wifi_second_chan_t second

int8_t rssi

wifi_auth_mode_t authmode

The authmode can be one of:

• WIFI_AUTH_OPEN –

• WIFI_AUTH_WEP –

• WIFI_AUTH_WPA_PSK –

• WIFI_AUTH_WPA2_PSK –

• WIFI_AUTH_WPA_WPA2_PSK –

Includes:

• #include <esp_wifi.h>

See also:

• Scanning for access points

• esp_wifi_scan_stop

esp_wifi_scan_get_ap_num
Retrieve the count of found access points from a previous scan.

esp_err_t esp_wifi_scan_get_ap_num(uint16_t *number)

Retrieve the number of discovered access points from the previous scan. We need to
be careful that the scan has completed before getting the count.

Includes:

• #include <esp_wifi.h>

See also:

• Scanning for access points

Page 566

esp_wifi_scan_start
Scan for access points.

esp_err_t esp_wifi_scan_start(wifi_scan_config_t *conf, bool block)

Govern how the scan should be performed. The wifi_scan_config_t contains the
following fields:

char * ssid

uint8_t * bssid

uint8_t channel

bool show_hidden

The block parameter defines whether or not this call blocks until the data is available.

The results of a WiFi scan are stored internally in ESP32 dynamically allocated storage.
The data is returned to us when we call esp_wifi_get_ap_list() which also releases
the internally allocated storage. As such, this should be considered a destructive read.

Includes:

• #include <esp_wifi.h>

See also:

• Scanning for access points

• esp_wifi_scan_stop

esp_wifi_scan_stop
Stop an access point scan that is in progress.

esp_err_ t esp_wifi_scan_stop()

By calling esp_wifi_scan_start(), we can request that a WiFi scan be performed in the
background. Should we wish to interrupt or stop that activity, this function can be used.

Includes:

• #include <esp_wifi.h>

See also:

• Scanning for access points

• esp_wifi_scan_start

• Error: Reference source not found

• esp_wifi_set_config

Page 567

esp_wifi_set_auto_connect
esp_err_t esp_wifi_set_auto_connect(bool enabled)

Includes:

• #include <esp_wifi.h>

See also:

• Connecting to an access point

• esp_wifi_get_auto_connect

esp_wifi_set_bandwidth
Set the current bandwidth.

esp_err_t esp_wifi_set_bandwidth(
 wifi_interface_t interface,
 wifi_bandwidth_t bandWidth)

The interface is one of:

• WIFI_IF_STA – The station interface.

• WIFI_IF_AP – The access point interface.

The bandWidth parameter can be one of:

• WIFI_BW_HT20 –

• WIFI_BW_HT40 –

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_get_bandwidth

esp_wifi_set_channel
esp_err_t esp_wifi_set_channel(uint8_t primary, wifi_second_chan_t second)

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_get_channel

esp_wifi_set_config
Set the WiFi interface configuration.

Page 568

esp_err_t esp_wifi_set_config(
 wifi_interface_t interface,
 wifi_config_t *conf)

The interface is one of:

• WIFI_IF_STA – The station interface.

• WIFI_IF_AP – The access point interface.

The choice of which interface will be used will be dependent on whether or not we are
being an access point, a station or both. If a station, we will configure the station
interface, if an access point, we will configure the access point interface and if both,
then we will configure both interfaces. We should previously have called
esp_wifi_set_mode().

The wifi_config_t defines properties of the interface. It is a C language union of
wifi_ap_config_t and wifi_sta_config_t.

The wifi_sta_config_t contains:

char ssid[32]

char password[64]

bool bssid_set

uint8_t bssid[6]

An example initialization for this structure might be:

wifi_config_t staConfig = {
 .sta = {
 .ssid="<access point name>",
 .password="<password>",
 .bssid_set=false
 }
};

The wifi_ap_config_t contains:

Page 569

char ssid[32]

char password[64]

uint8_t ssid_len

uint8_t channel

wifi_auth_mode_t authmode

uint8_t ssid_hidden

uint8_t max_connection

uint16_t beacon_interval

If ssid_len is 0, then look for a string termination character in the ssid field. Otherwise
if ssid_len is greater than 0, the value defines the number of bytes in ssid to read for
the ssid value.

The channel is the channel we are using for WiFi.

The authmode indicates how stations can connect. Options include:

• WIFI_AUTH_OPEN

• WIFI_AUTH_WEP

• WIFI_AUTH_WPA_PSK

• WIFI_AUTH_WPA2_PSK

• WIFI_AUTH_WPA_WPA2_PSK

The ssid_hidden is 0 meaning that the SSID is broadcast and can be found.

The max_connection is the maximum number of stations that can connect. The default
is 4.

The beacon_interval is some magic related to WiFi and should have a default value of
100.

An example of initialization of this structure might be:

wifi_config_t apConfig = {
 .ap = {
 .ssid="<access point name>",
 .password="<password>",
 .ssid_len=0,
 .channel=0,
 .authmode=WIFI_AUTH_OPEN,
 .ssid_hidden=0,
 .max_connection=4,
 .beacon_interval=100
 }
};

Includes:

Page 570

• #include <esp_wifi.h>

See also:

• esp_wifi_get_config

• Being an access point

• Station configuration

esp_wifi_set_country
Set the WiFi country.

esp_err_t esp_wifi_set_country(wifi_country_t country)

The default WiFi country is China. Allowable values are:

• WIFI_COUNTRY_CN – China.

• WIFI_COUNTRY_JP – Japan.

• WIFI_COUNTRY_US – United States of America.

• WIFI_COUNTRY_EU – European Union.

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_get_country

esp_wifi_set_mac
esp_err_t esp_wifi_set_mac(wifi_interface_t ifx, uint8_t mac[6])

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_get_mac

esp_wifi_set_mode
Set the operating mode.

esp_err_t esp_wifi_set_mode(wifi_mode_t mode)

Set the operating WiFi mode. The choices are:

• WIFI_MODE_NULL – No WiFi.

Page 571

• WIFI_MODE_STA – A station.

• WIFI_MODE_AP – An access point.

• WIFI_MODE_APSTA – Both a station and an access point.

You will also need to call esp_wifi_set_config() to specify the configuration
parameters. If we are being an access point, we will not actually start listening for
stations until after esp_wifi_start() and if we are being a station, we will not connect to
an access point until after a call to esp_wifi_start() and then esp_wifi_connect().

Includes:

• #include <esp_wifi.h>

See also:

• Setting the operation mode

• Station configuration

• esp_wifi_get_mode

• esp_wifi_set_config

esp_wifi_set_promiscuous_rx_cb
esp_err_t esp_wifi_set_promiscuous_rx_cb(wifi_promiscuous_cb_t cb)

Includes:

• #include <esp_wifi.h>

See also:

esp_wifi_set_promiscuous
esp_err_t esp_wifi_set_promiscuous(uint8_t enable)

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_get_promiscuous

esp_wifi_set_protocol
Set the 802.11 protocol (b/g/n)

esp_err_t esp_wifi_set_protocol(wifi_interface_t ifx, uint8_t protocolBitmap)

The allowable protocols are:

• WIFI_PROTOCOL_11B

Page 572

• WIFI_PROTOCOL_11G

• WIFI_PROTOCOL_11N

• WIFI_PROTOCOL_LR

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_get_protocol

esp_wifi_set_ps
Set the power save type.

esp_err_t esp_wifi_set_ps(wifi_ps_type_t type)

The type of power save will be one of:

• WIFI_PS_NONE –

• WIFI_PS_MODEM –

• WIFI_PS_LIGHT –

• WIFI_PS_MAC –

Includes:

• #include <esp_wifi.h>

See also:

• esp_wifi_get_ps

esp_wifi_set_storage
Define where WiFi configuration will be stored.

esp_err_t esp_wifi_set_storage(wifi_storage_t storage)

The options available are:

• WIFI_STORAGE_FLASH – Configuration stored in both flash and RAM. This is the
default.

• WIFI_STORAGE_RAM – Configuration stored in RAM only (not in flash as well).

The value of this method is that we can choose to save our configuration set by
esp_wifi_set_config() to RAM or both flash and RAM. If we save our settings in flash

Page 573

then it is these settings that will be used during an auto connect when we call
esp_wifi_set_auto_connect() to connect at start up.

Includes:

• #include <esp_wifi.h>

See also:

• Connecting to an access point

• esp_wifi_set_config

• esp_wifi_set_auto_connect

esp_wifi_set_vendor_ie
esp_err_t esp_wifi_set_vendor_ie(
 bool enable,
 wifi_vendor_ie_type_t type,
 wifi_vendor_ie_id_t idx,
 uint8_t *vnd_ie)

Includes:

• #include <esp_wifi.h>

esp_wifi_set_vendor_ie_cb
esp_err_t esp_wifi_set_vendor_ie_cb(
 esp_vendor_ie_cb_t cb,
 void *ctx)

Includes:

• #include <esp_wifi.h>

esp_wifi_sta_get_ap_info
Get information about the access point to which we are connected,

esp_err_t esp_wifi_sta_get_ap_info(wifi_ap_record_t *apInfo)

esp_wifi_start
Start the WiFi subsystem.

esp_err_t esp_wifi_start()

Prior to calling this function, we should have called esp_wifi_init() and configured our
mode (esp_wifi_set_mode) and interfaces (esp_wifi_set_config). If we are an access
point, then after calling this function, we will start to accept incoming client connections.

Includes:

Page 574

• #include <esp_wifi.h>

See also:

• Starting up the WiFi environment

• esp_wifi_stop

• esp_wifi_init

• esp_wifi_set_mode

esp_wifi_stop
Stop the WiFi subsystem.

esp_err_t esp_wifi_stop()

This will stop the ESP32 WiFi subsystem. This could be called after a previous
esp_wifi_start() call.

Includes:

• #include <esp_wifi.h>

See also:

• Starting up the WiFi environment

• esp_wifi_start

WiFi WPS

wifi_wps_enable
bool wifi_wps_enable(WPS_TYPE_t wps_type)

The type parameter can be one of the following:

• WPS_TYPE_DISABLE – Unsupported

• WPS_TYPE_PBC – Push Button Configuration – Supported

• WPS_TYPE_PIN – Unsupported

• WPS_TYPE_DISPLAY – Unsupported

• WPS_TYPE_MAX – Unsupported

See also:

• WiFi Protected Setup – WPS

Page 575

wifi_wps_disable
bool wifi_wps_disable()

See also:

• WiFi Protected Setup – WPS

wifi_wps_start
bool wifi_wps_start()

See also:

• WiFi Protected Setup – WPS

wifi_set_wps_cb
bool wifi_set_wps_cb(wps_st_cb_t callback)

The signature of the callback function is:

void (*functionName)(int status)

The status parameter will be one of:

• WPS_CB_ST_SUCCESS –

• WPS_CB_ST_FAILED –

• WPS_CB_ST_TIMEOUT –

See also:

• WiFi Protected Setup – WPS

mbed TLS
The mbed TLS is an implementation of SSL/TLS security and is supplied with ESP-IDF.

See also:

• TLS, SSL and security

• mbed TLS home page

• mbed TLS tutorial

mbedtls_ctr_drbg_free
mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context *ctx)

mbedtls_ctr_drbg_init
void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context *ctx)

Page 576

https://tls.mbed.org/kb/how-to/mbedtls-tutorial
https://tls.mbed.org/

mbedtls_ctr_drbg_seed
Initial seeding.

int mbedtls_ctr_drbg_seed(
 mbedtls_ctr_drbg_context *ctx,
 int(*)(void *, unsigned char *, size_t) f_entropy,
 void *p_entropy,
 const unsigned char *custom,
 size_t len)

Includes:

• mbed/ctr_drbg.h

mbedtls_debug_set_threshold
Set the debug level.

void mbedtls_debug_set_threshold(int threshold)

Set the level of debugging to be generated from the library. The threshold value can be
one of:

• 0 – no debug

• 1 – error

• 2 – state change

• 3 – informational

• 4 – verbose

A higher level captures that level and the entries of lower level.

Note: To use this function, mbedTLS debugging must be enabled by editing the Curl
mbedtls.c.

Includes:

• mbedtls/debug.h

See also:

• mbedtls_ssl_conf_dbg

• mbedtls_strerror

mbedtls_entropy_free
void mbedtls_entropy_free(mbedtls_entropy_context *ctx)

Includes:

Page 577

• mbed/entropy.h

mbedtls_entropy_init
void mbedtls_entropy_init(mbedtls_entropy_context *ctx)

Includes:

• mbed/entropy.h

mbedtls_net_accept
int mbedtls_net_accept(
 mbedtls_net_context *bind_ctx,
 mbedtls_net_context *client_ctx,
 void *client_ip,
 size_t buf_size,
 size_t *ip_len)

mbedtls_net_bind
int mbedtls_net_bind(
 mbedtls_net_context *ctx,
 const char *bind_ip,
 const char *port,
 int proto)

The proto is one of MBEDTLS_NET_PROTO_TCP or MBEDTLS_NET_PROTO_UDP.

mbedtls_net_connect
Initiate a network connection.

int mbedtls_net_connect(
 mbedtls_net_context *context,
 const char *host,
 const char *port,
 int proto)

The context is the network context to use, host is the host to connect to, port is the
port number (as a string) and proto is one of MBEDTLS_NET_PROTO_TCP or
MBEDTLS_NET_PROTO_UDP.

Includes:

• mbed/net.h

See also:

• mbedtls_net_init

mbedtls_net_free
Gracefully shutdown the connection and release data.

Page 578

void mbedtls_net_free(mbedtls_net_context *context)

Release any resources associated with the context. A call to mbedtls_net_init() will
have been called prior to this release call.

See also:

• mbedtls_net_init

mbedtls_net_init
Initialize a context for use.

void mbedtls_net_init(mbedtls_net_context *context)

Invoke this function early to initialize the context. Don't try and use a context before
calling this function.

Includes:

• mbed/net.h

See also:

• mbedtls_net_free

mbedtls_net_recv
Read data from a socket.

int mbedtls_net_recv(
 void *ctx,
 unsigned char *buf,
 size_t len
)

mbedtls_net_recv_timeout
int mbedtls_net_recv_timeout(
 void *ctx,
 unsigned char *buf,
 size_t len,
 uint32_t timeout
)

mbedtls_net_send
Send data down a socket.

int mbedtls_net_send(
 void *ctx,
 const unsigned char *buf,
 size_t len)

Page 579

mbedtls_net_set_block
int mbedtls_net_set_block(mbedtls_net_context *ctx)

mbedtls_net_set_nonblock
int mbedtls_net_set_nonblock(mbedtls_net_context *ctx)

mbedtls_printf
Printf macro.

Includes:

• mbed/platform.h

mbedtls_sha1
Produce a 160bit (20 byte) hash value.

void mbedtls_sha1(const unsigned char *input, size_t ilen, unsigned char output[20])

The input is the pointer to the data to be hashed. The ilen is the length of the input.
The output is the resulting hash.

Includes:

• mbedtls/sha1.h

mbedtls_ssl_close_notify

mbedtls_ssl_conf_authmode
Set the certificate verification mode.

void mbedtls_ssl_conf_authmode(
 mbedtls_ssl_config *sslConf,
 int authmode)

The sslConf is the SSL configuration. The authmode is one of:

• MBEDTLS_SSL_VERIFY_NONE –

• MBEDTLS_SSL_VERIFY_OPTIONAL –

• MBEDTLS_SSL_VERIFY_REQUIRED –

Includes:

• mbed/ssl.h

Page 580

mbedtls_ssl_conf_ca_chain

mbedtls_ssl_conf_dbg
Set the debug callback.

void mbedtls_ssl_conf_dbg(
 mbedtls_ssl_config *conf,
 void(*func)(void *debugContext, int level, char *file, int line, const char *str),
 void *debugContext)

An example of a function that can be used to log data might be:

static void my_debug(
 void *ctx,
 int level,
 const char *file,
 int line,
 const char *str) {

 ((void) level);
 ((void) ctx);
 printf("%s:%04d: %s", file, line, str);
}

See also:

• mbedtls_debug_set_threshold

• mbedtls_strerror

mbedtls_ssl_conf_rng
Set the random number generator callback.

void mbedtls_ssl_conf_rng(
 mbedtls_ssl_config conf,
 int(*)(void *, unsigned char *, size_t) f_rng,
 void *p_rng)

Includes:

• mbed/ssl.h

mbedtls_ssl_config_defaults
int mbedtls_ssl_config_defaults(
 mbedtls_ssl_config *sslConfig,
 int endpoint,
 int transport,
 int preset)

The endpoint is one of MBEDTLS_SSL_IS_CLIENT or MBEDTLS_SSL_IS_SERVER.

The transport is MBEDTLS_SSL_TRANSPORT_STREAM or MBEDTLS_SSL_TRANSPORT_DATAGRAM.

Page 581

The preset is currently not used. Supply MBEDTLS_SSL_PRESET_DEFAULT.

Includes:

• mbed/ssl.h

mbedtls_ssl_config_free
Release the resources for an SSL configuration context.

void mbedtls_ssl_config_free(mbedtls_ssl_config *sslConf)

Includes:

• mbed/ssl.h

See also:

• mbedtls_ssl_config_init

mbedtls_ssl_config_init
Initialize an SSL Config record.

void mbedtls_ssl_config_init(mbedtls_ssl_config *sslConf)

Includes:

• mbed/ssl.h

See also:

• mbedtls_ssl_config_free

mbedtls_ssl_free
Release resources for an SSL context.

void mbedtls_ssl_free(mbedtls_ssl_context *sslContext)

Release any resources that may have been previously allocated by a call to
mbedtls_ssl_init().

Includes:

• mbed/ssl.h

See also:

• mbedtls_ssl_init

Page 582

mbedtls_ssl_get_verify_result

mbedtls_ssl_handshake

mbedtls_ssl_init
Initialze an SSL context.

void mbedtls_ssl_init(mbedtls_ssl_context *sslContext)

The data structure is a black box and this function initializes it for us.

Includes:

• mbed/ssl.h

See also:

• mbedtls_ssl_free

mbedtls_ssl_read
int mbedtls_ssl_read(
 mbedtls_ssl_context *sslContext,
 unsigned char *buf,
 size_t len)

mbedtls_ssl_session_reset

mbedtls_ssl_set_bio
Identify the functions to be used for sending and receiving data.

void mbedtls_ssl_set_bio(
 mbedtls_ssl_context *context,
 void *p_bio,
 mbedtls_ssl_send_t *f_send,
 mbedtls_ssl_recv_t *f_recv,
 mbedtls_ssl_recv_timeout_t *f_recv_timeout)

The context is the SSL context we are currently using for this communication.

The p_bio is a pointer to storage that is passed into the send and receive functions to
give them context.

The f_send is a function to be called to transmit SSL encrypted data. It can be
mbedtls_net_send. The signature for this function is:

int functionName(void *ctx, const unsigned char *buf, size_t len)

The f_recv is a function to be called to receive SSL encrypted data. It can be
mbedtls_net_recv. The signature for this function is:

Page 583

int functionName(void *ctx, unsigned char *buf, size_t len)

The f_recv_timeout is a function to be called to receive SSL encrypted data with a
timeout. It can be NULL. The signature of this function is:

int functionName(void *ctx, unsigned char *buf, size_t len, uint32_t timeout)

mbedtls_ssl_set_hostname
Set the hostname to check against.

int mbedtls_ssl_set_hostname(
 mbedtls_ssl_context *context,
 const char *hostname)

Returns 0 on success.

Includes:

• mbed/ssl.h

mbedtls_ssl_setup
Setup an SSL context for use.

int mbedtls_ssl_setup(
 mbedtls_ssl_context *sslContext,
 mbedtls_ssl_config *sslConfig)

Includes:

• mbed/ssl.h

mbedtls_ssl_write
Write a buffer of data down the socket.

int mbedtls_ssl_write(
 mbedtls_ssl_context *ssl,
 const unsigned char *buf,
 size_t len)

The number of bytes written or < 0 on error.

Includes:

• mbed/ssl.h

mbedtls_strerror
void mbedtls_strerror(
 int errnum,

Page 584

 char *buffer,
 size_t bufflen)

Convert an error code into a C string representing the error.

Includes:

• mbed/error.h

See also:

• mbedtls_debug_set_threshold

• mbedtls_ssl_conf_dbg

mbedtls_x509_crt_init
Initialize a certificate chain.

void mbedtls_x509_crt_init(mbedtls_x509_crt *crt)

mbedtls_x509_crt_parse

mbedtls_x509_crt_veryify_info

Bluetooth LE
See also:

• Bluetooth

esp_bt_uuid_t
A representation of a UUID.

• uint16_t len – The length of the UUID

◦ ESP_UUID_LEN_16 – 16 bits in length.

◦ ESP_UUID_LEN_32 – 32 bits in length.

◦ ESP_UUID_LEN_128 – 128 bits in length.

• union uuid

◦ uint16_t uuid16 – Data for a 16 bit uuid.

◦ uuid32_t uuid32 – Data for a 32 bit uuid.

◦ uint8_t uuid128[ESP_UUID_LEN_128] – Data for a 128 bit uuid.

For the 128 bit UUID, you need to take care that you realize that the data is in little
endian format. Putting it another way, the data is Least Significant Byte First.

Page 585

For example, if your UUID is 12345678-90ab-cdef-1234-567890abcdef, the you would
store this in memory as

0xef 0xcd 0xab 0x90 0x78 0x56 0x 34 0x12 0xef 0xcd 0xab 0x90 0x78 0x56 0x34
0x12

Includes:

• #include <esp_gatt_defs.h>

esp_attr_value_t
Characteristic value.

• uint16_t attr_max_len

• uint16_t attr_len

• uint8_t *attr_value

esp_gatt_id_t
The description of a characteristic.

This data type describes a characteristic.

• esp_bt_uuid_t uuid

• uint8_t inst_id

esp_gatt_srvc_id_t
The description of a service.

• esp_gatt_id_t id – The identity of the service.

◦ esp_bt_uuid uuid – The UUID of the service.

◦ uint8_t inst_id – The instance index of this service on the server.

• bool is_primary – Is this a primary service?

See also:

• esp_gatt_id_t

esp_gatt_status_t
The status code for GATT.

• ESP_GATT_OK

• ESP_GATT_INVALID_HANDLE

Page 586

• ESP_GATT_READ_NOT_PERMIT

• ESP_GATT_WRITE_NOT_PERMIT

• ESP_GATT_INVALID_PDU

• ESP_GATT_INSUF_AUTHENTICATION

• ESP_GATT_REQ_NOT_SUPPORTED

• ESP_GATT_INVALID_OFFSET

• ESP_GATT_INSUF_AUTHORIZATION

• ESP_GATT_PREPARE_Q_FULL

• ESP_GATT_NOT_FOUND

• ESP_GATT_NOT_LONG

• ESP_GATT_INSUF_KEY_SIZE

• ESP_GATT_INVALID_ATTR_LEN

• ESP_GATT_ERR_UNLIKELY

• ESP_GATT_INSUF_ENCRYPTION

• ESP_GATT_UNSUPPORT_GRP_TYPE

• ESP_GATT_INSUF_RESOURCE

• ESP_GATT_NO_RESOURCES

• ESP_GATT_INTERNAL_ERROR

• ESP_GATT_WRONG_STATE

• ESP_GATT_DB_FULL

• ESP_GATT_BUSY

• ESP_GATT_ERROR

• ESP_GATT_CMD_STARTED

• ESP_GATT_ILLEGAL_PARAMETER

• ESP_GATT_PENDING

• ESP_GATT_AUTH_FAIL

• ESP_GATT_MORE

• ESP_GATT_INVALID_CFG

Page 587

• ESP_GATT_SERVICE_STARTED

• ESP_GATT_ENCRYPED_MITM

• ESP_GATT_ENCRYPED_NO_MITM

• ESP_GATT_NOT_ENCRYPTED

• ESP_GATT_CONGESTED

• ESP_GATT_DUP_REG

• ESP_GATT_ALREADY_OPEN

• ESP_GATT_CANCEL

• ESP_GATT_STACK_RSP

• ESP_GATT_APP_RSP

• ESP_GATT_UNKNOWN_ERROR

• ESP_GATT_CCC_CFG_ERR

• ESP_GATT_PRC_IN_PROGRESS

• ESP_GATT_OUT_OF_RANGE

esp_ble_resolve_adv_data
uint8_t* esp_ble_resolve_adv_data(uint8_t* advData, uint8_t type, uint8_t *length)

esp_ble_gap_config_adv_data
Specify the data that we wish to advertise.

esp_err_t esp_ble_gap_config_adv_data(esp_ble_adv_data_t *adv_data)

The adv_data is a structure including:

• bool set_scan_rsp

• bool include_name

• bool include_txpower

• int min_interval

• int max_interval

• int appearance – Indicate how this advertises device should be presented to the
user in terms of appearance. Typically this is used to define the icon that
represents the device.

• uint16_t manufacturer_len

• uint8_t *p_manufacturer_data

Page 588

• uint16_t service_data_len

• uint8_t *p_service_data

• uint16_t service_uuid_len – The length of the advertised service UUID either
2,4 or 16. Specify 0 if no service UUID is being advertised.

• uint8_t *p_service_uuid – Pointer to the storage of the UUID being advertised.
Can be NULL if no service UUID is being advertised.

• uint8_t flag – The flag is a boolean "or" of the following:

◦ ESP_BLE_ADV_FLAG_LIMIT_DISC – Limited discovery flag.

◦ ESP_BLE_ADV_FLAG_GEN_DISC – General Discovery flag.

◦ ESP_BLE_ADV_FLAG_BREDR_NOT_SPT – Bluetooth standard not supported.

◦ ESP_BLE_ADV_FLAG_DMT_CONTROLLER_ST

◦ ESP_BLE_ADV_FLAG_DMT_HOST_SPT

◦ ESP_BLE_ADV_FLAG_NON_LIMIT_DISC

An example structure might be:

static esp_ble_adv_data_t adv_data;
adv_data.set_scan_rsp = false;
adv_data.include_name = true;
adv_data.include_txpower = true;
adv_data.min_interval = 0x20;
adv_data.max_interval = 0x40;
adv_data.appearance = 0x00;
adv_data.manufacturer_len = 0;
adv_data.p_manufacturer_data = NULL;
adv_data.service_data_len = 0;
adv_data.p_service_data = NULL;
adv_data.service_uuid_len = 0;
adv_data.p_service_uuid = NULL;
adv_data.flag = (ESP_BLE_ADV_FLAG_GEN_DISC |
ESP_BLE_ADV_FLAG_BREDR_NOT_SPT);

Includes:

• #include <esp_gap_ble_api.h>

See also:

• Performing advertising

• esp_ble_gap_start_advertising

• esp_ble_gap_stop_advertising

Page 589

esp_ble_gap_config_adv_data_raw
Set the data that is to be sent in advert at the raw level.

esp_err_t esp_ble_gap_config_adv_data_raw(
 uint8_t* rawData,
 uint32_t len)

esp_ble_gap_config_scan_rsp_data_raw
Set the data that is to be sent in a scan response at the raw level.

esp_err_t esp_ble_gap_config_scan_rsp_data_raw(
 uint8_t* rawData,
 uint32_t len)

esp_ble_gap_config_local_privacy
esp_err_t esp_ble_gap_config_local_privacy(bool privacy_enable)

Includes:

• #include <esp_gap_ble_api.h>

esp_ble_gap_register_callback
Register a callback for gap events.

esp_err_t esp_ble_gap_register_callback(esp_profile_cb_t callback)

While not explicitly stated it is assumed that the ESP-IDF maintains knowledge of just a
single callback. Thus if you want multiple functions to be invoked on an event, you
would be responsible for implementing a mediator using your own logic.

The esp_profile_cb_t is a C function with the following signature:

void func(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param)

The param is an an instance of a pointer to an esp_ble_gap_cb_param_t. This is a union
of structures. These are:

• struct ble_adv_data_cmpl_evt_param adv_data_cmpl

• struct ble_sca_rsp_data_cmpl_evt_param scan_rsp_data_cmpl

• struct ble_scan_param_cmpl_evt_param scan_param_cmpl

• struct ble_scan_result_evt_param scan_rst

• struct ble_adv_data_raw_cmpl_evt_param adv_data_raw_cmpl

• struct ble_adv_start_cmpl_evt_param adv_start_cmpl

• struct ble_scan_start_cmpl_evt_param scan_start_cmpl

Page 590

• esp_ble_sec_t ble_security

◦ esp_ble_sec_key_notif_t key_notif

◦ esp_ble_sec_req_t ble_req

◦ esp_ble_key_t ble_key

◦ esp_ble_local_id_keys_t ble_id_keys

◦ esp_ble_auth_cmpl_t auth_cmpl

• struct ble_scan_stop_cmpl_evt_param scan_stop_cmpl

• struct ble_adv_stop_cmpl_evt_param adv_stop_cmpl

Event types include:

ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT
Called when advertising data set is complete. Structure parameter is called
scan_rsp_data_cmpl.

• esp_bt_status_t status

ESP_GAP_BLE_ADV_START_COMPLETE_EVT
Structure parameter is called scan_start_cmpl.

• esp_bt_status_t status
See also:

• esp_ble_gap_start_scanning

ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT
On receipt, the param field called scan_stop_cmpl is populated, This is a structure
which contains:

• esp_bt_status_t status

ESP_GAP_BLE_AUTH_CMPL_EVT
On receipt, the param field called ble_security is populated which is itself a union. The
field called auth_cmpl within it is populated:

• esp_bd_addr_t bd_addr

• bool key_present

Page 591

• esp_link_key key

• uint8_t key_type

• bool success

• uint8_t fail_reason

• esp_bd_addr_type_t addr_type

• esp_bt_dev_type_t dev_type

ESP_GAP_BLE_KEY_EVT

ESP_GAP_BLE_LOCAL_ER_EVT

ESP_GAP_BLE_LOCAL_IR_EVT

ESP_GAP_BLE_NC_REQ_EVT
Numeric comparison request.

The parameter passed in the event is an instance of esp_ble_sec_t called
ble_security. This is itself a union and the populated field is key_notif.

• esp_ble_sec_key_notif_t key_notif

◦ esp_bd_addr_t bd_addr

◦ uint32_t passkey

ESP_GAP_BLE_OOB_REQ_EVT

ESP_GAP_BLE_PASSKEY_NOTIF_EVT

ESP_GAP_BLE_PASSKEY_REQ_EVT

ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT
Called when scan parameters set complete. Structure parameter is called
scan_param_cmpl.

• esp_bt_status_t status

See also:

• esp_ble_gap_set_scan_params

ESP_GAP_BLE_SCAN_RESULT_EVT
The param is an instance of esp_ble_gap_cb_param_t. Called when one scan result is
ready. Structure parameter is called scan_rst.

Page 592

◦ esp_gap_search_evt_t search_evt – Choices are

▪ ESP_GAP_SEARCH_INQ_RES_EVT – We have received a search result.

▪ ESP_GAP_SEARCH_INQ_CMPL_EVT – The search is complete.

▪ ESP_GAP_SEARCH_DISC_RES_EVT

▪ ESP_GAP_SEARCH_DISC_BLE_RES_EVT

▪ ESP_GAP_SEARCH_DISC_CMPL_EVT

▪ ESP_GAP_SEARCH_DI_DISC_CMPL_EVT

▪ ESP_GAP_SEARCH_SEARCH_CANCEL_CMPL_EVT

◦ esp_bd_addr_t bda – The address of the device. 6 bytes of data.

◦ esp_bt_dev_type_t dev_type – One of:

▪ ESP_BT_DEVICE_TYPE_BREDR

▪ ESP_BT_DEVICE_TYPE_BLE

▪ ESP_BT_DEVICE_TYPE_DUMO

◦ esp_ble_addr_type_t ble_addr_type – One of

▪ BLE_ADDR_TYPE_PUBLIC

▪ BLE_ADDR_TYPE_RANDOM

▪ BLE_ADDR_TYPE_RPA_PUBLIC

▪ BLE_ADDR_TYPE_RPA_RANDOM

◦ esp_ble_evt_type_t ble_evt_type – One of

▪ ESP_BLE_EVT_CONN_ADV

▪ ESP_BLE_EVT_CONN_DIR_ADV

▪ ESP_BLE_EVT_DISC_ADV

▪ ESP_BLE_EVT_NON_CONN_ADV

▪ ESP_BLE_EVT_SCAN_RSP

◦ int rssi – The signal strength.

◦ uint8_t ble_adv[ESP_BLE_ADV_DATA_LEN_MAX]

◦ int flag

◦ int num_resps

Page 593

◦ uint8_t adv_data_len

◦ uint8_t scan_rsp_len

• ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT – Called when the scan
response data set is complete. Structure parameter is called
scan_rsp_data_cmpl.

◦ esp_bt_status_t status

ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT

ESP_GAP_BLE_SCAN_START_COMPLETE_EVT

ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT
The structure associated with this event is struct ble_scan_stop_cmpl_evt_param
found in the field called scan_stop_cmpl. It contains:

• esp_bt_status_t status – The status of the event.

ESP_GAP_BLE_SEC_REQ_EVT
BLE Security request.

The parameter passed in the event is an instance of esp_ble_sec_t called
ble_security. This is itself a union and the populated field is ble_req. It is expected
that a call to esp_ble_gap_security_rsp() will be made on receipt.

A union of:

• esp_ble_sec_key_notif_t key_notif

◦ esp_bd_addr_t bd_addr

◦ uint32_t passkey

• esp_ble_sec_req_t ble_req

◦ esp_bd_addr_t bd_addr

• esp_ble_key_t ble_key

◦ esp_bd_addr_t bd_addr

◦ esp_ble_key_type_t key_type

◦ esp_ble_key_value_t p_key_value

• esp_ble_local_id_keys_t ble_id_keys

◦ esp_bt_octet16_t ir

Page 594

◦ esp_bt_octet16_t irk

◦ esp_bt_octet16_t dhk

• esp_ble_auth_cmpl_t auth_cmpl

◦ esp_bd_addr_t bd_addr

◦ bool key_present

◦ esp_link_key key

◦ uint8_t key_type

◦ bool success

◦ uint8_t fail_reason

◦ esp_ble_addr_type_t addr_type

◦ esp_bt_dev_type_t dev_type

Includes:

• #include <esp_gap_ble_api.h>

See also:

esp_ble_gap_security_rsp
Respond to a secure request.

esp_err_t esp_ble_gap_security_rsp(esp_bd_addr_t bd_addr, bool accept)

• bd_addr – The address of the peer.

• accept – True to accept the request and false to reject.

See also:

• ESP_GAP_BLE_SEC_REQ_EVT

esp_ble_gap_set_device_name
Set the name of the device as it will appear in advertising.

esp_err_t esp_ble_gap_set_device_name(const char *name)

Page 595

Includes:

• #include <esp_gap_ble_api.h>

esp_ble_set_encryption
esp_err_t esp_ble_set_encryption(
 esp_bd_addr_t bd_addr,
 esp_ble_sec_act_t sec_act)

• bd_addr

• sec_act

◦ ESP_BLE_SEC_NONE

◦ ESP_BLE_SEC_ENCRYPT

◦ ESP_BLE_SEC_ENCRYPT_NO_MITM

◦ ESP_BLE_SEC_ENCRYPT_MITM

esp_ble_gap_set_scan_params
Set the parameters for a subsequent BLE scan.

esp_err_t esp_ble_gap_set_scan_params(esp_ble_scan_params_t *scan_params)

• esp_ble_scan_type_t scan_type – Scan type. One of:

◦ BLE_SCAN_TYPE_PASSIVE – Perform a passive scan where no scan response is
requested from the advertiser.

◦ BLE_SCAN_TYPE_ACTIVE – Perform an active scan where a scan response is
requested from the advertiser.

• esp_ble_addr_type_t own_addr_type – Own address type. One of:

◦ BLE_ADDR_TYPE_PUBLIC

◦ BLE_ADDR_TYPE_RANDOM

◦ BLE_ADDR_TYPE_RPA_PUBLIC

◦ BLE_ADDR_TYPE_RPA_RANDOM

• esp_ble_scan_filter_t scan_filter_policy – Filter policy. One of:

◦ BLE_SCAN_FILTER_ALLOW_ALL

◦ BLE_SCAN_FILTER_ALLOW_ONLY_WLST

◦ BLE_SCAN_FILTER_ALLOW_UND_RPA_DIR

Page 596

◦ BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR

• uint16_t scan_interval – Interval between scans. Value is multiplied by 0.625
msecs.

• uint16_t scan_window – Duration of the scan. Must be less than or equal to the
scan_interval.

Includes:

• #include <esp_gap_ble_api.h>

See also:

• esp_ble_resolve_adv_data

• esp_ble_gap_start_scanning

• esp_ble_gap_stop_scanning

• ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT

esp_ble_gap_set_pkt_data_len
esp_err_t esp_ble_gap_set_pkt_data_len(
 esp_bd_addr_t remote_device,
 uint16_t tx_data_length)

Includes:

• #include <esp_gap_ble_api.h>

esp_ble_gap_set_rand_addr
esp_err_t esp_ble_gap_set_rand_addr(esp_bd_addr_t rand_addr)

Includes:

• #include <esp_gap_ble_api.h>

esp_ble_gap_set_security_param
esp_err_t esp_ble_gap_set_security_param(
 esp_ble_sm_param_t param_type,
 void* value,
 uint8_t len)

• param_type – The type of parameter to set.

◦ ESP_BLE_SM_PASSKEY

◦ ESP_BLE_SM_AUTHEN_REQ_MODE

Page 597

◦ ESP_BLE_SM_IOCAP_MODE – Does the device have IO capability? The value
parameter would be an instance of esp_ble_io_cap_t. Values of this are:

▪ ESP_IO_CAP_OUT – Display only.

▪ ESP_IO_CAP_IO – Keyboard and display.

▪ ESP_IO_CAP_IN – Keyboard input only.

▪ ESP_IO_CAP_NONE – No input and no output.

▪ ESP_IO_CAP_KBDISP – Keyboard display.

◦ ESP_BLE_SM_SET_INIT_KEY

◦ ESP_BLE_SM_SET_RSP_KEY

◦ ESP_BLE_SM_MAX_KEY_SIZE

• value – The value of the parameter.

• len – The length of the parameter.

For example:

esp_ble_io_cap_t iocap = ESP_IO_CAP_NONE;
esp_ble_gap_set_security_param(ESP_BLE_SM_IOCAP_MODE, &iocap, sizeof(uint8_t));

esp_ble_gap_start_advertising
Start GAP protocol advertising.

esp_err_t esp_ble_gap_start_advertising(esp_ble_adv_params_t *adv_params)

We can stop GAP protocol advertising by calling esp_ble_gap_stop_advertising().

The adv_params structure contains the following:

• uint16_t adv_int_min

• uint16_t adv_int_max

• esp_ble_adv_type_t adv_type – One of:

◦ ADV_TYPE_IND – Un-directed connectable mode (ADV_IND)

◦ ADV_TYPE_DIRECT_IND_HIGH

◦ ADV_TYPE_DIRECT_IND_LOW

◦ ADV_TYPE_NONCONN_IND – Non-connectable (ADV_NONCONN_IND)

◦ ADV_TYPE_SCAN_IND – Non-connectable but scan response available
(ADV_SCAN_IND)

• esp_ble_addr_type_t own_addr_type – One of

▪ BLE_ADDR_TYPE_PUBLIC

Page 598

▪ BLE_ADDR_TYPE_RANDOM

▪ BLE_ADDR_TYPE_RPA_PUBLIC

▪ BLE_ADDR_TYPE_RPA_RANDOM

• esp_bd_addr_t peer_addr

• esp_ble_addr_type_t peer_addr_type – One of

◦ BLE_ADDR_TYPE_PUBLIC

◦ BLE_ADDR_TYPE_RANDOM

◦ BLE_ADDR_TYPE_RPA_PUBLIC

◦ BLE_ADDR_TYPE_RPA_RANDOM

• esp_ble_adv_channel_t channel_map – One of:

◦ ADV_CHNL_37

◦ ADV_CHNL_38

◦ ADV_CHNL_39

◦ ADV_CHNL_ALL

• esp_ble_adv_filter_t adv_filter_policy – One of:

◦ ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY

◦ ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY

◦ ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST

◦ ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

An example structure might be:

esp_ble_adv_params_t adv_params;
adv_params.adv_int_min = 0x20;
adv_params.adv_int_max = 0x40;
adv_params.adv_type = ADV_TYPE_IND;
adv_params.own_addr_type = BLE_ADDR_TYPE_PUBLIC;
adv_params.channel_map = ADV_CHNL_ALL;
adv_params.adv_filter_policy = ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY;

Includes:

• #include <esp_gap_ble_api.h>

See also:

• Performing advertising

• esp_ble_gap_stop_advertising

Page 599

• esp_ble_gap_config_adv_data

• esp_ble_gap_register_callback

esp_ble_gap_start_scanning
Start scanning for arriving advertising packets.

esp_err_t esp_ble_gap_start_scanning(uint32_t duration)

The duration is how long we are to perform scanning measured in seconds.

Includes:

• #include <esp_gap_ble_api.h>

See also:

• esp_ble_gap_set_scan_params

• esp_ble_gap_stop_scanning

esp_ble_gap_stop_advertising
Stop advertising.

esp_err_t esp_ble_gap_stop_advertising(void)

Includes:

• #include <esp_gap_ble_api.h>

esp_ble_gap_stop_scanning
Stop the current in progress scanning looking for advertising packets.

esp_err_t esp_ble_gap_stop_scanning(void)

Includes:

• #include <esp_gap_ble_api.h>

See also:

• esp_ble_gap_start_scanning

esp_ble_gap_update_conn_params
esp_err_t esp_ble_gap_update_conn_params(esp_ble_conn_update_params_t *params)

Page 600

Includes:

• #include <esp_gap_ble_api.h>

esp_ble_gattc_app_register
Register application.

esp_err_t esp_ble_gattc_app_register(uint16_t app_id)

The app_id is the identity of an application. This can be any numeric smaller than
0x7fff.

Includes:

• #include <esp_gattc_api.h>

See also:

• ESP_GATTC_REG_EVT

esp_ble_gattc_app_unregister
esp_err_t esp_ble_gattc_app_unregister(esp_gatt_if_t gatt_if)

Includes:

• #include <esp_gattc_api.h>

esp_ble_gattc_close
Close a previously opened connection.

esp_err_t esp_ble_gattc_close(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id)

Includes:

• #include <esp_gattc_api.h>

See also:

• esp_ble_gattc_open

esp_ble_gattc_config_mtu
esp_err_t esp_ble_gattc_config_mtu(
 uint16_t conn_id,
 uint16_t mtu)

Includes:

Page 601

• #include <esp_gattc_api.h>

esp_ble_gattc_execute_write
esp_err_t esp_ble_gattc_execute_write(
 esp_gattc_if_t gattc_if,
 uint16_t conn_id,
 bool is_execute)

Includes:

• #include <esp_gattc_api.h>

esp_ble_gattc_get_characteristic
Ask the BLE partner to return a characteristic.

esp_err_t esp_ble_gattc_get_characteristic(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* last_characteristic_id)

When this call is made a request is sent to the GATT server to return the "next"
characteristic. We should imagine that a GATT service has a set of 0 or more
characteristics that it maintains in some form of internal order. The numeric order is not
important, only that there is the concept of a "next" and "no more". When we call this
function with last_characteristic_id set to NULL then we are saying "get me the first
characteristic". If we subsequently call the function again passing in the id of the last
characteristic returned, we will get the next characteristic. When we reach the end of
the characteristics, the status code in the returned event will no longer be ok.

This call is a request only and the response will come asynchronously as an
ESP_GATTC_GET_CHAR_EVT event.

The conn_id is the identity of a connection to the server.

The srvc_id is the identity of a service on the GATT server. This can be obtained by
performing a search request against the server and the esp_gatt_srvc_id_t is returned
in an ESP_GATTC_SEARCH_RES_EVT callback.

The last_characteristic_id can be NULL to get the first characteristic. Since we are
iterating through characteristics, there must be a way to learn that there are no more.
This is determined because we get a status value of ESP_GATT_ERROR for the
ESP_GATTC_GET_CHAR_EVT event.

Includes:

• #include <esp_gattc_api.h>

Page 602

See also:

• ESP_GATTC_SEARCH_RES_EVT

• ESP_GATTC_GET_CHAR_EVT

• esp_ble_gattc_search_service

esp_ble_gattc_get_descriptor

esp_err_t esp_ble_gattc_get_descriptor(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* characteristic_id,
 esp_gatt_id_t* start_descriptor_id)

The start_descriptor_id can be NULL to get the first descriptor.

Includes:

• #include <esp_gattc_api.h>

esp_ble_gattc_get_included_service
esp_err_t esp_ble_gattc_get_included_service(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_srvc_id_t* start_incl_srvc_id)

Includes:

• #include <esp_gattc_api.h>

esp_ble_gattc_open
Open a connection to the GATT server.

esp_err_t esp_ble_gattc_open(
 esp_gatt_if_t gatt_if,

Page 603

 esp_bd_addr_t remote_bda,
 bool is_direct)

The gatt_if is the application client interface. The initial is ESP_GATT_IF_NONE. We
must store the gattc_if when we receive the first ESP_GATTC_REG_EVT.

The remote_bda is the bluetooth device address to which we wish to connect.

If is_direct then we are asking for a direct connection otherwise a background auto
connection.

Includes:

• #include <esp_gattc_api.h>

See also:

• esp_ble_gattc_close

• ESP_GATTC_REG_EVT

• ESP_GATTC_OPEN_EVT

• ESP_GATTC_CLOSE_EVT

esp_ble_gattc_prepare_write
esp_err_t esp_ble_gattc_prepare_write(
 esp_gattc_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* char_id,
 uint16_t offset,
 uint16_t value_len,
 uint8_t* value,
 esp_gatt_auth_req_t auth_req)

Includes:

• #include <esp_gattc_api.h>

esp_ble_gattc_read_char
Read the value of a characteristic.

esp_err_t esp_ble_gattc_read_char(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* characteristic_id,
 esp_gatt_auth_req_t auth_req)

The auth_req is one of:

• ESP_GATT_AUTH_REQ_NONE

• ESP_GATT_AUTH_REQ_NO_MITM

Page 604

• ESP_GATT_AUTH_REQ_MITM

• ESP_GATT_AUTH_REQ_SIGNED_NO_MITM

• ESP_GATT_AUTH_REQ_SIGNED_MITM

Includes:

• #include <esp_gattc_api.h>

See also:

• ESP_GATTC_READ_CHAR_EVT

esp_ble_gattc_read_char_descr
esp_err_t esp_ble_gattc_read_char_descr(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* char_id,
 esp_gatt_id_t* descr_id,
 esp_gatt_auth_req_t auth_req)

Includes:

• #include <esp_gattc_api.h>

esp_ble_gattc_register_callback
Register a callback to be invoked when a GATT event is received.

esp_err_t esp_ble_gattc_register_callback(esp_gattc_cb_t callback)

The esp_gattc_cb_t is a C function definition for a function with the signature:

void func(
 esp_gattc_cb_event_t event,
 esp_gatt_if_t gattc_if,
 esp_ble_gattc_cb_param_t* param)

Event types include:

• ESP_GATTC_ACL_EVT

• ESP_GATTC_ADV_DATA_EVT

• ESP_GATTC_ADV_VSC_EVT

• ESP_GATTC_BTH_SCAN_CFG_EVT

• ESP_GATTC_BTH_SCAN_DIS_EVT

• ESP_GATTC_BTH_SCAN_ENB_EVT

Page 605

• ESP_GATTC_BTH_SCAN_PARAM_EVT

• ESP_GATTC_BTH_SCAN_RD_EVT

• ESP_GATTC_BTH_SCAN_THR_EVT

• ESP_GATTC_CANCEL_OPEN_EVT

• ESP_GATTC_CFG_MTU_EVT

• ESP_GATTC_CLOSE_EVT – Invoked when a connection is closed.

• ESP_GATTC_CONGEST_EVT

• ESP_GATTC_ENC_CMPL_CB_EVT

• ESP_GATTC_EXEC_EVT

• ESP_GATTC_GET_CHAR_EVT – Response to getting a characteristic.

• ESP_GATTC_GET_DESCR_EVT – Response to getting a characteristic description.

• ESP_GATTC_GET_INCL_SRVC_EVT

• ESP_GATTC_MULT_ADV_DATA_EVT

• ESP_GATTC_MULT_ADV_DIS_EVT

• ESP_GATTC_MULT_ADV_ENB_EVT

• ESP_GATTC_MULT_ADV_UPD_EVT

• ESP_GATTC_NOTIFY_EVT

• ESP_GATTC_OPEN_EVT – Invoked when a connection is opened.

• ESP_GATTC_PREP_WRITE_EVT – Response to write a characteristic.

• ESP_GATTC_READ_CHAR_EVT – Response to read a characteristic.

• ESP_GATTC_REG_EVT – Invoked when a GATT client has been registered.

• ESP_GATTC_REG_FOR_NOTIFY_EVT

• ESP_GATTC_SCAN_FLT_CFG_EVT

• ESP_GATTC_SCAN_FLT_PARAM_EVT

• ESP_GATTC_SCAN_FLT_STATUS_EVT

• ESP_GATTC_SEARCH_CMPL_EVT – Invoked when we have seen all search results.

• ESP_GATTC_SEARCH_RES_EVT – Invoked when we have a search result.

• ESP_GATTC_SRVC_CHG_EVT

• ESP_GATTC_READ_DESCR_EVT

Page 606

• ESP_GATTC_UNREG_EVT

• ESP_GATTC_UNREG_FOR_NOTIFY_EVT

• ESP_GATTC_WRITE_CHAR_EVT

• ESP_GATTC_WRITE_DESCR_EVT

The param is a data structure that provides further details on the event. It appears to be
an instance of esp_ble_gattc_cb_param_t which is a union of:

• cfg_mtu – set for ESP_GATTC_CFG_MTU_EVT.

• close – set for ESP_GATTC_CLOSE_EVT.

• congest – ESP_GATTC_CONGEST_EVT.

• exec_cmpl – set for ESP_GATTC_EXEC_EVT.

• get_char – set for ESP_GATTC_GET_CHAR_EVT.

• get_descr – set for ESP_GATTC_GET_DESCR_EVT.

• get_incl_srvc – set for ESP_GATTC_GET_INCL_SRVC_EVT.

• notify – set for ESP_GATTC_NOTIFY_EVT.

• open – set for ESP_GATTC_OPEN_EVT.

• read – set for ESP_GATTC_READ_CHAR_EVT and ESP_GATTC_READ_DESCR_EVT.

• reg – set for ESP_GATTC_REG_EVT.

• reg_for_notify – set for ESP_GATTC_REG_FOR_NOTIFY_EVT.

• search_cmpl – set for ESP_GATTC_SEARCH_CMPL_EVT.

• search_res – set for ESP_GATTC_SEARCH_RES_EVT.

• srvc_chg – set for ESP_GATTC_SRVC_CHG_EVT.

• unreg_for_notify – set for ESP_GATTC_UNREG_FOR_NOTIFY_EVT.

• write – set for ESP_GATTC_WRITE_CHAR_EVT, ESP_GATTC_PREP_WRITE_EVT and
ESP_GATTC_WRITE_DESCR_EVT.

Includes:

• #include <esp_gattc_api.h>

Now let us look more deeply at each event type.

Page 607

ESP_GATTC_ACL_EVT

ESP_GATTC_ADV_DATA_EVT

ESP_GATTC_ADV_VSC_EVT

ESP_GATTC_BTH_SCAN_CFG_EVT

ESP_GATTC_BTH_SCAN_DIS_EVT

ESP_GATTC_BTH_SCAN_ENB_EVT

ESP_GATTC_BTH_SCAN_PARAM_EVT

ESP_GATTC_BTH_SCAN_RD_EVT

ESP_GATTC_BTH_SCAN_THR_EVT

ESP_GATTC_CANCEL_OPEN_EVT

ESP_GATTC_CFG_MTU_EVT
struct gattc_cfg_mtu_evt_param

cfg_mtu

• esp_gatt_status_t status

• uint16_t conn_id

• uint16_t mtu

ESP_GATTC_CLOSE_EVT
Published when a GATT client connection is closed. This will commonly be the result of
a call to esp_ble_gattc_close(). The close field of esp_ble_gattc_cb_param_t is
populated. It contains:

• esp_gatt_status_t status – Operation status.

• uint16_t conn_id – Connection id.

• esp_gatt_if_t gatt_if – Gatt interface id, different application on gatt client
different gatt_if.

• esp_bd_addr_t remote_bda – Remote bluetooth device address.

• esp_gatt_conn_reason_t reason – The reason of gatt connection close. One
of:

◦ ESP_GATT_CONN_UNKNOWN – Gatt connection unknown.

Page 608

◦ ESP_GATT_CONN_L2C_FAILURE – General L2cap failure.

◦ ESP_GATT_CONN_TIMEOUT – Connection timeout.

◦ ESP_GATT_CONN_TERMINATE_PEER_USER – Connection terminate by peer user.

◦ ESP_GATT_CONN_TERMINATE_LOCAL_HOST – Connection terminated by local
host.

◦ ESP_GATT_CONN_FAIL_ESTABLISH – Connection fail to establish.

◦ ESP_GATT_CONN_LMP_TIMEOUT – Connection fail for LMP response tout.

◦ ESP_GATT_CONN_CONN_CANCEL – L2CAP connection canceled.

◦ ESP_GATT_CONN_NONE – No connection to cancel.

See also:

• esp_ble_gattc_close

ESP_GATTC_CONGEST_EVT
struct gattc_congest_evt_param

congest

• uint16_t conn_id

• bool congested

ESP_GATTC_CONNECT_EVT
struct gattc_connect_evt_param

connect

• esp_gatt_status_t status

• uint16_t conn_id

• esp_bd_addr_t remote_bda

ESP_GATTC_DISCONNECT_EVT
struct gattc_disconnect_evt_param

disconnect

• esp_gatt_status_t status

• uint16_t conn_id

Page 609

• esp_bd_addr_t remote_bda

ESP_GATTC_ENC_CMPL_CB_EVT

ESP_GATTC_EXEC_EVT
struct gattc_exec_cmpl_evt_param

exec_cmpl

• esp_gatt_status_t status

• uint16_t conn_id

ESP_GATTC_GET_CHAR_EVT
Published when a GATT call to esp_ble_gattc_get_characteristic() has been made.
The get_char field of esp_ble_gattc_cb_param_t is populated. It contains:

• esp_gatt_status_t status – Operation status. On success, ESP_GATT_OK is
returned.

• uint16_t conn_id – Connection id.

• esp_gatt_srvc_id_t srvc_id – Service id, includes service uuid and other
information.

• esp_gatt_id_t char_id – Characteristic id, include characteristic uuid and
other information. If the status field indicates an error, this field should not be
examined.

◦ esp_bt_uuid_t uuid

◦ uint8_t inst_id

• esp_gatt_char_prop_t char_prop – Characteristic properties. This is the set of
flags that identify what can be done against the characteristics. If the status
field indicates an error, this field should not be examined. The bit flags are:

◦ ESP_GATT_CHAR_PROP_BIT_AUTH

◦ ESP_GATT_CHAR_PROP_BIT_BROADCAST

◦ ESP_GATT_CHAR_PROP_BIT_EXT_PROP

◦ ESP_GATT_CHAR_PROP_BIT_INDICATE

◦ ESP_GATT_CHAR_PROP_BIT_NOTIFY

◦ ESP_GATT_CHAR_PROP_BIT_READ

◦ ESP_GATT_CHAR_PROP_BIT_WRITE

Page 610

◦ ESP_GATT_CHAR_PROP_BIT_WRITE_NR

See also:

• esp_ble_gattc_get_characteristic

ESP_GATTC_GET_DESCR_EVT
struct gattc_get_descr_evt_param

get_descr

• esp_gatt_status_t status

• uint16_t conn_id

• esp_gatt_srvc_id_t srvc_id

• esp_gatt_id_t char_id

• esp_gatt_id_t descr_id

ESP_GATTC_GET_INCL_SRVC_EVT
struct gattc_get_incl_srvc_evt_param

get_incl_srvc

• esp_gatt_status_t status

• uint16_t conn_id

• esp_gatt_srvc_id_t srvc_id

• esp_gatt_srvc_id_t incl_srvc_id

ESP_GATTC_MULT_ADV_DATA_EVT

ESP_GATTC_MULT_ADV_DIS_EVT

ESP_GATTC_MULT_ADV_ENB_EVT

ESP_GATTC_MULT_ADV_UPD_EVT

ESP_GATTC_NOTIFY_EVT
struct gattc_notify_evt_param

notify

Page 611

• uint16_t conn_id

• esp_bd_addr_t remote_bda

• esp_gatt_srvc_id_t srvc_id

• esp_gatt_id_t char_id

• esp_gatt_id_t descr_id

• uint16_t value_len

• uint8_t *value

• bool is_notify

ESP_GATTC_OPEN_EVT
Published when a GATT client open call has been made. This is normally the result of
calling esp_ble_gattc_open(). The open field of esp_ble_gattc_cb_param_t is
populated. It contains:

• esp_gatt_status_t status – Operation status. The status should be checked to
see what the outcome of the request may be. A good return is ESP_GATT_OK.

• uint16_t conn_id – Connection id.

• esp_gatt_if_t gatt_if – GATT interface id, different application on GATT client
different gatt_if

• esp_bd_addr_t remote_bda – Remote bluetooth device address.

• uint16_t mtu – MTU size.

See also:

• esp_ble_gattc_open

ESP_GATTC_PREP_WRITE_EVT

ESP_GATTC_READ_CHAR_EVT
Published when a GATT characteristic value has been received. The read field of
esp_ble_gattc_cb_param_t is populated. It contains:

• esp_gatt_status_t status – Operation status.

• uint16_t conn_id – Connection id.

• esp_gatt_srvc_id_t srvc_id – Service id, include service uuid and other
information.

Page 612

• esp_gatt_id_t char_id – Characteristic id, include characteristic uuid and
other information.

• esp_gatt_id_t descr_id – Descriptor id, include descriptor uuid and other
information.

• uint8_t* value – Characteristic value.

• uint16_t value_type – Characteristic value type. By experimentation we seem
to find:

◦ 0 – string

• uint16_t value_len – Characteristic value length.

See also:

• esp_ble_gattc_read_char

ESP_GATTC_READ_DESC_EVT

ESP_GATTC_REG_EVT
Published when a GATT client has been registered. This will result from a previous call
to esp_ble_gattc_app_register(). The reg field of esp_ble_gattc_cb_param_t is
populated. It contains:

• esp_gatt_status_t status – Operation status. A GATT status code.

• uint16_t app_id – Application id which input in register API.

See also:

• esp_ble_gattc_app_register

ESP_GATTC_REG_FOR_NOTIFY_EVT
struct gattc_reg_for_notify_evt_param

reg_for_notify

• esp_gatt_status_t status

• esp_gatt_srvc_id_t srvc_id

• esp_gatt_id_t char_id;

Page 613

ESP_GATTC_SEARCH_CMPL_EVT
Published when all search results has been received following a call to
esp_ble_gattc_search_service(). The search_cmpl field of esp_ble_gattc_cb_param_t
is populated. It contains:

• esp_gatt_status_t status – Operation status.

• uint16_t conn_id – Connection id.

See also:

• esp_ble_gattc_search_service

ESP_GATTC_SEARCH_RES_EVT
Published a search result has been received following a call to
esp_ble_gattc_search_service(). The search_res field of esp_ble_gattc_cb_param_t
is populated. This is an instance of struct gattc_search_res_evt_param. It contains:

• uint16_t conn_id – Connection id.

• esp_gatt_srvc_id_t srvc_id – Service id, includes service uuid and other
information. Specifically:

◦ esp_gatt_id_t id – The details of the GATT id. This contains:

▪ esp_bt_uuid_t uuid – The UUID of the service.

▪ uint8_t inst_id – The instance of the service.

◦ bool is_primary – Is this a primary service.

See also:

• esp_ble_gattc_search_service

• esp_ble_gattc_get_characteristic

• ESP_GATTC_SEARCH_CMPL_EVT

ESP_GATTC_SCAN_FLT_CFG_EVT

ESP_GATTC_SCAN_FLT_PARAM_EVT

ESP_GATTC_SCAN_FLT_STATUS_EVT

ESP_GATTC_SRVC_CHG_EVT
struct gattc_srvc_chg_evt_param

• srvc_chg

• esp_bd_addr_t remote_bda

Page 614

ESP_GATTC_UNREG_EVT

ESP_GATTC_UNREG_FOR_NOTIFY_EVT
struct gattc_unreg_for_notify_evt_param

unreg_for_notify

• esp_gatt_status_t status

• esp_gatt_srvc_id_t srvc_id

• esp_gatt_id_t char_id;

ESP_GATTC_WRITE_CHAR_EVT
struct gattc_write_evt_param

write

• esp_gatt_status_t status

• uint16_t conn_id

• esp_gatt_srvc_id_t srvc_id

• esp_gatt_id_t char_id

• esp_gatt_id_t descr_id

esp_ble_gattc_register_for_notify
Called to register for notification.

esp_err_t esp_ble_gattc_register_for_notify(
 esp_gatt_if_t gatt_if,
 esp_bd_addr_t server_bda,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* char_id)

• esp_gatt_if_t gatt_if

• esp_bd_addr_t server_bda

• esp_gatt_srvc_id_t *srvc_id

• esp_gatt_id_t *char_id

Includes:

• #include <esp_gattc_api.h>

Page 615

esp_ble_gattc_unregister_for_notify
esp_err_t esp_ble_gattc_unregister_for_notify (
 esp_gatt_if_t gatt_if,
 esp_bd_addr_t server_bda,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* char_id);

Includes:

• #include <esp_gattc_api.h>

esp_ble_gattc_search_service
Ask the BLE device for the set of services it provides. The services will be returned
asynchronously via GATT events.

esp_err_t esp_ble_gattc_search_service(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_bt_uuid_t* filter_uuid)

The gattc_if is returned to us in the open event callback.

The conn_id is the identity of a connection that was opened by a call to
esp_ble_gattc_open() and obtained from a GATT event callback.

The filter_uuid allows us to filter UUIDs or else we can specify NULL.

After calling this function we might expect to see a sequence of
ESP_GATTC_SEARCH_RES_EVT events published finalized with an
ESP_GATTC_SEARCH_CMPL_EVT.

Includes:

• #include <esp_gattc_api.h>

See also:

• ESP_GATTC_SEARCH_CMPL_EVT

• ESP_GATTC_SEARCH_RES_EVT

esp_ble_gattc_write_char
Set the value of a remote device's characteristic.

esp_err_t esp_ble_gattc_write_char(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* characteristic_id,
 uint16_t value_len,

Page 616

 uint8_t* value,
 esp_gatt_write_type_t write_type,
 esp_gatt_auth_req_t auth_req)

• esp_gatt_if_t gattc_if

• uint16_t conn_id

• esp_gatt_srvc_id_id* srvc_id

• esp_gatt_id_t* characteristic_id

• uint16_t value_len – The length, in bytes, of the value.

• uint8_t* value – A pointer to the start of the data for the value.

• esp_gatt_write_type_t write_type

◦ ESP_GATT_WRITE_TYPE_NO_RSP

◦ ESP_GATT_WRITE_TYPE_RSP

• esp_gatt_auth_req_t auth_req

◦ ESP_GATT_AUTH_REQ_NONE

◦ ESP_GATT_AUTH_REQ_NO_MITM

◦ ESP_GATT_AUTH_REQ_MITM

◦ ESP_GATT_AUTH_REQ_SIGNED_NO_MITM

◦ ESP_GATT_AUTH_REQ_SIGNED_MITM

Includes:

• #include <esp_gattc_api.h>

See also:

• ESP_GATTC_WRITE_CHAR_EVT

esp_ble_gattc_write_char_descr
esp_err_t esp_ble_gattc_write_char_descr(
 esp_gatt_if_t gattc_if,
 uint16_t conn_id,
 esp_gatt_srvc_id_t* srvc_id,
 esp_gatt_id_t* char_id,
 esp_gatt_id_t* descr_id,
 uint16_t value_len,
 uint8_t* value,
 esp_gatt_write_type_t write_type,
 esp_gatt_auth_req_t auth_req)

Page 617

Includes:

• #include <esp_gattc_api.h>

esp_ble_gatts_add_char
Add a characteristic to the service.

esp_err_t esp_ble_gatts_add_char(
 uint16_t serviceHandle,
 esp_bt_uuid_t* characteristicUuid,
 esp_gatt_perm_t permissions,
 esp_gatt_char_prop_t properties,
 esp_attr_value_t* characteristicValue,
 esp_attr_control_t* control)

Within BLE we have the notion of a service and a service can have zero or more
characteristics associated with it. Invoking this function declares a new characteristics
associated with the service. When we think about a characteristics, we should also
understand that it has a value associated with it. This value can either be managed by
our application logic explicitly or it can be managed by the ESP-IDF environment. The
choice is governed by the control property. If we set that to be ESP_GATT_AUTO_RSP then
the ESP environment is managing our value on our behalf and we must supply an initial
value through the characteristicValue parameter. However, if we set the control
parameter to be ESP_GATT_RSP_BY_APP then we are declaring that there will be events
arriving to set/get our characteristic value.

• serviceHandle – Attribute handle for the service to which this characteristic is to
be added.

• characteristicUuid – UUID for the characteristic.

• permissions – Attribute permissions. These can be "or'd" together

◦ ESP_GATT_PERM_READ

◦ ESP_GATT_PERM_READ_ENCRYPTED

◦ ESP_GATT_PERM_READ_ENC_MITM

◦ ESP_GATT_PERM_WRITE

◦ ESP_GATT_PERM_WRITE_ENCRYPTED

◦ ESP_GATT_PERM_WRITE_ENC_MITM

◦ ESP_GATT_PERM_WRITE_SIGNED

◦ ESP_GATT_PERM_WRITE_SIGNED_MITM

• properties – Characteristic properties.

Page 618

◦ ESP_GATT_CHAR_PROP_BIT_BROADCAST

◦ ESP_GATT_CHAR_PROP_BIT_READ

◦ ESP_GATT_CHAR_PROP_BIT_WRITE_NR

◦ ESP_GATT_CHAR_PROP_BIT_WRITE

◦ ESP_GATT_CHAR_PROP_BIT_NOTIFY

◦ ESP_GATT_CHAR_PROP_BIT_INDICATE

◦ ESP_GATT_CHAR_PROP_BIT_AUTH

◦ ESP_GATT_CHAR_PROP_BIT_EXT_PROP

• characteristicValue – Characteristic value.

◦ uint16_t attr_max_len

◦ uint16_t attr_len

◦ uint8_t *attr_value

• control – Control flags.

◦ auto_rsp – How to automatically respond.

▪ ESP_GATT_RSP_BY_APP

▪ ESP_GATT_AUTO_RSP

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_ADD_CHAR_EVT

esp_ble_gatts_add_char_descr
esp_err_t esp_ble_gatts_add_char_descr(
 uint16_t serviceHandle,
 esp_bt_uuid_t* descriptorUuid,
 esp_gatt_perm_t permissions,
 esp_attr_value_t* characteristicDescriptorValue,
 esp_attr_control_t* control)

• serviceHandle – The handle of the service to which to add this characteristic
descriptor.

• descriptorUuid – The UUID for the new descriptor.

• permissions – Attribute permissions. These can be "or'd" together

Page 619

◦ ESP_GATT_PERM_READ

◦ ESP_GATT_PERM_READ_ENCRYPTED

◦ ESP_GATT_PERM_READ_ENC_MITM

◦ ESP_GATT_PERM_WRITE

◦ ESP_GATT_PERM_WRITE_ENCRYPTED

◦ ESP_GATT_PERM_WRITE_ENC_MITM

◦ ESP_GATT_PERM_WRITE_SIGNED

◦ ESP_GATT_PERM_WRITE_SIGNED_MITM

• characteristicDescriptorValue – Characteristic descriptor value:

◦ uint16_t attr_max_len

◦ uint16_t attr_len

◦ uint8_t *attr_value

• control – Control flags.

◦ auto_rsp – How to automatically respond.

▪ ESP_GATT_RSP_BY_APP

▪ ESP_GATT_AUTO_RSP

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_ADD_CHAR_DESCR_EVT

esp_ble_gatts_add_included_service
esp_err_t esp_ble_gatts_add_included_service(
 uint16_t service_handle,
 uint16_t included_service_handle)

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_ADD_INCL_SRVC_EVT

esp_ble_gatts_app_register
esp_err_t esp_ble_gatts_app_register(uint16_t app_id)

Page 620

The app_id is the identity of an application. This can be any numeric smaller than
0x7fff.

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_REG_EVT

esp_ble_gatts_app_unregister
esp_err_t esp_ble_gatts_app_unregister(esp_gatt_if_t gatts_if)

Includes:

• #include <esp_gatts_api.h>

esp_ble_gatts_close
Close a connection that was opened by a client.

esp_err_t esp_ble_gatts_close(
 esp_gatt_if_t gatts_if,
 uint16_t conn_id)

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_CLOSE_EVT

esp_ble_gatts_create_attribute_tab
Have the attributes automatically maintained for us.

esp_err_t esp_ble_gatts_create_attr_tab(
 const esp_gatts_attr_db_t *gatts_attr_db,
 esp_gatt_if_t gatts_if,
 uint8_t max_nb_attr,
 uint8_t srvc_inst_id)

• gatts_attr_db

• gatts_if

• max_nb_attr

Page 621

• srvc_inst_id

Don't mix this technique with esp_gatts_create_service/esp_ble_gatts_add_char.

Includes:

• #include <esp_gatts_api.h>

See also:

• esp_ble_gatts_set_attr_value

• esp_ble_gatts_get_attr_value

esp_ble_gatts_create_service
Create a service definition.

esp_err_t esp_ble_gatts_create_service(
 esp_gatt_if_t gatts_if,
 esp_gatt_srvc_id_t* service_id,
 uint16_t num_handle)

The service_id is a structure containing the identity of the service.

• esp_gatt_id_t id

• bool is_primary

The num_handle is the number of the handle requested for this service.

A call to this function will result in an eventual ESP_GATTS_CREATE_EVT event being
raised. It is that event which will contain the service handle used in subsequent calls.

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_CREATE_EVT

• esp_gatt_srvc_id_t

esp_ble_gatts_delete_service
esp_err_t esp_ble_gatts_delete_service(uint16_t service_handle);

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_DELETE_EVT

Page 622

esp_ble_gatts_get_attr_value
esp_err_t esp_ble_gatts_get_attr_value(
 uint16_t attr_handle,
 uint16_t *length,
 const uint8_t **value)

Includes:

• #include <esp_gatts_api.h>

esp_ble_gatts_open
esp_err_t esp_ble_gatts_open(
 esp_gatt_if_t gatts_if,
 esp_bd_addr_t remote_bda,
 bool is_direct)

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_OPEN_EVT

esp_ble_gatts_register_callback
Register GATT server callbacks.

esp_err_t esp_ble_gatts_register_callback(esp_gatts_cb_t callback)

The callback is an instance of a callback function that has the following signature:

void callback(
 esp_gatts_cb_event_t event,
 esp_gatt_if_t gatts_if,
 esp_ble_gatts_cb_param_t *param
)

The esp_ble_gatts_cb_param_t is a union of:

• struct gatts_add_attr_tab_evt_param add_attr_tab

• struct gatts_add_char_evt_param add_char

• struct gatts_add_char_descr_evt_param add_char_descr

• struct gatts_conf_evt_param conf

• struct gatts_connect_evt_param connect

• struct gatts_create_evt_param create

• struct gatts_delete_evt_param del

Page 623

• struct gatts_disconnect_evt_param disconnect

• struct gatts_exec_write_evt_param exec_write

• struct gatts_mtu_evt_param mtu

• struct gatts_read_evt_param read

• struct gatts_reg_evt_param reg

• struct gatts_rsp_evt_param rsp

• struct gatts_set_attr_val_evt_param set_attr_val

• struct gatts_start_evt_param start

• struct gatts_stop_evt_param stop

• struct gatts_write_evt_param write

The event is one of:

ESP_GATTS_ADD_CHAR_DESCR_EVT
The passed in parameter is an instance of struct gatts_add_char_descr_evt_param
which is identified by the field called add_char_descr. The structure contains:

• esp_gatt_status_t status – Status of the descriptor creation.

• uint16_t attr_handle – Attribute handle of the descriptor.

• uint16_t service_handle – Handle of the service.

• esp_bt_uuid_t char_uuid – UUID of descriptor.

See also:

• esp_ble_gatts_add_char_descr

ESP_GATTS_ADD_CHAR_EVT
When a GATT client connects, we receive this event. The passed in parameter is an
instance of struct gatts_add_char_evt_param which is identified by the field called
add_char. The structure contains:

• esp_gatt_status_t status – Status of the creation of the characteristic.

• uint16_t attr_handle – Attribute handle for the characteristic.

• uint16_t service_handle – Service handle.

• esp_bt_uuid_t char_uuid – UUID of the characteristic.

See also:

Page 624

• esp_ble_gatts_add_char

• esp_bt_uuid_t

ESP_GATTS_ADD_INCL_SRVC_EVT
The passed in parameter is an instance of struct gatts_add_incl_srvc_evt_param
identified by the field called add_incl_srvc. The structure contains:

• esp_gatt_status_t status

• uint16_t attr_handle

• uint16_t service_handle

ESP_GATTS_CANCEL_OPEN_EVT
The passed in parameter is an instance of struct gatts_cancel_open_evt_param
identified by the field called cancel_open. The structure contains:

• esp_gatt_status_t status

ESP_GATTS_CLOSE_EVT
The passed in parameter is an instance of struct gatts_close_evt_param which is
identified by the field called close. The structure contains:

• esp_gatt_status_t status

• uint16_t conn_id

ESP_GATTS_CONF_EVT
A confirmation event of a request that we issued.

The passed in parameter is an instance of struct gatts_conf_evt_param which is
identified by the field called conf. The structure contains:

• esp_gatt_status_t status – The status code.

• uint16_t conn_id – The connection used.

See also:

• esp_ble_gatts_send_indicate

Page 625

ESP_GATTS_CONGEST_EVT
The passed in parameter is an instance of struct gatts_congest_evt_param which is
identified by the field called congest. The structure contains:

• uint16_t conn_id

• bool congested

ESP_GATTS_CONNECT_EVT
When a GATT client connects, we receive this event. The passed in parameter is an
instance of struct gatts_connect_evt_param which is identified by the field called
connect. The structure contains:

• uint16_t conn_id – The connection id.

• esp_bd_addr_t remote_bda – The address of the peer device.

• bool is_connected – Are we connected?

ESP_GATTS_CREAT_ATTR_TAB_EVT
The passed in parameter is an instance of struct gatts_add_attr_tab_evt_param
which is identified by the field called add_attr_tab. The structure contains:

• esp_gatt_status_t status

• esp_bt_uuid_t svc_uuid

• uint16_t num_handle

• uint16_t *handles

ESP_GATTS_CREATE_EVT
This event is found when a new service has been created. As such, it is commonly
found after a call to esp_ble_gatts_create_service(). The passed in parameter is an
instance of struct gatts_create_evt_param which is identified by the field called
create. The structure contains:

• esp_gatt_status_t status – The status of the creation request.

• uint16_t service_handle – The handle allocated by the environment to this
service.

• esp_gatt_srvc_id_t service_id – The identity of the service.

See also:

Page 626

• esp_ble_gatts_create_service

• esp_gatt_srvc_id_t

ESP_GATTS_DELETE_EVT
The passed in parameter is an instance of struct gatts_delete_evt_param which is
identified by the field called del. The structure contains:

• esp_gatt_status_t status

• uint16_t service_handle

ESP_GATTS_DISCONNECT_EVT
When a GATT client connects, we receive this event. The passed in parameter is an
instance of struct gatts_disconnect_evt_param which is identified by the field called
disconnect. The structure contains:

• uint16_t conn_id – The connection id that just disconnected.

• esp_bd_addr_t remote_bda – The device address of the device which just
disconnected.

• bool is_connected – Are we connected? Should be false.

If we are a GATT server, following a disconnect, we must start advertising again in order
to be able to receive further incoming connections.

See also:

• esp_ble_gap_config_adv_data

ESP_GATTS_EXEC_WRITE_EVT
The passed in parameter is an instance of struct gatts_exec_write_evt_param which
is identified by the field called exec_write. The structure contains:

• uint16_t conn_id

• uint32_t trans_id

• esp_bd_addr_t bda

• uint8_t exec_write_flag

◦ ESP_GATT_PREP_WRITE_CANCEL

◦ ESP_GATT_PREP_WRITE_EXEC

Page 627

Upon receipt of one of these events, we should acknowledge it with a call to
esp_ble_gatts_send_response().

See also:

• ESP_GATTS_WRITE_EVT

• esp_ble_gatts_send_response

ESP_GATTS_LISTEN_EVT

ESP_GATTS_MTU_EVT
Called when set MTU complete. The passed in parameter is an instance of struct
gatts_mtu_evt_param which is identified by the field called mtu. The structure contains:

• uint16_t conn_id – Connection id.

• uint16_t mtu – MTU size.

ESP_GATTS_OPEN_EVT
The passed in parameter is an instance of struct gatts_open_evt_param which is
identified by the field called open. The structure contains:

• esp_gatt_status_t status

ESP_GATTS_READ_EVT
When a GATT client requests to read an attribute, we receive this event. The passed in
parameter is an instance of struct gatts_read_evt_param which is identified by the
field called read. The structure contains:

• uint16_t conn_id – Connection id.

• uint32_t trans_id – Transfer id.

• esp_bd_addr_t bda – Address of partner requesting read.

• uint16_t handle – Attribute handle.

• uint16_t offset – offset within value.

• bool is_long – value is long or not.

• bool need_rsp – Read operations needs a response.

See also:

• esp_ble_gatts_send_response

Page 628

ESP_GATTS_REG_EVT
Invoked when ??.

The passed in parameter is an instance of struct gatts_reg_evt_param which is
identified by the field called reg. The structure contains:

• esp_gatt_status_t status

• uint16_t app_id

ESP_GATTS_RESPONSE_EVT
The passed in parameter is an instance of struct gatts_rsp_evt_param which is
identified by the field called rsp. The structure contains:

• esp_gatt_status_t status

• uint16_t handle

ESP_GATTS_SET_ATTR_VAL_EVT
The passed in parameter is an instance of struct gatts_set_attr_val_evt_param
which is identified by the field called set_attr_val. The structure contains:

• uint16_t srvc_handle

• uint16_t attr_handle

• esp_gatt_status_t status

ESP_GATTS_START_EVT
When a GATT service started, we receive this event. As such, this is commonly the
response from a call to esp_ble_gatts_start_service(). The passed in parameter is an
instance of struct gatts_start_evt_param which is identified by the field called start.
The structure contains:

• esp_gatt_status_t status

• uint16_t service_handle

See also:

• esp_ble_gatts_start_service

Page 629

ESP_GATTS_STOP_EVT
The passed in parameter is an instance of struct gatts_stop_evt_param which is
identified by the field called stop. The structure contains:

• esp_gatt_status_t status

• uint16_t service_handle

ESP_GATTS_UNREG_EVT

ESP_GATTS_WRITE_EVT
The passed in parameter is an instance of struct gatts_write_evt_param which is
identified by the field called write. The structure contains:

• uint16_t conn_id – The connection id.

• uint16_t trans_id – The transfer id.

• esp_bd_addr_t bda – The address of the partner.

• uint16_t handle – The attribute handle.

• uint16_t offset – The offset of the currently received within the whole value.

• bool need_rsp – Do we need a response?

• bool is_prep – Is this a write prepare? If set, then this is to be considered part
of the received value and not the whole value. A subsequent
ESP_GATTS_EXEC_WRITE will mark the total.

• uint16_t len – The length of the incoming value part.

• uint8_t* value – The data for this value part.

If a write event arrives and the need_rsp is true, we must call
esp_ble_gatts_send_response() to respond. The response rsp structure should
contain the handle that we are responding to.

Because the packet size of a BLE message is not very large, and is usually much
smaller than the maximum size of a characteristic value, a request to write a new value
of a characteristic must arrive as a sequence of packets. This is indicated by the
is_prep flag being set. The full name for this flag might be considered to be "is part of a
prepare to write". The piece parts should arrive and be accumulated without actually
setting the value of the characteristic. Once all the parts have arrived and are
assembled, an event of type ESP_GATTS_EXEC_WRITE will arrive indicating that the
accumulated new value is complete and can be written as the value of a characteristic
as a complete whole.

The high level algorithm for handling a write may thus be:

Page 630

if (is_prep == TRUE) {
 append this current data to the accumulating data starting at offset in the
 accumulating data. The new total data will be original accumulating data plus
 an additional "len" bytes of new data.
}

We should also be aware of trans_id. This is an incrementing transfer id. Each part will
have a value one higher than the previous value. If we receive a part that is not
expected, this can indicate an error to which we can respond appropriately.

The need_rsp flag indicates whether or not we should send a response back to the
client. If yes, then we call esp_ble_gatts_send_response(). The response payload will
include the passed in data offset, length and a copy of the received data.

Includes:

• #include <esp_gatts_api.h>

See also:

• esp_ble_gatts_send_response

• ESP_GATTS_EXEC_WRITE_EVT

esp_ble_gatts_send_indicate
Send an indication or notification to the GATT client.

esp_err_t esp_ble_gatts_send_indicate(
 esp_gatt_if_t gatts_if,
 uint16_t conn_id,
 uint16_t attr_handle,
 uint16_t value_len,
 uint8_t* value,
 bool need_confirm);

Note that the BLE specification constrains the maximum data size to be 20 bytes or
less. If we try and send more, the data is truncated to 20 bytes. If more data needs to
be sent, consider using the indication as an indication of new/more data being available
and have the partner perform a read request to get the full span of data.

• esp_gatt_if_t gatts_if – The interface on which to send the indication.

• uint16_t conn_id – The connection on which to send the indication.

• uint16_t attr_handle – The handle of the characteristic we are indicating.

• uint16_t value_len – The length of the data value. The maximum data size is
20 bytes.

• uint8_t* value – The data value.

Page 631

• bool need_confirm – Whether or not we need a confirmation from the peer. If we
ask for a confirmation the request is known as indicate while if we don't require a
confirmation, the request is known as a notify.

The need_confirm requires a little explanation. If set to false, then we will receive a
ESP_GATTS_CONF_EVT event … but this will be from the local BLE stack indicating whether
or not the request was transmitted.

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_CONF_EVT

esp_ble_gatts_send_response
Send a response back for a request.

esp_err_t esp_ble_gatts_send_response(
 esp_gatt_if_t gatts_if,
 uint16_t conn_id,
 uint32_t trans_id,
 esp_gatt_status_t status,
 esp_gatt_rsp_t* rsp)

• gatts_if – The server access interface.

• conn_id – The connection id.

• trans_id – The transfer id.

• status – The status. ESP_GATT_OK for normal.

• rsp – The response to send back to the partner. A union of:

◦ esp_gatt_value_t attr_value

▪ uint16_t value[ESP_GATT_MAX_ATTR_LEN] // 600 bytes

▪ uint16_t handle

▪ uint16_t offset

▪ uint16_t len

▪ uint16_t auth_req – Authorization

• ESP_GATT_AUTH_REQ_NONE

• ESP_GATT_AUTH_REQ_NO_MITM

• ESP_GATT_AUTH_REQ_MITM

Page 632

• ESP_GATT_AUTH_REQ_SIGNED_NO_MITM

• ESP_GATT_AUTH_REQ_SIGNED_MITM

◦ uint16_t handle

The responses sent back from the server are indications of outcome for the following
events:

• ESP_GATTS_EXEC_WRITE_EVT

• ESP_GATTS_READ_EVT

• ESP_GATTS_WRITE_EVT

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_READ_EVT

esp_ble_gatts_set_attr_value
esp_err_t esp_ble_gatts_set_attr_value(
 uint16_t attr_handle,
 uint16_t length,
 const uint8_t *value)

Includes:

• #include <esp_gatts_api.h>

esp_ble_gatts_start_service
Start the service identified by the service handle.

esp_err_t esp_ble_gatts_start_service(uint16_t serviceHandle)

The serviceHandle is the local handle for the service. This is the value returned when
we created the service and received the corresponding ESP_GATTS_CREATE_EVT.

A call to this function will result in an eventual ESP_GATTS_START_EVT event being raised.

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_START_EVT

Page 633

esp_ble_gatts_stop_service
esp_err_t esp_ble_gatts_stop_service(uint16_t service_handle)

Includes:

• #include <esp_gatts_api.h>

See also:

• ESP_GATTS_STOP_EVT

esp_ble_resolve_adv_data
Resolve Advertized data.

uint8_t *esp_ble_resolve_adv_data(
 uint8_t *adv_data,
 uint8_t type,
 uint8_t *length)

When a GAP protocol callback occurs, one of the event types that can cause this is the
ESP_GAP_BLE_SCAN_RESULT_EVT which indicates that we have received a scan result. If
found, we can further ask what kind of a result and we can get an
ESP_GAP_SEARCH_INQ_RES_EVT. If that is the case, then our ADV data is good and we
can "decode it".

The adv_data is a pointer to the advertized data.

The type specifies the decode value. In the spec this is also known as the "Advertising
Data Type"

• ESP_BLE_AD_TYPE_FLAG (0x01) – The advert contains flags that are defined as
following:

◦ Bit 0 – LE Limited Discoverable Mode

◦ Bit 1 – LE General Discoverable Mode

◦ Bit 2 – BR/EDR is NOT supported.

◦ Bit 3 – Indicates whether LE and BR/EDR Controller operates simultaneously

◦ Bit 4 – Indicates whether LE and BR/EDR Host operates simultaneously

◦ Bits 5-7 – Reserved.

• ESP_BLE_AD_TYPE_16SRV_PART (0x02) – Incomplete list of 16bit service class
UUIDs.

• ESP_BLE_AD_TYPE_16SRV_CMPL (0x03)

• ESP_BLE_AD_TYPE_32SRV_PART (0x04)

• ESP_BLE_AD_TYPE_32SRV_CMPL (0x05

Page 634

• ESP_BLE_AD_TYPE_128SRV_PART (0x06) – Incomplete list of 16bit service class
UUIDs.

• ESP_BLE_AD_TYPE_128SRV_CMPL (x07)

• ESP_BLE_AD_TYPE_NAME_SHORT (0x08) – Shortened local name.

• ESP_BLE_AD_TYPE_NAME_CMPL (0x09) – Complete local name.

• ESP_BLE_AD_TYPE_TX_PWR (0x0A)

• ESP_BLE_AD_TYPE_DEV_CLASS (0x0D)

• ESP_BLE_AD_TYPE_SM_TK (0x10)

• ESP_BLE_AD_TYPE_SM_OOB_FLAG (0x11)

• ESP_BLE_AD_TYPE_INT_RANGE (0x12)

• ESP_BLE_AD_TYPE_SOL_SRV_UUID (0x14)

• ESP_BLE_AD_TYPE_128SOL_SRV_UUID (0x15)

• ESP_BLE_AD_TYPE_SERVICE_DATA (0x16)

• ESP_BLE_AD_TYPE_PUBLIC_TARGET (0x17)

• ESP_BLE_AD_TYPE_RANDOM_TARGET (0x18)

• ESP_BLE_AD_TYPE_APPEARANCE (0x19) – It is likely this conforms to the
assigned numbers found here
https://www.bluetooth.com/specifications/gatt/viewer?
attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml and

• ESP_BLE_AD_TYPE_ADV_INT (0x1A)

• ESP_BLE_AD_TYPE_32SOL_SRV_UUID (0x1B)

• ESP_BLE_AD_TYPE_32SERVICE_DATA (0x1C)

• ESP_BLE_AD_TYPE_128SERVICE_DATA (0x1D)

• ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE (0xFF) – Custom payload.

The length is the length of the advertized data.

Includes:

• #include <esp_gap_ble_api.h>

See also:

• GAP Advertizing data

• esp_ble_gap_register_callback

Page 635

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.gap.appearance.xml

esp_bluedroid_deinit
Disable and release all resources for bluetooth.

esp_err_t esp_bluedroid_deinit(void);

Includes:

• #include <esp_bt_main.h>

esp_bluedroid_disable
Disable bluetooth.

esp_err_t esp_bluedroid_disable(void)

Includes:

• #include <esp_bt_main.h>

esp_bluedroid_enable
Enable bluetooth.

esp_err_t esp_bluedroid_enable(void)

Includes:

• #include <esp_bt_main.h>

esp_bluedroid_init
Initialize and enable bluetooth resources.

esp_err_t esp_bluedroid_init(void)

Includes:

• #include <esp_bt_main.h>

esp_bt_controller_init
esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)

Typically, we will code this as:

esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
ret = esp_bt_controller_init(&bt_cfg);

Includes:

Page 636

• #include <bt.h>

esp_bt_controller_enable
Enable the bluetooth controller.

esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)

The value of mode can be one of:

• ESP_BT_MODE_ILDE – Not run.

• ESP_BT_MODE_BLE – BLE mode.

• ESP_BT_MODE_CLASSIC_BT – Classic mode.

• ESP_BT_MODE_BTDM – Dual mode.

Note: Currently only ESP_BT_MODE_BTDM is supported.

Includes:

• #include <bt.h>

esp_vhci_host_check_send_available
bool esp_vhci_host_check_send_available()

Includes:

• #include <bt.h>

esp_vhci_host_register_callback
void esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)

Includes:

• #include <bt.h>

esp_vhci_host_send_packet
void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)

Includes:

• #include <bt.h>

Page 637

Upgrade APIs

system_upgrade_flag_check
Retrieve the upgrade status flag.

uint8 system_upgrade_flag_check()

The returned value will be one of:

• UPGRADE_FLAG_IDLE –

• UPGRADE_FLAG_START –

• UPGRADE_FLAG_FINISH –

system_upgrade_flag_set
Set the upgrade status flag.

void system_upgrade_flag_set(uint8 flag)

The flag can be one of:

• UPGRADE_FLAG_IDLE –

• UPGRADE_FLAG_START –

• UPGRADE_FLAG_FINISH –

system_upgrade_reboot
Reboot the ESP8266 and run the new firmware.

void system_upgrade_reboot()

system_upgrade_start
Start downloading the new firmware from the server.

bool system_upgrade_start(struct upgrade_server_info *server)

The server parameter is a structure ...

system_upgrade_userbin_check
Determine which of the two possible firmware images can be upgraded.

uint8 system_upgrade_userbin_check()

The result will be either UPGRADE_FW_BIN1 or UPGRADE_FW_BIN2.

Page 638

Smart config APIs

smartconfig_start
bool smartconfig_start(sc_callback_t cb, uint8 log)

smartconfig_stop
bool smartconfig_stop(void)

SNTP API
Handle Simple Network Time Protocol requests.

See also:

• Working with SNTP

sntp_enabled
Determine whether or not SNTP is enabled.

u8_t sntp_enabled()

Includes:

• #include <apps/sntp/sntp.h>

sntp_getoperatingmode
Retrieve the current operating mode.

u8_t sntp_getoperatingmode()

The operating mode returned can be one if:

• SNTP_OPMODE_POLL – This is the default.

• SNTP_OPMODE_LISTENONLY –

Includes:

• #include <apps/sntp/sntp.h>

sntp_getserver
ip_addr_t sntp_getserver(u8_t idx)

Includes:

Page 639

• #include <apps/sntp/sntp.h>

sntp_getservername
Get the hostname of a target SNTP server.

char *sntp_setservername(u8_t index)

Retrieve the host name of a specific SNTP server that was previously registered.

The index parameter is the index of an SNTP server that was previously set. It may be
either 0, 1 or 2.

The return from this function is a NULL terminated string.

Includes:

• #include <apps/sntp/sntp.h>

See also:

• Working with SNTP

sntp_init
void sntp_init()

Initialize the SNTP functions. Prior to calling this function, set the operating mode and
server name.

Includes:

• #include <apps/sntp/sntp.h>

See also:

• Working with SNTP

• sntp_stop

sntp_servermode_dhcp
Enable use of DHCP for SNTP server location.

sntp_servermode_dhcp(int setServersFromDhcp)

The setServersFromDhcp is a flag that should be 1 or 0. If set to 1, then we are
requesting that the servers to be used for SNTP should be requested from the DHCP
server.

Includes:

• #include <apps/sntp/sntp.h>

Page 640

sntp_setoperatingmode
Set the operating mode of SNTP access.

void sntp_setoperatingmode(u8_t operatingMode)

Operating mode can be one of:

• SNTP_OPMODE_POLL – This is the default.

• SNTP_OPMODE_LISTENONLY –

Includes:

• #include <apps/sntp/sntp.h>

sntp_setserver
Set the address of an SNTP server.

void sntp_serverserver(u8_t index, ip_addr_t *addr)

Set the address of one of the three possible SNTP servers to be used.

The index parameter must be either 0, 1 or 2 and specifies which of the SNTP server
slots is to be set.

The addr parameter is the IP address of the SNTP server to be recorded.

Includes:

• #include <apps/sntp/sntp.h>

See also:

• Working with SNTP

sntp_setservername
Set the host name of a target SNTP server.

void sntp_setservername(u8_t index, char *server)

Specify an SNTP server by its host name.

The index parameter is the index of an SNTP server to be set. It may be either 0, 1 or
2.

The server parameter is a NULL terminated string that names the host that is an SNTP
server instance.

Includes:

• #include <apps/sntp/sntp.h>

Page 641

See also:

• Working with SNTP

sntp_stop
Stop SNTP processing.

void sntp_stop()

Includes:

• #include <apps/sntp/sntp.h>

See also:

• Working with SNTP

Generic TCP/UDP APIs

ipaddr_addr
Build a TCP/IP address from a dotted decimal string representation.

uint32 ipaddr_addr(char *addressString)

Return an IP address (4 byte) value from a dotted decimal string representation
supplied in the addressString parameter. Note that the uint32 type is not assignable to
the addresses in an esp_tcp or esp_udp structure. Instead we have to use a local
variable and then copy the content. For example:

uint32 addr = ipaddr_addr(server);
memcpy(m_tcp.remote_ip, &addr, 4);

IP4_ADDR
Set the value of a variable to an IP address from its decimal representation.

IP4_ADDR(struct ip_addr * addr, a, b, c, d)

The addr parameter is a pointer to storage to hold an IP address. This may be an
instance of struct ip_addr, a uint32, uint8[4]. It must be cast to a pointer to a struct
ip_addr if not already of that type.

The parameters a, b, c and d are the parts of an IP address if it were written in dotted
decimal notation.

Includes:

• ip_addr.h

See also:

• Error: Reference source not found

Page 642

IP2STR
Generate four int values used in a printf statement

IP2STR(ip_addr_t *address)

This is a macro which takes a pointer to an IP address and returns four comma
separated decimal values representing the 4 bytes of an IP address. This is commonly
used in code such as:

printf("%d.%d.%d.%d", IP2STR(&addr));

The macro IPSTR can be used in place of 4 "%d" macros:

printf(IPSTR, IP2STR(&addr));

Includes:

• tcpip_adapter.h

See also:

• tcpip_adapter_get_ip_info

MAC2STR
Generate 6 values for a printf format.

MAC2STR(char *[6])

Use this in conjunction with the MACSTR macro. Here is an example:

char mac[6];
…
printf(MACSTR, MAC2STR(mac));

Includes:

• rom/ets_sys.h

TCP Adapter APIs
The TCP/IP adapter.

tcpip_adapter_ap_input
Receive low level data.

esp_err_t tcpip_adapter_ap_input(
 void *buffer,

Page 643

 uint16_t len,
 void *eb)

This function is exposed but somewhat of a mystery. It appears to be related to getting
data from the WiFi layer to be supplied to the TCP/IP layer but we have no knowledge
about when or how it might be used.

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_create_ip6_linklocal
esp_err_t tcpip_adapter_create_ip6_linklocal(tcpip_adapter_if_t tcpip_if)

tcpip_adapter_dhcpc_get_status
Get the status of the DHCP client subsystem.

esp_err_t tcpip_adapter_dhcpc_get_status(
 tcpip_adapter_if_t tcpip_if,
 tcpip_adapter_dhcp_status_t *status)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The status can be one of:

• TCPIP_ADAPTER_DHCP_STARTED – DHCP client has started for this interface.

• TCPIP_ADAPTER_DHCP_STOPPED – DHCP client has stopped for this interface.

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_dhcpc_option
esp_err_t tcpip_adapter_dhcpc_option(
 tcpip_adapter_option_mode_t opt_op,
 tcpip_adapter_option_id_t opt_id,
 void *opt_val, uint32_t opt_len)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The opt_op can be one of:

Page 644

• TCPIP_ADAPTER_OP_SET – Set the option.

• TCPIP_ADAPTER_OP_GET – Get the option.

The opt_id can be one of:

• TCPIP_ADAPTER_ROUTER_SOLICITATION_ADDRESS

• TCPIP_ADAPTER_REQUESTED_IP_ADDRESS

• TCPIP_ADAPTER_IP_ADDRESS_LEASE_TIME

• TCPIP_ADAPTER_IP_REQUEST_RETRY_TIME

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_dhcpc_start
Start the DHCP client on the specified interface.

esp_err_t tcpip_adapter_dhcpc_start(tcpip_adapter_if_t tcpip_if)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

tcpip_adapter_dhcpc_stop
Stop the DHCP client on the specified interface.

esp_err_t tcpip_adapter_dhcpc_stop(tcpip_adapter_if_t tcpip_if)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_dhcps_get_status
Retrieve the status of the DHCP server subsystem.

Page 645

esp_err_t tcpip_adapter_dhcps_get_status(
 tcpip_adapter_if_t tcpip_if,
 tcpip_adapter_dhcp_status_t *status)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The status parameter returns the possible states of the DHCP subsystem which are:

• TCPIP_ADAPTER_DHCP_INIT – Initial state.

• TCPIP_ADAPTER_DHCP_STARTED – The DHCP service is running.

• TCPIP_ADAPTER_DHCP_STOPPED – The DHCP service is stopped.

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_dhcps_option
Set or get the options for the DHCP server

esp_err_t tcpip_adapter_dhcps_option(
 tcpip_adapter_option_mode_t optMode,
 tcpip_adapter_option_id_t optId,
 void *opt_val, uint32_t opt_len)

The optMode defines whether we are getting or setting an option. The possible values
are:

• TCPIP_ADAPTER_OP_SET – Used to set an option.

• TCPIP_ADAPTER_OP_GET – Used to get an option.

The optId defines the option being set or retrieved. The currently defined values are:

• TCPIP_ADAPTER_ROUTER_SOLICITATION_ADDRESS –

• TCPIP_ADAPTER_REQUESTED_IP_ADDRESS –

• TCPIP_ADAPTER_IP_ADDRESS_LEASE_TIME –

• TCPIP_ADAPTER_IP_REQUEST_RETRY_TIME –

Includes:

• #include <tcpip_adapter.h>

Page 646

tcpip_adapter_dhcps_start
Start the DHCP server on the specified interface.

esp_err_t tcpip_adapter_dhcps_start(tcpip_adapter_if_t tcpip_if)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_dhcps_stop
Stop the DHCP server on the specified interface.

esp_err_t tcpip_adapter_dhcps_stop(tcpip_adapter_if_t tcpip_if)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_down
Stop the TCP/IP interface.

esp_err_t tcpip_adapter_down(tcpip_adapter_if_t tcpip_if)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

tcpip_adapter_eth_input
esp_err_t tcpip_adapter_eth_input(void *buffer, uint16_t len, void *eb)

Page 647

tcpip_adapter_free_sta_list
Release storage for the connected station list.

esp_err_t tcpip_adapter_free_sta_list(tcpip_adapter_sta_list_t *sta_list)

The storage was allocated with a call to tcpip_adapter_get_sta_list().

Includes:

• #include <tcpip_adapter.h>

See also:

• tcpip_adapter_get_sta_list

tcpip_adapter_get_esp_if
esp_interface_t tcpip_adapter_get_esp_if(void *dev)

tcpip_adapter_get_hostname
Get the host name of the interface.

esp_err_t tcpip_adapter_get_hostname(tcpip_adapter_if, const char **hostname)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The hostname is the address of a pointer to a string. On successful return, the string
pointer will now point to the null terminated string representing the host name of that
interface.

Includes:

• #include <tcpip_adapter.h>

See also:

• tcpip_adapter_set_hostname

tcpip_adapter_get_ip_info
Get the current IP address information.

esp_err_t tcpip_adapter_get_ip_info(
 tcpip_adapter_if_t tcpip_if,
 tcpip_adapter_ip_info_t *ipInfo)

The tcpip_if is the interface is one of the following:

Page 648

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The ipInfo contains:

• ip – The ip address of the interface.

• netmask – The network mask of the interface.

• gw – The default gateway of the interface.

Includes:

• #include <tcpip_adapter.h>

See also:

• IP2STR

tcpip_adapter_get_ip6_linklocal
esp_err_t tcpip_adapter_get_ip6_linklocal(tcpip_adapter_if_t tcpip_if, ip6_addr_t
*if_ip6);

tcpip_adapter_get_sta_list
Populate a list of tcpip_adapter_sta_list_t from data.

esp_err_t tcpip_adapter_get_sta_list(
 wifi_sta_list_t *sta_info,
 tcpip_adapter_sta_list_t **sta_list)

Populate a list of "tcpip_adapter_sta_list_t" from a list of "wifi_sta_list_t". The
tcpip_adapter_sta_list_t contains:

STAILQ_ENTRY(station_list) next

uint8_t [6] mac

ip4_addr_t ip

Here is an example of use:

wifi_sta_list_t *stations;
ESP_ERROR_CHECK(esp_wifi_get_station_list(&stations));
tcpip_adapter_sta_list_t *infoList;

ESP_ERROR_CHECK(tcpip_adapter_get_sta_list(stations, &infoList));
struct station_list *head = infoList;
while(infoList != NULL) {

Page 649

 printf("mac: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x " IPSTR " %d\n",
 infoList->mac[0],infoList->mac[1],infoList->mac[2],
 infoList->mac[3],infoList->mac[4],infoList->mac[5],
 IP2STR(&(infoList->ip)),
 (uint32_t)(infoList->ip.addr));
 infoList = STAILQ_NEXT(infoList, next);
}
ESP_ERROR_CHECK(esp_adapter_free_sta_list(head));
ESP_ERROR_CHECK(esp_wifi_free_station_list());

Includes:

• #include <tcpip_adapter.h>

See also:

• esp_wifi_get_station_list

tcpip_adapter_get_wifi_if
wifi_interface_t tcpip_adapter_get_wifi_if(void *dev)

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_init
void tcpip_adapter_init(void)

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_set_hostname
Set the host name associated with the supplied interface.

esp_err_t tcpip_adapter_set_hostname(
 tcpip_adapter_if_t tcpip_if,
 char *hostname)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The hostname is the host name to be associated with the interface. The maximum size
of the host name is TCPIP_HOSTNAME_MAX_SIZE.

Includes:

Page 650

• #include <tcpip_adapter.h>

See also:

• tcpip_adapter_get_hostname

tcpip_adapter_set_ip_info
Set our IP info.

esp_err_t tcpip_adapter_set_ip_info(
 tcpip_adapter_if_t tcpip_if,
 tcpip_adapter_ip_info_t *ip_info)

Set the IP address of the adapter. If we are setting the station address, then the DHCP
client must be already stopped. If we are setting the access point interface address,
then the DHCP server must be already stopped.

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The ipInfo contains:

• ip

• netmask

• gw

Each of these fields are an "ip4_addr_t" which is itself a struct containing a field called
"addr" which is a 32bit unsigned integer. One can set the value of such an address
using the macro "IP4_ADDR(ip4_addr_t *, int, int, int, int)".

For example:

tcpip_adapter_ip_info_t ipInfo;
IP4_ADDR(&ipInfo.ip, 192,168,1,99);

Includes:

• #include <tcpip_adapter.h>

See also:

• The DHCP client

Page 651

tcpip_adapter_sta_input
esp_err_t tcpip_adapter_sta_input(
 void *buffer,
 uint16_t len, void *eb)

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_start
Start the TCP/IP interface.

esp_err_t tcpip_adapter_start(
 tcpip_adapter_if_t tcpip_if,
 uint8_t *mac,
 tcpip_adapter_ip_info_t *ip_info)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

The mac contains the hardware mac address we are to use.

The ipInfo contains:

• ip

• netmask

• gw

Includes:

• #include <tcpip_adapter.h>

tcpip_adapter_stop
esp_err_t tcpip_adapter_stop(tcpip_adapter_if_t tcpip_if)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

Includes:

• #include <tcpip_adapter.h>

Page 652

tcpip_adapter_up
Bring up the TCP/IP interface.

esp_err_t tcpip_adapter_up(tcpip_adapter_if_t tcpip_if)

The tcpip_if is the interface is one of the following:

• TCPIP_ADAPTER_IF_STA – Station interface.

• TCPIP_ADAPTER_IF_AP – Access point interface.

Includes:

• #include <tcpip_adapter.h>

mdns
See also:

• Multicast Domain Name Systems

mdns_free
Stop and release resources for a previously initialized mDNS server.

void mdns_free(mdns_server_t *server)

The server parameter would have been previously created with a call to mdns_init().

Includes:

• #include <mdns.h>

mdns_init
Initialize mDNS on an interface.

esp_err_t mdns_init(
 tcpip_adapter_if_t tcpip_if,
 mdns_server_t **server)

The tcpip_if is the interface on which mDNS is being initialized. The choices are
TCPIP_ADAPTER_IF_STA or TCPIP_ADAPTER_IF_AP. The server is a pointer that is updated
to point to an mdns_server_t data structure. That structure appears to be opaque.

Includes:

Page 653

• #include <mdns.h>

• #include <tcpip_adapter.h>

mdns_query
Search for mDNS records of a given service or protocol.

size_t mdns_query(
 mdns_server_t *server,
 const char *service,
 const char *proto,
 uint32_t timeout)

If the timeout is 0, then mdns_query_end() must be called to explicitly end the search.

The return is the number of results found.

Includes:

• #include <mdns.h>

mdns_query_end
Terminate a query where no timeout was specified.

size_t mdns_query_end(mdns_server_t *server)

Includes:

• #include <mdns.h>

mdns_result_free
esp_err_t mdns_result_free(mdns_server_t *server)

Includes:

• #include <mdns.h>

mdns_result_get
Get a specific result by index.

const mdns_result_t * mdns_result_get(
 mdns_server_t *server,
 size_t num)

Includes:

• #include <mdns.h>

Page 654

mdns_result_get_count
Get the number of results currently in memory.

size_t mdns_result_get_count(mdns_server_t * server)

Includes:

• #include <mdns.h>

mdns_service_add
Define a service we are advertizing when we are being an mDNS responder/server.

esp_err_t mdns_service_add(
 mdns_server_t *server,
 const char *service,
 const char *proto,
 uint16_t port)

The server is the value we got when we previously called mdns_init() to initialize
ourselves as an mDNS responder.

The port is the port number on which our advertized service will be listening on for
incoming connections.

We can call mdns_service_remove() to remove a service.

Includes:

• #include <mdns.h>

mdns_service_instance_set
esp_err_t mdns_service_instance_set(
 mdns_server_t *server,
 const char *service,
 const char *proto,
 const char *instance)

Includes:

• #include <mdns.h>

mdns_service_port_set
esp_err_t mdns_service_port_set(
 mdns_server_t *server,
 const char *service,
 const char *proto, uint16_t port)

Page 655

Includes:

• #include <mdns.h>

mdns_service_remove
esp_err_t mdns_service_remove(
 mdns_server_t *server,
 const char *service,
 const char *proto)

We call mdns_service_add() to add a service.

Includes:

• #include <mdns.h>

mdns_service_remove_all
esp_err_t mdns_service_remove_all(mdns_server_t *server)

Includes:

• #include <mdns.h>

mdns_service_txt_set
esp_err_t mdns_service_txt_set(
 mdns_server_t *server,
 const char *service,
 const char *proto,
 uint8_t num_items,
 const char **txt)

The txt is an array of strings where each entry is of the form "name=value".

Includes:

• #include <mdns.h>

mdns_set_hostname
Set the host name of our mDNS server.

esp_err_t mdns_set_hostname(
 mdns_server_t *server,
 const char *hostname)

Includes:

• #include <mdns.h>

Page 656

mdns_set_instance
Set the instance name for our mDNS server.

esp_err_t mdns_set_instance(
 mdns_server_t *server,
 const char *instance)

Includes:

• #include <mdns.h>

OTA
Over The Air (OTA) is the capability to save a new image in flash for subsequent
execution on next boot/restart.

Here is how we believe OTA works:

1. We call esp_ota_begin() to start the beginning of an OTA image write

2. We receive data that is part of the image

3. We call esp_ota_write() to write the data we just read

4. Go back to 2 while there is more of the image to receive over the network

5. We call esp_ota_end() to flag the end of the OTA image write

6. We call esp_ota_set_boot_partition() to specify which partition will be booted on next
reboot

esp_ota_begin
esp_err_t esp_ota_begin(
 const esp_partition_t* partition,
 size_t image_size,
 esp_ota_handle_t* out_handle)

Includes:

• esp_ota_ops.h

esp_ota_end
Finish the update and validate the image.

esp_err_t esp_ota_end(esp_ota_handle_t handle)

The handle comes from a previous call to esp_ota_begin().

Page 657

Includes:

• esp_ota_ops.h

esp_ota_get_boot_partition
Get the partition information of the current boot partition.

const esp_partition_t *esp_ota_get_boot_partition(void)

Includes:

• esp_ota_ops.h

esp_ota_set_boot_partition
Set the partition of the next partition to be booted.

esp_err_t esp_ota_set_boot_partition(const esp_partition_t *partition)

Includes:

• esp_ota_ops.h

esp_ota_write
esp_err_t esp_ota_write(
 esp_ota_handle_t handle,
 const void *data, size_t size)

The handle comes from a previous call to esp_ota_begin().

Includes:

• esp_ota_ops.h

GPIO Driver
The gpio functions in the ESP32 are provided through the ESP-IDF. One must include
the "driver/gpio.h" header.

See also:

• GPIOs

• Analog to Digital Conversion

gpio_config
Configure one or more GPIO settings in a single operation.

esp_err_t gpio_config(gpio_config_t *pGPIOConfig)

The gpio_config_t data structure contains:

Page 658

uint64_t pin_bit_mask

gpio_mode_t mode

gpio_pullup_t pull_up_en

gpio_pulldown_t pull_down_en

gpio_int_type_t intr_type

The pin_bit_mask defines which pins we are configuring. Constants are defined to
assist us here. For example, if we are configuring GPIO16 and GPIO34 we can set the
pin_bit_mask to GPIO_SEL_16 | GPIO_SEL_34 which is the boolean "or" of the two
constant values.

The mode is used to set the mode of all of the pins we are configuring. The allowable
values are:

• GPIO_MODE_INPUT

• GPIO_MODE_OUTPUT

• GPIO_MODE_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT

The pull_up_en enables an internal pull-up resistor. The allowable values are:

• GPIO_PULLUP_ENABLE

• GPIO_PULLUP_DISABLE

The pull_down_en enables an internal pull-down resistor. The allowable values are:

• GPIO_PULLDOWN_ENABLE

• GPIO_PULLDOWN_DISABLE

The intr_type configures how interrupts are handled for the pin. The allowable values
are:

• GPIO_INTR_DISABLE

• GPIO_INTR_POSEDGE

• GPIO_INTR_NEGEDGE

• GPIO_INTR_ANYEDGE

• GPIO_INTR_LOW_LEVEL

• GPIO_INTR_HIGH_LEVEL

Here is an example:

Page 659

gpio_config_t gpioConfig;
gpioConfig.pin_bit_mask = (1 << 16) | (1 << 17);
gpioConfig.mode = GPIO_MODE_OUTPUT;
gpioConfig.pull_up_en = GPIO_PULLUP_DISABLE;
gpioConfig.pull_down_en = GPIO_PULLDOWN_DISABLE;
gpioConfig.intr_type = GPIO_INTR_DISABLE;
gpio_config(&gpioConfig);

Includes:

• #include <driver/gpio.h>

gpio_get_level
Retrieve the signal level on the pin.

int gpio_get_level(gpio_num_t gpioNum)

Get the signal level on the specified pin. Either 0 or 1. The direction of the pin should
be set to be INPUT to retrieve a useful result.

Includes

• #include <driver/gpio.h>

See also:

• gpio_set_direction

• GPIOs

gpio_install_isr_service
Install a GPIO ISR service.

esp_err_t gpio_install_isr_service(int intr_alloc_flags)

Includes:

• #include <driver/gpio.h>

See also:

• gpio_uninstall_isr_service

gpio_intr_enable
Enable interrupts on the specified pin.

esp_err_t gpio_intr_enable(gpio_num_t gpioNum)

Page 660

Enabling the interrupt on the pin will cause an interrupt trigger when the type of interrupt
as specified by gpio_set_intr_type() occurs.

Includes

• #include <driver/gpio.h>

See also:

• GPIO Interrupt handling

• gpio_set_intr_type

• gpio_intr_disable

gpio_intr_disable
Disable interrupts on the specified pin.

esp_err_t gpio_intr_disable(gpio_num_t gpioNum)

Disabling the interrupt on the pin will prevent an interrupt trigger from being registered.

Includes

• #include <driver/gpio.h>

See also:

• gpio_intr_enable

gpio_isr_handler_add
Associate an ISR with a given pin.

esp_err_t gpio_isr_handler_add(
 gpio_num_t gpio_num,
 gpio_isr_t isr_handler,
 void* args)

The gpio_num is the pin to which we are associating an interrupt handler. This can be
one of the GPIO_NUM_xx values.

The isr_handler is the function we wish to invoke to process the interrupt. The handler
does not need to be declared in instruction RAM unless the ISR is defined with the
ESP_INTR_FLAG_IRAM.

The signature of an interrupt handler function is:

void func(void *args)

Page 661

The args is a pointer that will be passed to the ISR.

Includes:

• #include <driver/gpio.h>

See also:

• gpio_isr_handler_remove

• GPIO Interrupt handling

gpio_isr_handler_remove
Remove a previously associated ISR handler.

esp_err_t gpio_isr_handler_remove(gpio_num_t gpio_num)

The gpio_num identifies the pin against which any ISR handler should be removed. This
can be one of the GPIO_NUM_xx values.

Includes:

• #include <driver/gpio.h>

See also:

• gpio_isr_handler_add

gpio_isr_register
Register an interrupt handler.

esp_err_t gpio_isr_register(
 void (*fn)(void *), void *arg,
 int intr_alloc_flags,
 gpio_isr_handle_t handle)

The fn is a function that will be called to handle the interrupt. The implementation of
this function must reside in instruction RAM (IRAM) as it must be handled as quickly as
possible and we can't afford loading it from flash. The function must be defined with the
"IRAM_ATTR" function to force it to be in IRAM.

For example:

static void IRAM_ATTR myISR(void *arg) {
 // Do something.
}

If we want to perform logging within the handler, we must use:

ESP_EARLY_LOGx()

Page 662

The arg is a parameter passed into the interrupt handler function (fn).

The flags are flags that control the definition of the interrupt.

• ESP_INTR_FLAG_INTRDISABLED

• ESP_INTR_FLAG_IRAM

• ???

The handle is a handle used to reference this ISR and is populated on return from this
call.

Note that this is only one of the techniques for ISR processing. The other is the
combination of gpio_install_isr_service() and gpio_isr_handled_add().

Includes

• #include <driver/gpio.h>

See also:

• GPIO Interrupt handling

gpio_set_direction
Set the direction of a pin.

esp_err_t gpio_set_direction(gpio_num_t gpioNum, gpio_mode_t mode)

The mode is used to set the mode of the pin we are configuring. The allowable values
are:

• GPIO_MODE_INPUT

• GPIO_MODE_OUTPUT

• GPIO_MODE_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT_OD

• GPIO_MODE_INPUT_OUTPUT

Includes:

• #include <driver/gpio.h>

See also:

• GPIOs

• gpio_get_level

• gpio_set_level

Page 663

gpio_set_intr_type
Set the interrupt type of a pin.

esp_err_t gpio_set_intr_type(gpio_num_t gpioNum, gpio_int_type_t intrType)

The gpioNum defines which pins is having its interrupt type changed. This can be one of
the GPIO_NUM_xx values.

The intr_type configures how interrupts are handled for the pin. The allowable values
are:

• GPIO_INTR_ANYEDGE

• GPIO_INTR_DISABLE

• GPIO_INTR_NEGEDGE

• GPIO_INTR_POSEDGE

• GPIO_INTR_LOW_LEVEL

• GPIO_INTR_HIGH_LEVEL

Includes

• #include <driver/gpio.h>

See also:

• gpio_isr_register

gpio_set_level
Set the level of a pin.

esp_err_t gpio_set_level(gpio_num_t gpioNum, uint32_t level)

Se the level of an output pin. The level should be either 0 or 1.

Includes:

• #include <driver/gpio.h>

See also:

• GPIOs

• gpio_set_direction

• gpio_get_level

Page 664

gpio_set_pull_mode
Set the pullup/pulldown mode of the pin.

esp_err_t gpio_set_pull_mode(gpio_num_t gpioNum, gpio_pull_mode_t pull)

The allowable values for pull are:

• GPIO_PULLUP_ONLY – Set the pin to be pulled-up. If no active signal on the pin, it will
register as high.

• GPIO_PULLDOWN_ONLY – Set the pin to be pulled-down. If no active signal on the pin, it
will register as low.

• GPIO_PULLUP_PULLDOWN – Set the pin to be both pulled-up and pulled-down so that if
there is no actual signal on the input, it will be ½ the reference voltage.

• GPIO_FLOATING – No pull-up or pull-down. It is not defined what signal will be read from
this pin if there is no active signal.

Includes:

• #include <driver/gpio.h>

See also:

• Pull up and pull down settings

gpio_uninstall_isr_service
void gpio_uninstall_isr_service()

Includes:

• #include <driver/gpio.h>

See also:

• gpio_install_isr_service

gpio_wakeup_enable
Enable GPIO wake-up.

esp_err_t gpio_wakeup_enable(gpio_num_t gpioNum, gpio_int_type_t intrType)

Wake-up a sleeping device when an interrupt occurs. The allowable interrupt types are:

• GPIO_INTR_LOW_LEVEL

• GPIO_INTR_HIGH_LEVEL

Includes

• #include <driver/gpio.h>

See also:

Page 665

• gpio_wakeup_disable

gpio_wakeup_disable
Disable GPIO wake-up.

esp_err_t gpio_wakeup_disable(gpio_num_t gpioNum)

Disable waking up on a pin interrupt.

Includes

• #include <driver/gpio.h>

See also:

• gpio_wakeup_enable

GPIO Low Level

gpio_init
Initialize GPIO.

void gpio_init()

This is a ROM exposed function. It should not be called in normal applications.

Includes

• #include <rom/gpio.h>

gpio_input_get
Retrieve a bit-mask of the values of the first 32 GPIOs (0-31).

uint32_t gpio_input_get()

Includes:

• #include <rom/gpio.h>

gpio_input_get_high
Retrieve a bit-mask of the values of the last 8 GPIOs (32-39).

uint32_t gpio_input_get_high()

Includes:

• #include <rom/gpio.h>

Page 666

gpio_intr_ack
void gpio_intr_ack(uint32_t ackMask)

This is a ROM exposed function. It is not expected to be called in normal applications.

Includes:

• rom/gpio.h

gpio_intr_ack_high
void gpio_intr_ack_high(uint32_t ackMask)

This is a ROM exposed function. It is not expected to be called in normal applications.

Includes

• #include <rom/gpio.h>

gpio_intr_handler_register
void gpio_intr_handler_register(
 gpio_intr_handler_fn_t fn,
 void *arg)

This is a ROM exposed function. It is not expected to be called in normal applications.

Includes

• #include <rom/gpio.h>

gpio_intr_pending
uint32_t gpio_intr_pending()

This is a ROM exposed function. It is not expected to be called in normal applications.

Includes

• #include <rom/gpio.h>

gpio_intr_pending_high
uint32_t gpio_intr_pending_high()

Page 667

This is a ROM exposed function. It is not expected to be called in normal applications.

Includes

• #include <rom/gpio.h>

gpio_matrx_in
Map a physical pin to its logical mapping.

void gpio_matrix_in(
 uint32_t gpioNum,
 uint32_t signalIdx,
 bool inv)

Here we can map a physical input pin to its logical mapping. This is the heart of the
multiplexing function.

Two special physical gpio number are used. The value 0x30 means a constant low
value while 0x38 means a constant high value.

If the inv flag is set then the incoming signal is logically inverted before processing.

Includes

• #include <rom/gpio.h>

See also:

• Pads and multiplexing

gpio_matrix_out
Set the signal output to a given gpio.

void gpio_matrix_out(
 uint32_t gpio,
 uint32_t signalIdx,
 bool outInv,
 bool oenInv)

The gpio is the gpio output number between 0 and 39. The signalIdx is the index of
the signal to be sent to that gpio. To invert the signal set outInv to be 1. To invert the
signal output enable set oenInv to be 1.

Includes

• #include <rom/gpio.h>

See also:

• Pads and multiplexing

Page 668

gpio_output_set
Set GPIOs that need to be input, output, high or low on bulk

void gpio_output_set(
 uint32_t setMask,
 uint32_t clearMask,
 uint32_t enableMask,
 uint32_t disableMask)

Work with the first 32 GPIOs (0-31) specifying which ones are input, which ones are
output, which ones should be left alone and which ones should be set high/low. This
API lets us set a batch of GPIOs in one operation.

Includes

• #include <rom/gpio.h>

gpio_output_set_high
Set GPIOs that need to be input, output, high or low on bulk

void gpio_output_set_high(
 uint32_t setMask,
 uint32_t clearMask,
 uint32_t enableMask,
 uint32_t disableMask)

Work with the last 8 GPIOs (32-39) specifying which ones are input, which ones are
output, which ones should be left alone and which ones should be set high/low. This
API lets us set a batch of GPIOs in one operation.

Includes

• #include <rom/gpio.h>

gpio_pad_hold
void gpio_pad_hold(uint8_t gpioNum)

Includes

• #include <rom/gpio.h>

Page 669

gpio_pad_pulldown
void gpio_pad_pulldown(uint8_t gpioNum)

Includes

• #include <rom/gpio.h>

gpio_pad_pullup
void gpio_pad_pullup(uint8_t gpioNum)

Includes

• #include <rom/gpio.h>

gpio_pad_select_gpio
Specify that a given pin should be used for GPIO.

void gpio_pad_select_gpio(uint8_t gpioNum)

The gpioNum is the identity of the GPIO (0-39).

Includes

• #include <rom/gpio.h>

See also:

• GPIOs

gpio_pad_set_drv
void gpio_pad_set_drv(uint8_t gpioNum, uint8_t drv)

Includes

• #include <rom/gpio.h>

gpio_pad_unhold
void gpio_pad_unhold(uint8_t gpioNum)

Includes

Page 670

• #include <rom/gpio.h>

gpio_pin_wakeup_disable
void gpio_pin_wakeup_disable()

This is a ROM exposed function. It is not expected to be called in normal applications.

Includes

• #include <rom/gpio.h>

gpio_pin_wakeup_enable
void gpio_pin_wakeup_enable(uint32_t I, GPIO_INT_TYPE intrState)

This is a ROM exposed function. It is not expected to be called in normal applications.

Includes

• #include <rom/gpio.h>

Analog to Digital Conversion
See also:

• Analog to digital conversion

adc1_config_channel_atten
Change the attenuation value of the channel.

esp_err_t adc1_config_channel_atten(
 adc1_channel_t channel,
 adc_atten_t atten)

By default, the input voltage can be between 0V and 1V, however using the attenuation
values, we can scale the voltage to be between 0-1.34V, 0-2V and 0-3.6V.

The channel can be between ADC1_CHANNEL_0 and ADC1_CHANNEL_7.

The atten can be one of:

• ADC_ATTEN_0db – 1/1

• ADC_ATTEN_2_5db – 1/1.34

Page 671

• ADC_ATTEN_6db – 1/2

• ADC_ATTEN_11db – 1/3.6

Includes:

• #include <driver/adc.h>

adc1_config_width
Set the ADC resolution.

esp_err_t adc1_config_width(adc_bits_width_t width_bit)

The width_bit value may be one of:

• ADC_WIDTH_9Bit

• ADC_WIDTH_10Bit

• ADC_WIDTH_11Bit

• ADC_WIDTH_12Bit

Includes:

• #include <driver/adc.h>

adc1_get_voltage
Read the digital value of the analog input.

int adc1_get_voltage(adc1_channel_t channel)

If the value <0 then an error was encountered otherwise the value is the digital value of
the voltage on the channel. The channel can be between ADC1_CHANNEL_0 and
ADC_CHANNEL_7.

Includes:

• #include <driver/adc.h>

hall_sensor_read
int hall_sensor_read()

UART driver API
The ESP-IDF provides a driver for the UART interfaces.

See also:

Page 672

• Working with UART/serial

uart_clear_intr_status
esp_err_t uart_clear_intr_status(
 uart_port_t uart_num,
 uint32_t clr_mask)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The clr_mask represents the bits to be cleared.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_disable_intr_mask
esp_err_t uart_disable_intr_mask(
 uart_port_t uart_num,
 uint32_t disable_mask)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The disable_mask represents the bits to be disabled.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_driver_delete
Un-install the UART driver.

esp_err_t uart_driver_delete(uart_port_t uart_num)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

Page 673

See also:

• Working with UART/serial

uart_driver_install
esp_err_t uart_driver_install(
 uart_port_t uart_num,
 int rx_buffer_size,
 int tx_buffer_size,
 int queue_size,
 void *uart_queue,
 int intr_alloc_flags)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The rx_buffer_size is the size of the receiving ring buffer. This should be greater than
the constant UART_FIFO_LEN.

The tx_buffer_size is the size of the transmitting ring buffer. If 0, then UART output
will block until the data is sent.

The queue_size is the size of the event queue.

The uart_queue, if set to NULL, means no event queue. If we wish, we can specify the
address of an instance of a FreeRTOS QueueHandle_t variable. If we specify that, then
events related to the UART will be posted to the queue. We can then use FreeRTOS
functions such as xQueueReceive() to read events. An event is a uart_event_type_t
value that can be one of:

• UART_DATA – Data is available.

• UART_BREAK –

• UART_BUFFER_FULL –

• UART_FIFO_OV – A queue overflow was detected.

• UART_FRAME_ERR –

• UART_PARITY_ERR – A data parity error was detected.

• UART_DATA_BREAK –

The intr_alloc_flags are one or more flags or'd together. The value of 0 is a good
default.

Includes:

• #include <drivers/uart.h>

See also:

Page 674

• Working with UART/serial

uart_disable_intr_mask
esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_disable_pattern_det_intr
esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_disable_rx_intr
esp_err_t uart_disable_rx_intr(uart_port_t uart_num)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_disable_tx_intr
esp_err_t uart_disable_tx_intr(uart_port_t uart_num)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

Page 675

See also:

• Working with UART/serial

uart_enable_intr_mask
Enable interrupts for the UART.

esp_err_t uart_enable_intr_mask(
 uart_port_t uart_num,
 uint32_t enable_mask)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The enable mask are the bit fields set for the ESP32 register called UART_INT_ENA_REG.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_enable_pattern_det_intr
esp_err_t uart_enable_pattern_det_intr(
 uart_port_t uart_num,
 char pattern_chr,
 uint8_t chr_num,
 int chr_tout,
 int post_idle,
 int pre_idle);

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_enable_rx_intr
esp_err_t uart_enable_rx_intr(uart_port_t uart_num)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

Page 676

• Working with UART/serial

uart_enable_tx_intr
esp_err_t uart_enable_tx_intr(
 uart_port_t uart_num,
 int enable, int thresh)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_flush
esp_err_t uart_flush(uart_port_t uart_num)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_get_baudrate
Get the current baud rate.

esp_err_t uart_get_baudrate(
 uart_port_t uart_num,
 uint32_t *baudrate)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The baud_rate is the current transmission rate in bits per second.

Includes:

• #include <drivers/uart.h>

See also:

Page 677

• Working with UART/serial

uart_get_buffered_data_len
esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t * size)

Get the size of data buffered in the RX ring buffer waiting to be read.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_get_hw_flow_ctrl
esp_err_t uart_get_hw_flow_ctrl(
 uart_port_t uart_num,
 uart_hw_flowcontrol_t *flow_ctrl)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_get_parity
Get the current parity setting.

esp_err_t uart_get_parity(
 uart_port_t uart_num,
 uart_parity_t *parity_mode)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The parity_mode can be one of UART_PARITY_DISABLE, UART_PARITY_EVEN,
UART_PARITY_ODD.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

Page 678

uart_get_stop_bits
esp_err_t uart_get_stop_bits(
 uart_port_t uart_num,
 uart_stop_bits_t *stop_bits)

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_get_word_length
Get the current word length of a transmission.

esp_err_t uart_get_word_length(
 uart_port_t uart_num,
 uart_word_length_t *data_bit)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The data_bit is the word length being used for a transmission. It can be one of
UART_DATA_5_BITS, UART_DATA_6_BITS, UART_DATA_7_BITS or UART_DATA_8_BITS.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_intr_config
esp_err_t uart_intr_config(
 uart_port_t uart_num,
 const uart_intr_config_t *intr_conf)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The intr_conf is a structure containing:

• intr_enable_mask

◦ UART_RXFIFO_FULL_INT_ENA_M

◦ UART_TXFIFO_EMPTY_INT_ENA_M

Page 679

◦ UART_PARITY_ERR_INT_ENA_M

◦ UART_FRM_ERR_INT_ENA_M

◦ UART_RXFIFO_OVF_INT_ENA_M

◦ UART_DSR_CHG_INT_ENA_M

◦ UART_CTS_CHG_INT_ENA_M

◦ UART_BRK_DET_INT_ENA_M

◦ UART_RXFIFO_TOUT_INT_ENA_M

◦ UART_SW_XON_INT_ENA_M

◦ UART_SW_XOFF_INT_ENA_M

◦ UART_GLITCH_DET_INT_ENA_M

◦ UART_TX_BRK_DONE_INT_ENA_M

◦ UART_TX_BRK_IDLE_DONE_INT_ENA_M

◦ UART_TX_DONE_INT_ENA_M

◦ UART_RS485_PARITY_ERR_INT_ENA_M

◦ UART_RS485_FRM_ERR_INT_ENA_M

◦ UART_RS485_CLASH_INT_ENA_M

◦ UART_AT_CMD_CHAR_DET_INT_ENA_M

• rxfifo_full_thresh

• rx_timeout_thresh

• txfifo_empty_intr_thresh

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_isr_free
esp_err_t uart_isr_free(uart_port_t uart_num)

Includes:

• #include <drivers/uart.h>

See also:

Page 680

• Working with UART/serial

uart_isr_register
esp_err_t uart_isr_register(
 uart_port_t uart_num,
 void (*fn)(void*), void * arg,
 int intr_alloc_flags,
 uart_isr_handle_t *handle)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_param_config
Configure all the parameters for a UART.

esp_err_t uart_param_config(
 uart_port_t uart_num,
 const uart_config_t *uart_config)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Calling this function is a convenience for setting the properties of a UART without us
having to set the properties one by one with a stream of other calls. Here we populate a
structure and set all the properties in one shot.

uart_config_t myUartConfig;
myUartConfig.baud_rate = UART_BITRATE_115200;
myUartConfig.data_bits = UART_DATA_8_BITS;
myUartConfig.parity = UART_PARITY_DISABLE;
myUartConfig.stop_bits = UART_STOP_BITS_1;
myUartConfig.flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
myUartConfig.rx_flow_ctrl_thresh = 120;

Typically we would call this before installing the driver.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

Page 681

• uart_set_baudrate

• uart_set_word_length

• uart_set_parity

• uart_set_stop_bits

• uart_set_hw_flow_ctrl

uart_read_bytes
Read data from the UART.

int uart_read_bytes(
 uart_port_t uart_num,
 uint8_t *buf,
 uint32_t length,
 TickType_t ticks_to_wait)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Here we read data from the UART. The maximum number of bytes we will read is
supplied by length and buf must point to a memory buffer of at least that capacity. The
return from the function will be the number of bytes that were actually read. We can
also specify the number of FreeRTOS ticks to wait should no data be available.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_set_baudrate
Set the current baud rate.

esp_err_t uart_set_baudrate(
 uart_port_t uart_no,
 uint32_t baud_rate)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The baud_rate is the desired transmission rate in bits per second.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

Page 682

uart_set_dtr
esp_err_t uart_set_dtr(
 uart_port_t uart_num,
 int level)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_set_hw_flow_ctrl
esp_err_t uart_set_hw_flow_ctrl(
 uart_port_t uart_no,
 uart_hw_flowcontrol_t flow_ctrl,
 uint8_t rx_thresh)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_set_line_inverse
esp_err_t uart_set_line_inverse(
 uart_port_t uart_no,
 uint32_t inverse_mask)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

Page 683

uart_set_parity
Set the parity check values.

esp_err_t uart_set_parity(
 uart_port_t uart_no,
 uart_parity_t parity_mode)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The parity_mode can be one of UART_PARITY_DISABLE, UART_PARITY_EVEN,
UART_PARITY_ODD.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_set_pin
Set the pins used by this UART.

esp_err_t uart_set_pin(
 uart_port_t uart_num,
 int tx_io_num,
 int rx_io_num,
 int rts_io_num,
 int cts_io_num)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The tx_io_num is the pin number used for TX for this uart.

The rx_io_num is the pin number used for RX for this uart.

The rts_io_num is the pin number used for RTS for this uart.

The cts_io_num is the pin number used for CTS for this uart.

We can specify the value UART_PIN_NO_CHANGE as a value and what ever the UART
thinks it is currently using will continue to be used.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

Page 684

uart_set_rts
esp_err_t uart_set_rts(uart_port_t uart_num, int level)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_set_stop_bits
Set the number of data bits in the uart.

esp_err_t uart_set_stop_bits(
 uart_port_t uart_no,
 uart_stop_bits_t bit_num)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The bit_num is the number of stop bits in effect. It can be one of UART_STOP_BITS_1,
UART_STOP_BITS_1_5 or UART_STOP_BITS_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_set_word_length
Set the number of bits in a transmission unit.

esp_err_t uart_set_word_length(
 uart_port_t uart_num,
 uart_word_length_t data_bit)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

The data_bit is the word length of a transmission. It can be one of UART_DATA_5_BITS,
UART_DATA_6_BITS, UART_DATA_7_BITS or UART_DATA_8_BITS.

Includes:

Page 685

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_tx_chars
int uart_tx_chars(
 uart_port_t uart_no,
 const char* buffer,
 uint32_t len)

The uart_no is the identity of the UART being transmitted over. It can be one of
UART_NUM_0, UART_NUM_1 or UART_NUM_2.

The buffer is a pointer to data to be transmitted.

The len is the number of bytes to transmit.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_wait_tx_done
esp_err_t uart_wait_tx_done(
 uart_port_t uart_num,
 TickType_t ticks_to_wait)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_write_bytes
Write bytes through the UART.

int uart_write_bytes(
 uart_port_t uart_num,
 const char* src,
 size_t size)

Page 686

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Here we write data through the UART. The number of bytes to be written is specified by
size. That number of bytes will be read starting at the memory location pointed to by
src.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

uart_write_bytes_with_break
int uart_write_bytes_with_break(
 uart_port_t uart_num,
 const char* src,
 size_t size,
 int brk_len)

The uart_no is the identity of the UART being changed. It can be one of UART_NUM_0,
UART_NUM_1 or UART_NUM_2.

Includes:

• #include <drivers/uart.h>

See also:

• Working with UART/serial

UART low level APIs

uartAttach

Uart_Init

Page 687

uart_div_modify

uart_buff_switch

uart_tx_switch

uart_baudrate_detect

uart_rx_one_char
Retrieve a character from the RX FIFO buffer if one is available.

STATUS uart_rx_one_char(uint8_t *rxChar)

Retrieve a single character from the serial input buffer. If a character was available, the
return value is OK else it is FAIL. If a character was retrieved, it will be stored in rxChar.

Includes:

• #include <rom/uart.h>

See also:

• Working with UART/serial

uart_tx_wait_idle

uart_tx_flush
void uart_tx_flush(uint8_t uartNumber)

uart_tx_one_char
STATUS uart_tx_one_char(uint8_t txChar)

Output a char to printf channel.

Includes:

• rom/uart.h

uart_tx_one_char2

I2C APIs
See also:

• Using the ESP-IDF I2C driver

i2c_cmd_link_create
Create a command handle.

i2c_cmd_handle_t i2c_cmd_link_create()

Page 688

The i2c_cmd_handle_t is an opaque data type and should be treated as such. Think of
a command as a "future" request to send a message over the I2C bus. Because I2C is
timing dependent, what we want to do is first build the message we wish to send and
then actually send it. The thinking here is that if we were to build and send
simultaneously, any interrupts that occurred would cause timing problems. In addition,
the ESP32 has built-in hardware support for I2C transmissions but only if we can give it
a "unit of transmission" as an atomic operation. The high level of operation is:

i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (0x12 << 1) | I2C_MASTER_WRITE, 1 /* expect ack */);
i2c_master_write_byte(cmd, 0x34, 1);
i2c_master_stop(cmd);
i2c_master_cmd_begin(0, cmd, 0);
i2c_cmd_link_delete(cmd);

Note that we should create a cmd_handle, work with it and then delete it. Although not
specified in the documentation, tests seem to show that once used, it should not be
used again.

Includes:

• #include <driver/i2c.h>

See also:

• i2c_master_cmd_begin

• i2c_cmd_link_delete

i2c_cmd_link_delete
void i2c_cmd_link_delete(i2c_cmd_handle_t cmd_handle)

Includes:

• #include <driver/i2c.h>

See also:

• i2c_cmd_link_create

i2c_driver_delete
esp_err_t i2c_driver_delete(i2c_port_t i2c_num)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Page 689

Includes:

• #include <driver/i2c.h>

i2c_driver_install
esp_err_t i2c_driver_install(
 i2c_port_t i2c_num,
 i2c_mode_t mode,
 size_t slv_rx_buf_len,
 size_t slv_tx_buf_len,
 int intr_alloc_flags)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

The mode can be one of:

• I2C_MODE_SLAVE

• I2C_MODE_MASTER

The slv_rx_buf_len defines the buffer for receiving if we are a slave.

The slv_tx_buf_len defines the buffer for transmitting if we are a slave.

The intr_alloc_flags can be 0.

Includes:

• #include <driver/i2c.h>

See also:

• i2c_driver_delete

• i2c_param_config

i2c_get_data_mode
esp_err_t i2c_get_data_mode(
 i2c_port_t i2c_num,
 i2c_trans_mode_t *tx_trans_mode,
 i2c_trans_mode_t *rx_trans_mode)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

Page 690

• #include <driver/i2c.h>

i2c_get_data_timing
esp_err_t i2c_get_data_timing(
 i2c_port_t i2c_num,
 int *sample_time,
 int *hold_time)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2s_get_period
esp_err_t i2c_get_period(
 i2c_port_t i2c_num,
 int *high_period,
 int *low_period)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_get_start_timing
esp_err_t i2c_get_start_timing(
 i2c_port_t i2c_num,
 int *setup_time,
 int *hold_time)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

Page 691

i2c_get_stop_timing
esp_err_t i2c_get_stop_timing(
 i2c_port_t i2c_num,
 int *setup_time,
 int* hold_time)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• driver/i2c.h

i2c_isr_free
esp_err_t i2c_isr_free(intr_handle_t handle)

Includes:

• #include <driver/i2c.h>

i2c_isr_register
esp_err_t i2c_isr_register(
 i2c_port_t i2c_num,
 void (*fn)(void*), void * arg,
 int intr_alloc_flags,
 intr_handle_t *handle)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_master_cmd_begin
Process an I2C sequence of commands.

esp_err_t i2c_master_cmd_begin(
 i2c_port_t i2c_num,
 i2c_cmd_handle_t cmd_handle,
 portBASE_TYPE ticks_to_wait)

Page 692

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

The cmd_handle should be a cmd_handle that has been previously created and then
populated with the I2C commands/data to execute.

The return codes include:

• ESP_OK (0) – Command stream processed.

• ESP_ERR_INVALID_ARG (0x102) – Invalid parameter.

• ESP_FAIL (-1)– Command error; no ACK received from slave device.

• ESP_ERR_INVALID_STATE (0x103) – Driver not installed or not an I2C master.

• ESP_ERR_TIMEOUT (0x107) – Timed out because the bus was busy.

Includes:

• #include <driver/i2c.h>

See also:

• i2c_cmd_link_create

• i2c_master_write

• i2c_master_write_byte

i2c_master_read
Read a sequence of bytes.

esp_err_t i2c_master_read(
 i2c_cmd_handle_t cmd_handle,
 uint8_t *data,
 size_t data_len,
 int ack)

The cmd_handle is a handle that was previously created with an i2c_cmd_link_create()
call.

The data is a buffer into which the read I2C bytes will be stored.

The data_len is the number of bytes we wish to read from the I2C.

The ack is a flag which indicates whether or not the ESP32 should respond with an I2C
ACK upon reading a byte. Take care here. The value 0 means DO send an ACK while
the value 1 means DO NOT send an ACK.

Page 693

Includes:

• #include <driver/i2c.h>

i2c_master_read_byte
Read a byte from the I2C bus.

esp_err_t i2c_master_read_byte(
 i2c_cmd_handle_t cmd_handle,
 uint8_t *data,
 int ack)

The cmd_handle is a handle that was previously created with an i2c_cmd_link_create()
call.

The data is a buffer into which the read I2C byte will be stored.

The ack is a flag which indicates whether or not the ESP32 should respond with an I2C
ACK upon reading a byte. Take care here. The value 0 means DO send an ACK while
the value 1 means DO NOT send an ACK.

Includes:

• #include <driver/i2c.h>

i2c_master_start
Queue command for I2C master to generate a start signal.

esp_err_t i2c_master_start(i2c_cmd_handle_t cmd_handle)

The start signal is used at the beginning of an I2C transmission and is followed by the
address of the slave with which we wish to communicate. For examplem in the
following we create a command stream, indicate that we are starting a new transaction
and then supply the address. Note that an address is 7 bits of address data plus an
indication of whether it is a read or write request we are making.

i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (0x12 << 1) | I2C_MASTER_WRITE, 1 /* expect ack */);

Includes:

• #include <driver/i2c.h>

See also:

• i2c_master_cmd_begin

Page 694

i2c_master_stop
Queue the command to indicate an I2C protocol stop.

esp_err_t i2c_master_stop(i2c_cmd_handle_t cmd_handle)

Includes:

• #include <driver/i2c.h>

i2c_master_write
Write a sequence of bytes as a master.

esp_err_t i2c_master_write(
 i2c_cmd_handle_t cmd_handle,
 uint8_t *data,
 size_t data_len,
 bool ack_en)

The data is a pointer to the buffer of data to send. This data is not copied and must be
preserved until after a transmission using i2c_master_cmd_begin().

The data_len is the length of the data to send.

The ack_en is used to flag whether we are looking for an acknowledgment. When the
master (the ESP32) transmits 8 bits of data, we should expect to see the slave
acknowledge receipt. Setting the ack_en flag to true causes the driver to validate that
the transmission worked. Setting it to false bypasses any check for an
acknowledgment.

Includes:

• #include <driver/i2c.h>

i2c_master_write_byte
Write a byte as a master.

esp_err_t i2c_master_write_byte(
 i2c_cmd_handle_t cmd_handle,
 uint8_t data,
 bool ack_en)

The data is the byte to write.

The ack_en is used to flag whether we are looking for an acknowledgment. When the
master (the ESP32) transmits 8 bits of data, we should expect to see the slave
acknowledge receipt. Setting the ack_en flag to true causes the driver to validate that

Page 695

the transmission worked. Setting it to false bypasses any check for an
acknowledgment.

Includes:

• #include <driver/i2c.h>

i2c_param_config
esp_err_t i2c_param_config(
 i2c_port_t i2c_num,
 i2c_config_t *i2c_conf)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

The i2c_conf is a structure containing:

• i2c_mode_t mode – One of

◦ I2C_MODE_SLAVE

◦ I2C_MODE_MASTER

• gpio_num_t sda_io_num

• gpio_pullup_t sda_pullup_en

• gpio_num_t scl_io_num

• gpio_pullup_t scl_pullup_en

• master

◦ uint32_t clk_speed

• slave

◦ uint8_t addr_10bit_en

◦ uint16_t slave_addr

Includes:

• #include <driver/i2c.h>

See also:

• i2c_driver_install

i2c_reset_rx_fifo
esp_err_t i2c_reset_rx_fifo(i2c_port_t i2c_num)

Page 696

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_reset_tx_fifo
esp_err_t i2c_reset_tx_fifo(i2c_port_t i2c_num)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_set_data_mode
esp_err_t i2c_set_data_mode(
 i2c_port_t i2c_num,
 i2c_trans_mode_t tx_trans_mode,
 i2c_trans_mode_t rx_trans_mode)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Both the tx_trans_mode and rx_trans_mode can be one of:

• I2C_DATA_MODE_MSB_FIRST

• I2C_DATA_MODE_LSB_FIRST

Includes:

• #include <driver/i2c.h>

i2c_set_data_timing
esp_err_t i2c_set_data_timing(
 i2c_port_t i2c_num,

Page 697

 int sample_time,
 int hold_time)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_set_period
esp_err_t i2c_set_period(
 i2c_port_t i2c_num,
 int high_period,
 int low_period)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_set_pin
esp_err_t i2c_set_pin(
 i2c_port_t i2c_num,
 gpio_num_t sda_io_num,
 gpio_num_t scl_io_num,
 gpio_pullup_t sda_pullup_en,
 gpio_pullup_t scl_pullup_en,
 i2c_mode_t mode)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_set_start_timing
esp_err_t i2c_set_start_timing(
 i2c_port_t i2c_num,

Page 698

 int setup_time,
 int hold_time)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_set_stop_timing
esp_err_t i2c_set_stop_timing(
 i2c_port_t i2c_num,
 int setup_time,
 int hold_time)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_slave_read_buffer
int i2c_slave_read_buffer(
 i2c_port_t i2c_num,
 uint8_t *data,
 size_t max_size,
 portBASE_TYPE ticks_to_wait)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

i2c_slave_write_buffer
int i2c_slave_write_buffer(
 i2c_port_t i2c_num,

Page 699

 uint8_t *data,
 int size,
 portBASE_TYPE ticks_to_wait)

The i2c_num can be one of:

• I2C_NUM_0

• I2C_NUM_1

Includes:

• #include <driver/i2c.h>

SPI APIs
The ESP-IDF provides a driver for the SPI interface.

See also:

• Using the ESP-IDF SPI driver

spi_bus_add_device
Define a new device to SPI.

esp_err_t spi_bus_add_device(
 spi_host_device_t host,
 spi_device_interface_config_t* dev_config,
 spi_device_handle_t* handle)

When we wish to interact with a device, we need to describe it to our environment. This
returns a handle which we can subsequently use. When we no longer need the device,
we can release resources associated with it via a call to spi_bus_remove_device().
Core within the characteristics that are supplied with this call are the clock speed with
which we will use when communicating and, if needed, which pin we want to use for
slave select (CS). The queue size must also be supplied and must be at least 1.

Host can be one of:

• SPI_HOST (0) – Do not use.

• HSPI_HOST (1)

• VSPI_HOST (2)

The dev_config is a structure that contains:

• uint8_t address_bits – Number of bits to send in address action (0-64).

• uint8_t command_bits – Number of bits to send in command action (0-16).

• uint8_t dummy_bits – Number of filler bits to send between address and data.

Page 700

• uint8_t mode – SPI mode (0-3)

• uint8_t duty_cycle_pos – default 0.

• uint8_t cs_ena_pretrans – Number of bit cycles CS should be activated before
transmission.

• uint8_t cs_ena_posttrans – Number of bit cycles CS should stay active after
transmission.

• int clock_speed_hz – Clock speed in Hz.

• int spics_io_num – CS gpio pin for device or -1 if not used.

• uint32_t flags – Bitwise OR of SPI_DEVICE_* flags.

◦ SPI_DEVICE_TXBIT_LSBFIRST

◦ SPI_DEVICE_RXBIT_LSBFIRST

◦ SPI_DEVICE_3WIRE

◦ SPI_DEVICE_POSITIVE_CS

◦ SPI_DEVICE_HALFDUPLEX

◦ SPI_DEVICE_CLK_AS_CS

• int queue_size – Transaction queue size. This is the number of concurrent SPI
requests that may be in flight at one time. It must be at least 1.

• transaction_cb_t pre_cb – Callback function to be invoked before a
transmission is started.

• transaction_cb_t post_cb – Callback function to be invoked after a transmission
has completed.

The handle is the handle you can subsequently use for interacting with the device.

Includes:

• #include <driver/spi_master.h>

See also:

• spi_bus_initialize

• spi_bus_remove_device

spi_bus_free
Free up a bus.

esp_err_t spi_bus_free(spi_host_device_t host)

Page 701

The host can be one of:

• SPI_HOST (0) – Do not use.

• HSPI_HOST (1)

• VSPI_HOST (2)

Includes:

• #include <driver/spi_master.h>

See also:

• spi_bus_initialize

spi_bus_initialize
Initialize an SPI Bus.

esp_err_t spi_bus_initialize(
 spi_host_device_t host,
 spi_bus_config_t *bus_config,
 int dma_chan)

The ESP32 provides multiple SPI bus instances. We use this API to initialize one of
these buses. A bus is typically initialized only once during the life of an ESP32
application. Primarily, the initialization identifies the externalized GPIO pins that will be
used for the SPI functions core of which are CLK, MOSI and MISO.

Host can be one of:

• SPI_HOST (0) – Do not use. Used internally.

• HSPI_HOST (1)

• VSPI_HOST (2)

The bus_config is a structure containing:

• int mosi_io_num – GPIO for MOSI or -1 if not used.

• int miso_io_num – GPIO for MISO or -1 if not used.

• int sclk_io_num – GPIO pin for CLK or -1 if not used.

• int quadwp_io_num – Specify -1 if not used.

• int quadhd_io_num – Specify -1 if not used.

• int max_transfer_size – Maximum transfer size in bytes. Defaults to 4094 if 0.

The dma_chan is which of the two possible DMA channels to use … either 1 or 2.

Page 702

Includes:

• #include <driver/spi_master.h>

See also:

• spi_bus_free

• spi_bus_add_device

spi_bus_remove_device
Release the resources of a previously registered device.

esp_err_t spi_bus_remove_device(spi_device_handle_t handle)

This function can be called to release the resources allocated by a previous call to
spi_bus_add_device(). Following this call, no further transmission requests should be
made using the now defunct handle.

Includes:

• #include <driver/spi_master.h>

See also:

• spi_bus_add_device

spi_device_get_trans_result
Retrieve results from previous queued transmissions.

esp_err_t spi_device_get_trans_result(
 spi_device_handle_t handle,
 spi_transaction_t **trans_desc,
 TickType_t ticks_to_wait)

When we invoke spi_device_queue_trans() we are requesting a transmission to occur
at some time in the future. Ideally as soon as possible. This function retrieves (if
available) the results from previously queued transmissions.

Includes:

• #include <driver/spi_master.h>

See also:

• spi_device_queue_trans

• spi_device_transmit

spi_device_queue_trans
Queue a request for transmission.

Page 703

esp_err_t spi_device_queue_trans(
 spi_device_handle_t handle,
 spi_transaction_t *trans_desc,
 TickType_t ticks_to_wait)

This function indicates that we have a transmission to be executed against an SPI
device but that we don't need to wait for a response. Rather the request will be
executed when it can and the response will subsequently be available for retrieval using
the function spi_device_get_trans_result().

The trans_desc is a description of a transaction. It contains:

• uint32_t flags – Bit wise OR of the SPI_TRANS_* flags:

◦ SPI_MODE_DIO

◦ SPI_MODE_QIO

◦ SPI_MODE_DIOQIO_ADDR

◦ SPI_USE_RXDATA

◦ SPI_USE_TXDATA

• uint16_t command – Command data. Number of bits sent is defined by
commands_bits value defined in spi_device_interface_config_t.

• uint64_t address – Address data. Number of bits sent is defined by
address_bits value defined in spi_device_interface_config_t.

• size_t length – Total data length to send and receive in bits.

• size_t rxlength – Length of data to receive (in bits). If 0 is supplied, then we
use the what ever value is defined in length.

• void *user – User defined context data.

• A union of:

◦ const void *tx_buffer – Pointer to data used to hold data to be transmitted.

◦ uint8_t tx_data[4] – Used if SPI_USE_TXDATA is flagged.

• A union of:

◦ void *rx_buffer – Pointer to data used to hold data received.

◦ uint8_t rx_data[4] – Used if SPI_USE_RXDATA is flagged.

Includes:

• #include <driver/spi_master.h>

See also:

Page 704

• spi_device_get_trans_result

• spi_device_transmit

spi_device_transmit
Perform a transmission over the SPI bus and wait for a response.

esp_err_t spi_device_transmit(
 spi_device_handle_t handle,
 spi_transaction_t* trans_desc)

Logically, this function is an amalgamation of esp_device_queue_trans() followed by a
call to spi_device_get_trans_result() effectively resulting in a synchronous request
and block for response of an SPI request.

The trans_desc is a description of a transaction. It contains:

• uint32_t flags – Bit wise OR of the SPI_TRANS_* flags:

◦ SPI_MODE_DIO

◦ SPI_MODE_QIO

◦ SPI_MODE_DIOQIO_ADDR

◦ SPI_USE_RXDATA

◦ SPI_USE_TXDATA

• uint16_t command – Command data. Number of bits sent is defined by
commands_bits value defined in spi_device_interface_config_t.

• uint64_t address – Address data. Number of bits sent is defined by
address_bits value defined in spi_device_interface_config_t.

• size_t length – Total data length to send and receive in bits. Note: The size is
in bits … not bytes.

• size_t rxlength – Length of data to receive (in bits). If 0 is supplied, then we
use the what ever value is defined in length.

• void *user – User defined context data.

• A union of:

◦ const void *tx_buffer – Pointer to data used to hold data to be transmitted.

◦ uint8_t tx_data[4] – Used if SPI_USE_TXDATA is flagged.

• A union of:

◦ void *rx_buffer – Pointer to data used to hold data received.

Page 705

◦ uint8_t rx_data[4] – Used if SPI_USE_RXDATA is flagged.

For example:

char data[3];
spi_transaction_t trans_desc;
trans_desc.address = 0;
trans_desc.command = 0;
trans_desc.flags = 0;
trans_desc.length = 3 * 8;
trans_desc.rxlength = 0;
trans_desc.tx_buffer = data;
trans_desc.rx_buffer = data;

data[0] = 0x12;
data[1] = 0x34;
data[2] = 0x56;

ESP_ERROR_CHECK(spi_device_transmit(handle, &trans_desc));

Includes:

• #include <driver/spi_master.h>

See also:

• spi_device_get_trans_result

• spi_device_queue_trans

I2S APIs

i2s_driver_install
esp_err_t i2s_driver_install(
 i2s_port_t i2s_num,
 const i2s_config_t* i2s_config,
 int queue_size,
 void* i2s_queue)

i2s_driver_uninstall
esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num)

i2s_pop_sample
int i2s_pop_sample(
 i2s_port_t i2s_num,
 char* sample,
 TickType_t ticks_to_wait);

i2s_push_sample
int i2s_push_sample(
 i2s_port_t i2s_num,
 const char* sample,
 TickType_t ticks_to_wait)

Page 706

i2s_read_bytes
int i2s_read_bytes(
 i2s_port_t i2s_num,
 char* dest,
 size_t size,
 TickType_t ticks_to_wait);

i2s_set_pin
esp_err_t i2s_set_pin(
 i2s_port_t i2s_num,
 const i2s_pin_config_t* pin)

i2s_set_sample_rates
esp_err_t i2s_set_sample_rates(
 i2s_port_t i2s_num,
 uint32_t rate)

i2s_start
esp_err_t i2s_start(i2s_port_t i2s_num)

i2s_stop
esp_err_t i2s_stop(i2s_port_t i2s_num)

i2s_write_bytes
int i2s_write_bytes(
 i2s_port_t i2s_num,
 const char* src,
 size_t size,
 TickType_t ticks_to_wait);

i2s_zero_dma_buffer
esp_err_t i2s_zero_dma_buffer(i2s_port_t i2s_num);

RMT APIs
The RMT component is the "remote" controller. The word "remote" here means a
remote control such as you would find for controlling your TV or stereo. The primary
function is to create complex digital wave forms that will drive infrared LEDs to generate
a PWM signal in the infrared spectrum. However, we can attach other signal consuming
devices to the output of this data to drive them. A good example is neopixels.

See also:

• Remote Control Peripheral – RMT

rmt_clr_intr_enable_mask
Clear mask value to RMT interrupt enable register.

Page 707

void rmt_clr_intr_enable_mask(uint32_t mask)

• mask – Bit mask to clear the register.

Includes:

• #include <driver/rmt.h>

rmt_config
esp_err_t rmt_config(rmt_config_t* rmt_param)

Configure an RMT channel. The rmt_param is a rich structure containing:

• rmt_mode (rmt_mode_t) – This can be one of

◦ RMT_MODE_TX – Configure this channel for output (transmission).

◦ RMT_MODE_RX – Configure this channel for input (reception).

• channel (rmt_channel_t) – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• clk_div (uint8_t) – The clock divider value. If the base clock is 80MHz then a
divisor of 8 gives us 10MHz, a divisor of 80 gives us 1MHz.

• gpio_num (gpio_num_t) – The gpio number associated with the function.

• mem_block_num (uint8_t) – Memory block number.

• Union of

◦ tx_config – Configuration for transmission.

▪ loop_en (bool) – True if loop output mode.

▪ carrier_en (bool) – Is the carrier enabled.

▪ carier_freq_hz (uint32_t) – Carrier frequency.

▪ carrier_duty_percent (uint8_t)

▪ carrier_level (rmt_carrier_level_t) – One of:

• RMT_CARRIER_LEVEL_LOW

• RMT_CARRIER_LEVEL_HIGH

▪ idle_output_en (bool) – Idle level output enabled.

▪ idle_level (rmt_idle_level_t) – The signal level when idle. One of:

• RMT_IDLE_LEVEL_LOW

• RMT_IDLE_LEVEL_HIGH

◦ rx_config – Configuration information for input reception.

Page 708

▪ filter_en (bool) – Should signal filtering be enabled.

▪ filter_ticks_thresh (uint8_t) – If signal filtering is enabled, this is the
threshold below which transitions will be ignored.

▪ idle_threshold (uint16_t) – The duration of idleness after which the
signal train will be considered complete. If we have a clock div of 255 (the
maximum) and a threshold of 65535 (the maximum), this gives us a
maximum idle period duration of about 209 msecs.

Includes:

• #include <driver/rmt.h>

rmt_driver_install
Initialize the RMT driver.

esp_err_t rmt_driver_install(
 rmt_channel_t channel,
 size_t rx_buf_size,
 int intr_alloc_flags)

• channel – The channel to initialize. A value between RMT_CHANNEL_0 and
RMT_CHANNEL_7.

• size – The size of the RMT channel ring buffer. Can be 0.

• intr_alloc_flags – Normally 0.

Includes:

• #include <driver/rmt.h>

rmt_driver_uninstall
Uninstall the RMT driver.

esp_err_t rmt_driver_uninstall(rmt_channel_t channel)

• channel – The channel to un-install. A value between RMT_CHANNEL_0 and
RMT_CHANNEL_7.

Includes:

• #include <driver/rmt.h>

Page 709

rmt_fill_tx_items
esp_err_t rmt_fill_tx_items(
 rmt_channel_t channel,
 rmt_item32_t* item,
 uint16_t item_num,
 uint16_t mem_offset)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• item – Pointer to items.

• item_num – Number of items.

• mem_offset – Offset into memory

Includes:

• #include <driver/rmt.h>

rmt_get_clk_div
Get the RMT clock divider.

esp_err_t rmt_get_clk_div(
 rmt_channel_t channel,
 uint8_t* div_cnt)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• div_cnt – The divider of the base clock which is 80MHz.

Includes:

• #include <driver/rmt.h>

See also:

• rmt_set_clk_div

rmt_get_mem_block_num
Get the number of memory blocks used by this channel.

esp_err_t rmt_get_mem_block_num(
 rmt_channel_t channel,
 uint8_t* rmt_mem_num)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• rmt_mem_num – A storage area that will be used to hold the number of memory
blocks allocated to the channel.

Includes:

• #include <driver/rmt.h>

Page 710

See also:

• rmt_set_mem_block_num

rmt_get_mem_pd
Get memory low power mode.

esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• pd_en – Pointer to receive the memory low power mode.

Includes:

• #include <driver/rmt.h>

rmt_get_memory_owner
Ge the memory owner of a channel's memory block.

esp_err_t rmt_get_memory_owner(
 rmt_channel_t channel,
 rmt_mem_owner_t* owner)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• owner – A storage area that will be filled in with the owner of the memory block.
One of:

◦ RMT_MEM_OWNER_TX

◦ RMT_MEM_OWNER_RX.

Includes:

• #include <driver/rmt.h>

rmt_get_ringbuf_handler
Get the ring-buffer handler.

esp_err_t rmt_get_ringbuf_handler(
 rmt_channel_t channel,
 RingbufHandle_t *buf_handle)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• buf_handle – A handle to the ring buffer.

Includes:

Page 711

• #include <driver/rmt.h>

• #include <freertos/ringbuf.h>

rmt_get_rx_idle_thresh
Get RMT idle threshold.

esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• thresh – A pointer to storage into which the RX idle threshold will be copied.

Includes:

• #include <driver/rmt.h>

rmt_get_status
Get RMT status.

esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)

• channel

• status

Includes:

• #include <driver/rmt.h>

rmt_get_source_clk
Get the source clock.

esp_err_t rmt_get_source_clk(
 rmt_channel_t channel,
 rmt_source_clk_t* src_clk)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• src_clk – The source of the clock. One of:

◦ RMT_BASECLK_REF – A 1MHz clock (not supported).

◦ RMT_BASECLK_APB – The APB clock at 80MHz.

Includes:

• #include <driver/rmt.h>

Page 712

rmt_get_tx_loop_mode
Get tx loop mode.

esp_err_t rmt_get_tx_loop_mode(
 rmt_channel_t channel,
 bool* loop_en)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• loop_en – The current value of the loop transmission state.

Includes:

• #include <driver/rmt.h>

See also:

• rmt_set_tx_loop_mode

rmt_isr_deregister
De-register a previously registered interrupt handler.

esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)

• handle – A handle returned from a previous call to rmt_isr_register().

Includes:

• #include <driver/rmt.h>

See also:

• rmt_isr_register

rmt_isr_register
Handler for ISR.

esp_err_t rmt_isr_register(
 void (*fn)(void *), void * arg, int intr_alloc_flags, rmt_isr_handle_t *handle)

• fn – A function to be called when an interrupt occurs.

• arg – Parameters/context for the interrupt handler

• intr_alloc_flags – Interrupt allocation flags.

• handle – A handle returned used to refer to this registered interrupt handler.

The signature of the handler function is:

void func(void *args)

Includes:

Page 713

• #include <driver/rmt.h>

See also:

• rmt_isr_deregister

• rmt_clr_intr_enable_mask

• rmt_set_err_intr_en

• rmt_set_intr_enable_mask

• rmt_set_rx_intr_en

• rmt_set_tx_thr_intr_en

rmt_memory_rw_rst
Reset TX/RX memory index.

esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

Includes:

• #include <driver/rmt.h>

rmt_rx_start
Start receiving data.

esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• rx_idx_rst – Set to true to reset the receiver index.

Includes:

• #include <driver/rmt.h>

rmt_rx_stop
Stop receiving data.

esp_err_t rmt_rx_stop(rmt_channel_t channel)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

Includes:

• #include <driver/rmt.h>

Page 714

rmt_set_clk_div
Set RMT clock divider.

esp_err_t rmt_set_clk_div(
 rmt_channel_t channel,
 uint8_t div_cnt)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• div_cnt – RMT counter clock divider.

Includes:

• #include <driver/rmt.h>

See also:

• rmt_get_clk_div

rmt_set_err_intr_en
esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)

Includes:

• #include <driver/rmt.h>

rmt_set_idle_level
esp_err_t rmt_set_idle_level(
 rmt_channel_t channel,
 bool idle_out_en,
 rmt_idle_level_t level)

• idle_out_en – Should an idle level be set.

• level – The idle level. One of:

◦ RMT_IDLE_LEVEL_LOW – The value for a low level.

◦ RMT_IDLE_LEVEL_HIGH – The value for a high level.

Includes:

• #include <driver/rmt.h>

rmt_set_intr_enable_mask
void rmt_set_intr_enable_mask(uint32_t mask)

Includes:

• #include <driver/rmt.h>

Page 715

rmt_set_mem_block_num
Set the number of adjacent memory blocks used by the channel.

esp_err_t rmt_set_mem_block_num(
 rmt_channel_t channel,
 uint8_t blockCount)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• blockCount – The number of memory blocks associated with the channel.
Between 1 and 8.

Includes:

• #include <driver/rmt.h>

See also:

• rmt_get_mem_block_num

rmt_set_mem_pd
Set RMT memory in low power mode.

esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)

Includes:

• #include <driver/rmt.h>

rmt_set_memory_owner
Set the memory owner of a channels memory block.

esp_err_t rmt_set_memory_owner(
 rmt_channel_t channel,
 rmt_mem_owner_t owner)

• channel – The type of owner of the memory block associated with the channel.

• owner – One of RMT_MEM_OWNER_TX or RMT_MEM_OWNER_RX.

Includes:

• #include <driver/rmt.h>

rmt_set_pin
esp_err_t rmt_set_pin(
 rmt_channel_t channel,
 rmt_mode_t mode,
 gpio_num_t gpio_num)

Page 716

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• node

• gpio_num

Includes:

• #include <driver/rmt.h>

rmt_set_rx_filter
esp_err_t rmt_set_rx_filter(
 rmt_channel_t channel,
 bool rx_filter_en,
 uint8_t thresh)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• rx_filter_en – true to enable input filtering and false to disable.

• thresh – The threshold in clock ticks below which incoming signals should be
discarded.

Includes:

• #include <driver/rmt.h>

rmt_set_rx_idle_thresh
Se the RMT RX idle threshold.

esp_err_t rmt_set_rx_idle_thresh(
 rmt_channel_t channel,
 uint16_t thresh)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• thresh – The value in clocks ticks where the lack of a transition indicates a return
to idle mode.

Includes:

• #include <driver/rmt.h>

See also:

• rmt_get_rx_idle_thresh

Page 717

rmt_set_rx_intr_en
Enable or disable an interrupt for having received a signal train.

esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• en – True to enable the interrupt, false to disable.

Includes:

• #include <driver/rmt.h>

rmt_set_tx_carrier
esp_err_t rmt_set_tx_carrier(
 rmt_channel_t channel,
 bool carrier_en,
 uint16_t high_level,
 uint16_t low_level,
 rmt_carrier_level_t carrier_level)

Includes:

• #include <driver/rmt.h>

rmt_set_tx_intr_en
esp_err_t rmt_set_tx_intr_en(
 rmt_channel_t channel,
 bool en)

Includes:

• #include <driver/rmt.h>

See also:

• rmt_set_err_intr_en

• rmt_set_rx_intr_en

• rmt_set_tx_thr_intr_en

rmt_set_tx_loop_mode
esp_err_t rmt_set_tx_loop_mode(
 rmt_channel_t channel,
 bool loop_en)

Includes:

• #include <driver/rmt.h>

See also:

• rmt_get_tx_loop_mode

Page 718

rmt_set_tx_thr_intr_en
esp_err_t rmt_set_tx_thr_intr_en_en(
 rmt_channel_t channel,
 bool en,
 uint16_t evt_thresh)

Includes:

• #include <driver/rmt.h>

rmt_set_source_clk
Set the reference source clock.

esp_err_t rmt_set_source_clk(
 rmt_channel_t channel,
 rmt_source_clk_t base_clk)

• channel – A value between RMT_CHANNEL_0 and RMT_CHANNEL_7.

• base_clk – The source of the clock. One of:

◦ RMT_BASECLK_REF – A 1MHz clock (not supported).

◦ RMT_BASECLK_APB – The APB clock at 80MHz.

Includes:

• #include <driver/rmt.h>

rmt_tx_start
Start the channel transmitting.

esp_err_t rmt_tx_start(
 rmt_channel_t channel,
 bool tx_idx_rst)

• channel – The channel to start transmitting upon.

• tx_idx_rst – If true, the transmission will start at 1st memory block otherwise it
will continue from where it was last stopped.

Includes:

• #include <driver/rmt.h>

Page 719

rmt_tx_stop
Stop the channel transmitting.

esp_err_t rmt_tx_stop(rmt_channel_t channel)

• channel – The channel to stop transmitting.

Includes:

• #include <driver/rmt.h>

rmt_wait_tx_done
esp_err_t rmt_wait_tx_done(rmt_channel_t channel)

Includes:

• #include <driver/rmt.h>

rmt_write_items
Send wave forms.

esp_err_t rmt_write_items(
 rmt_channel_t channel,
 rmt_item32_t* rmt_item,
 int item_num,
 bool wait_tx_done)

• channel – The channel to transmit upon. A value between RMT_CHANNEL_0 and
RMT_CHANNEL_7.

• rmt_item – An array of items to transmit. This is a data type that is a union
between:

◦ uint32_t val – The value of an item as a whole.

◦ structure of:

▪ uint32_t duration0 – The duration of the 1st part of the item.

▪ uint32_t level0 – The signal level of the 1st part of the item.

▪ uint32_t duration1 – The duration of the 2nd part of the item.

▪ uint32_t level1 – The signal level of the 2nd part of the item.

• item_num – Number of items to transmit.

• wait_tx_done – If true, will wait for transmission to complete.

Page 720

It is vital to note that the array of items passed in is not copied. Instead the data is used
for the duration of the writing. As such one can't release or otherwise modify the data
until after the write is complete.

Includes:

• #include <driver/rmt.h>

LEDC/PWM APIs
This section discusses the driver APIs for the LEDC / PWM access.

See also:

• LEDC – Pulse Width Modulation – PWM

ledc_bind_channel_timer
esp_err_t ledc_bind_channel_timer(
 ledc_mode_t speedMode,
 uint32_t channel,
 uint32_t timerIdx)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel can be one LED_CHANNEL_0 → LEDC_CHANNEL_7.

Includes:

• #include <driver/ledc.h>

ledc_channel_config
Configure a PWM channel.

esp_err_t ledc_channel_config(
 ledc_channel_config_t* ledcConf)

The ledcConf structure contains:

• gpio_num – The GPIO pin upon which the signal will appear.

• speed_mode – One of:

◦ LEDC_HIGH_SPEED_MODE

• channel – One of:

◦ LEDC_CHANNEL0 → LEDC_CHANNEL7

• intr_type – One of:

Page 721

◦ LEDC_INTR_DISABLE

◦ LEDC_INTR_FADE_END

• timer_sel – One of:

◦ LEDC_TIMER0 → LEDC_TIMER_3

• duty – Duty range. The duration of the high signal within any given period. The
value is specified as the value of the timer after which the signal will drop low.
Note that the granularity of a timer is specified when the timer is configured and
can be between 10 and 15 bits. The "speed' of increments is defined by the
frequency property of the timer.

Includes:

• #include <driver/ledc.h>

See also:

• ledc_timer_config

ledc_fade_func_install
esp_err_t ledc_fade_func_install(int intr_alloc_flags)

Includes:

• #include <driver/ledc.h>

ledc_fade_start
esp_err_t ledc_fade_start(
 ledc_channel_t channel,
 ledc_fade_mode_t wait_done)

Includes:

• #include <driver/ledc.h>

ledc_fade_func_uninstall
void ledc_fade_func_uninstall()

Includes:

• #include <driver/ledc.h>

ledc_get_duty
Get the duty value for the channel.

Page 722

int ledc_get_duty(
 ledc_mode_t speedMode,
 ledc_channel_t channel)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel can be one LED_CHANNEL_0 → LEDC_CHANNEL_7.

Includes:

• #include <driver/ledc.h>

See also:

• ledc_set_duty

• ledc_channel_config

• ledc_update_duty

ledc_get_freq
Get the frequency for the timer.

uint32_t ledc_get_freq(
 ledc_mode_t speedMode,
 ledc_timer_t timerNum)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The timerNum can be one of:

• LEDC_TIMER_0

• LEDC_TIMER_1

• LEDC_TIMER_2

• LEDC_TIMER_3

Includes:

• #include <driver/ledc.h>

ledc_set_duty
Set the duty value for the channel.

esp_err_t ledc_set_duty(
 ledc_mode_t speedMode,
 ledc_channel_t channel,
 uint32_t duty)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel can be one LED_CHANNEL_0 → LEDC_CHANNEL_7.

Page 723

The duty value is set as a function of the number of bits set for the channel.

Includes:

• #include <driver/ledc.h>

See also:

• ledc_update_duty

• ledc_channel_config

• ledc_get_duty

ledc_isr_register
Register an ISR.

esp_err_t ledc_isr_register(
 uint32_t ledc_intr_num,
 void (*fn)(void *), void *arg)

Includes:

• #include <driver/ledc.h>

ledc_set_fade
Set the fade value.

esp_err_t ledc_set_fade(
 ledc_mode_t speedMode,
 uint32_t channel,
 uint32_t duty,
 ledc_duty_duration_t graduleDirection,
 uint32_t stepNum,
 uint32_t dutyCycleNum,
 uint32_t dutyScale)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel is the channel against which we are setting the fading.

The duty is the start value of the duty against which we will then fade.

The graduleDuration is the direction of the fade. It may be one of:

• LEDC_DUTY_DIR_INCREASE – Increase the duty value over time.

• LEDC_DUTY_DIR_DECREASE – Decrease the duty value over time.

The dutyScale is the amount that the duty value is changed each cycle.

The dutyCycleNum is the number of clock cycles that pass before the duty value of the
channel is changed by the dutyScale amount.

Page 724

The stepNum is the count of the number of times the duty value will change before the
fade cycle is considered complete.

Includes:

• #include <driver/ledc.h>

ledc_set_fade_with_step
esp_err_t ledc_set_fade_with_step(
 ledc_mode_t speed_mode,
 ledc_channel_t channel,
 int target_duty,
 int scale,
 int cycle_num)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel can be one LED_CHANNEL_0 → LEDC_CHANNEL_7.

Includes:

• #include <driver/ledc.h>

ledc_set_fade_with_time
Fade from current value to target valie.

esp_err_t ledc_set_fade_with_time(
 ledc_mode_t speed_mode,
 ledc_channel_t channel,
 int target_duty,
 int max_fade_time_ms)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel can be one LED_CHANNEL_0 → LEDC_CHANNEL_7.

The target_duty is the target duty value we want to reach relative to the current value.

The max_fade_time_ms is the time it should take us to reach the duty value.

Includes:

• #include <driver/ledc.h>

ledc_set_freq
Set the frequency for the timer.

Page 725

esp_err_t ledc_set_freq(
 ledc_mode_t speedMode, // LEDC_HIGH_SPEED_MODE only
 ledc_timer_t timerNum,
 uint32_t freqHz)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The timerNum can be one of:

• LEDC_TIMER_0

• LEDC_TIMER_1

• LEDC_TIMER_2

• LEDC_TIMER_3

Includes:

• #include <driver/ledc.h>

ledc_stop
Halt the PWM signal output.

esp_err_t ledc_stop(
 ledc_mode_t speedMode,
 ledc_channel_t channel,
 uint32_t idleLevel)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel can be one LED_CHANNEL_0 → LEDC_CHANNEL_7.

Includes:

• #include <driver/ledc.h>

ledc_timer_config
Configure a timer.

esp_err_t ledc_timer_config(
 ledc_timer_config_t* timerConf)

The timerConf is a pointer to a structure containing:

• ledc_mode_t speed_mode – Can be one of:

◦ LEDC_HIGH_SPEED_MODE

• ledc_timer_bit_t bit_num – Can be one of:

◦ LEDC_TIMER_10_BIT – 0-1023

Page 726

◦ LEDC_TIMER_11_BIT – 0-2047

◦ LEDC_TIMER_12_BIT – 0-4095

◦ LEDC_TIMER_13_BIT – 0-8191

◦ LEDC_TIMER_14_BIT – 0-16383

◦ LEDC_TIMER_15_BIT – 0-32767

• ledc_timer_t timer_num – Can be one of:

◦ LEDC_TIMER_0

◦ LEDC_TIMER_1

◦ LEDC_TIMER_2

◦ LEDC_TIMER_3

• uint32_t freq_hz – The frequency of the signal in Hz.

Includes:

• #include <driver/ledc.h>

See also:

• LEDC – Pulse Width Modulation – PWM

• ledc_channel_config

ledc_timer_pause
Pause the timer.

esp_err_t ledc_timer_pause(
 ledc_mode_t speedMode,
 uint32_t timerSel)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

Includes:

• #include <driver/ledc.h>

ledc_timer_resume
Resume the timer.

esp_err_t ledc_timer_resume(
 ledc_mode_t speedMode,
 uint32_t timerSel)

Page 727

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

Includes:

• #include <driver/ledc.h>

ledc_timer_rst
Reset the timer.

esp_err_t ledc_timer_rst(
 ledc_mode_t speedMode,
 uint32_t timerSel)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

Includes:

• #include <driver/ledc.h>

ledc_timer_set
Explicitly set the timer details.

esp_err_t ledc_timer_set(
 ledc_mode_t speedMode,
 ledc_timer_t timerSel,
 uint32_t divNum,
 uint32_t bitNum,
 ledc_clk_src_t clkSrc)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE (value is 0).

The timerSel can be one of:

• LEDC_TIMER_0

• LEDC_TIMER_1

• LEDC_TIMER_2

• LEDC_TIMER_3

The divNum is ??.

The bitNum is ??.

The clkSrc is one of LEDC_REF_TICK (value is 0, 1MHz) or LEDC_APB_CLK (value is 1,
80Mhz).

Includes:

• #include <driver/ledc.h>

Page 728

ledc_update_duty
Update the duty value or the fade parameters for the channel.

esp_err_t ledc_update_duty(
 ledc_mode_t speedMode,
 ledc_channel_t channel)

Currently, speedMode can only be LEDC_HIGH_SPEED_MODE.

The channel can be one LED_CHANNEL_0 → LEDC_CHANNEL_7.

Includes:

• #include <driver/ledc.h>

See also:

• ledc_get_duty

• ledc_set_duty

• ledc_channel_config

Pulse Counter

pcnt_counter_clear
esp_err_t pcnt_counter_clear(pcnt_unit_t pcnt_unit)

pcnt_counter_pause
esp_err_t pcnt_counter_pause(pcnt_unit_t pcnt_unit)

pcnt_counter_resume
esp_err_t pcnt_counter_resume(pcnt_unit_t pcnt_unit)

pcnt_event_disable
esp_err_t pcnt_event_disable(
 pcnt_unit_t unit,
 pcnt_evt_type_t evt_type)

Page 729

pcnt_event_enable
esp_err_t pcnt_event_enable(
 pcnt_unit_t unit,
 pcnt_evt_type_t evt_type)

pcnt_filter_enable
esp_err_t pcnt_filter_enable(pcnt_unit_t unit)

pcnt_filter_disable
esp_err_t pcnt_filter_disable(pcnt_unit_t unit)

pcnt_get_counter_value
esp_err_t pcnt_get_counter_value(
 pcnt_unit_t pcnt_unit,
 int16_t* count)

pcnt_get_event_value
esp_err_t pcnt_get_event_value(
 pcnt_unit_t unit,
 pcnt_evt_type_t evt_type,
 int16_t *value)

pcnt_get_filter_value
esp_err_t pcnt_get_filter_value(
 pcnt_unit_t unit,
 uint16_t *filter_val)

pcnt_intr_enable
esp_err_t pcnt_intr_enable(pcnt_unit_t pcnt_unit)

pcnt_intr_disable
esp_err_t pcnt_intr_disable(pcnt_unit_t pcnt_unit)

pcnt_isr_register
esp_err_t pcnt_isr_register(
 uint32_t pcnt_intr_num,
 void (*fn)(void*), void * arg)

Page 730

pcnt_set_event_value
esp_err_t pcnt_set_event_value(
 pcnt_unit_t unit,
 pcnt_evt_type_t evt_type,
 int16_t value)

pcnt_set_filter_value
esp_err_t pcnt_set_filter_value(
 pcnt_unit_t unit,
 uint16_t filter_val)

pcnt_set_mode
esp_err_t pcnt_set_mode(
 pcnt_unit_t unit,
 pcnt_channel_t channel,
 pcnt_count_mode_t pos_mode,
 pcnt_count_mode_t neg_mode,
 pcnt_ctrl_mode_t hctrl_mode,
 pcnt_ctrl_mode_t lctrl_mode)

pcnt_set_pin
esp_err_t pcnt_set_pin(pcnt_unit_t unit, pcnt_channel_t channel, int pulse_io, int
ctrl_io)

pcnt_uint_config
esp_err_t pcnt_unit_config(pcnt_config_t *pcnt_config)

Logging
ESP-IDF provides a set of logging functions primarily used for debugging. The primary
include file is called "esp_log.h".

esp_log_level_set
Set the log level for the specified tag.

void esp_log_level_set(
 const char *tag,
 esp_log_level_t level)

The tag is the identifier for the class of logging. The value "*" resets all tags to the
specified log level.

The level is the level of logging at or above that will be included in the log output. It may
be one of:

Page 731

• ESP_LOG_VERBOSE (5) – Log at the verbose level.

• ESP_LOG_DEBUG (4) – Log at the debug level.

• ESP_LOG_INFO (3) – Log at the information level.

• ESP_LOG_WARN (2) – Log at the warning level.

• ESP_LOG_ERROR (1) – Log at the error level.

• ESP_LOG_NONE (0) – No logging.

Invoking esp_log_level_set("*", ESP_LOG_ERROR), disables all messages except
errors.

Includes:

• #include <esp_log.h>

See also:

• ESP-IDF logging

esp_log_set_vprintf
Specify a function that will be used to output the log data.

void esp_log_set_vprintf(vprintf_like_t func)

 By default, the output of logging is sent to the UART but we may wish to perform other
tasks such as a circular log in memory or writing to a storage device or sending over a
TCP/IP socket. By providing our own function here, we can control the output
destination and event tinker with the format (if needed).

The default function is "&vprintf".

Includes:

• #include <esp_log.h>

See also:

• ESP-IDF logging

esp_log_write
Write an entry to the output log.

void esp_log_write(
 esp_log_level_t level,
 const char *tag,
 const char *format, …)

The level is the level of this log record being written. It may be one of:

Page 732

• ESP_LOG_VERBOSE – Log at the verbose level.

• ESP_LOG_DEBUG – Log at the debug level.

• ESP_LOG_INFO – Log at the information level.

• ESP_LOG_WARN – Log at the warning level.

• ESP_LOG_ERROR – Log at the error level.

• ESP_LOG_NONE – No logging.

The tag is the identifier for this tag of log and format is the specification of what is to be
written. Ideally we shouldn't call this function directly but instead use of the logging
macros such as ESP_LOGV(tag, format, …).

Includes:

• #include <esp_log.h>

See also:

• ESP-IDF logging

Non Volatile Storage
The non-volatile storage components save and load data from storage that is preserved
between boots.

See also:

• Non Volatile Storage

nvs_close
Close a previously opened handle.

void nvs_close(nvs_handle handle)

Close a handle that was previously opened by a call to nvs_open(). Remember that
updates to the store are not completed until after a call to nvs_commit(). Closing a
handle without performing a commit will discard any changes.

Includes:

• #include <nvs.h>

See also:

• nvs_open

Page 733

nvs_commit
Commit changes to non volatile storage.

esp_err_t nvs_commit(nvs_handle handle)

Any writes made against the storage are committed at this point. Note that writes may
have been committed before this point but this forces all the writes to be flushed. Think
of this as committing any pending writes as opposed to anything related to a
transaction.

Includes:

• #include <nvs.h>

nvs_erase_all
Erase all the name value pairs.

esp_err_t nvs_erase_all(nvs_handle handle)

Erase all the name value pairs. Note that this may not be truly performed until after a
call to nvs_commit().

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_erase_key
Erase a specific name/value key pair.

esp_err_t nvs_erase_key(
 nvs_handle handle,
 char *key)

Erase the name/value pair with the given key. The deletion may not truly occur until
after an associated commit is made.

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_flash_init
Initialize NVS with defaults.

Page 734

esp_err_t nvs_flash_init(void)

The defaults as of 2016-10 are a 12KByte area starting at 0x0000 6000 in flash offset.
This is 0x0000 6000 to 0x0000 8FFF (by offsets).

Includes:

• #include <nvs_flash.h>

nvs_flash_init_custom
Custom initialize NVS.

esp_err_t nvs_flash_init_custom(
 uint32_t baseSector,
 uint32_t sectorCount)

Includes:

• #include <nvs_flash.h>

nvs_get_blob
Retrieve a blob of data from storage.

esp_err_t nvs_get_blob(
 nvs_handle handle,
 const char *key,
 void *out,
 size_t *length)

The out is a pointer to the storage that will be used to hold the retrieved data. On input
length holds the size of the storage available to hold the result and will be updated with
the actual length retrieved.

If out has a NULL value then the length that is needed to be allocated to hold the data is
returned in length.

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

Page 735

nvs_get_str
Retrieve a null terminated string from storage.

esp_err_t nvs_get_str(
 nvs_handle handle,
 const char *key,
 char *out,
 size_t *length)

The out is a pointer to the storage that will be used to hold the retrieved data. On input
length holds the size of the storage available to hold the result and will be updated with
the actual length retrieved.

If out has a NULL value then the length that is needed to be allocated to hold the data is
returned in length. This includes the NULL byte terminator.

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_get_i8
Retrieve an 8 bit integer.

esp_err_t nvs_get_i8(
 nvs_handle handle,
 const char *key,
 int8_t *out_value)

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_get_i16
Retrieve a 16 bit integer.

esp_err_t nvs_get_i16(
 nvs_handle handle,
 const char *key,
 int16_t *out_value)

Page 736

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_get_i32
Retrieve a 32 bit integer.

esp_err_t nvs_get_i32(
 nvs_handle handle,
 const char *key,
 int32_t *out_value)

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_get_i64
Retrieve a 64 bit integer.

esp_err_t nvs_get_i64(
 nvs_handle handle,
 const char *key,
 int64_t *out_value)

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_get_u8
Retrieve an unsigned 8 bit integer.

Page 737

esp_err_t nvs_get_u8(
 nvs_handle handle,
 const char *key,
 uint8_t *out_value)

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_get_u16
Retrieve an unsigned 16 bit integer.

esp_err_t nvs_get_u16(
 nvs_handle handle,
 const char *key,
 uint16_t *outValue)

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_get_u32
Retrieve an unsigned 32 bit integer.

esp_err_t nvs_get_u32(
 nvs_handle handle,
 const char *key,
 uint32_t *outValue)

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

Page 738

nvs_get_u64
Retrieve an unsigned 64 bit integer.

esp_err_t nvs_get_u64(
 nvs_handle handle,
 const char *key,
 uint64_t *outValue)

The return value is ESP_OK on success and an indication code on error. Common
codes include:

• ESP_ERR_NVS_NOT_FOUND – Key not found.

Includes:

• #include <nvs.h>

nvs_open
Open a storage area with a given namespace.

esp_err_t nvs_open(
 const char *name,
 nvs_open_mode open_mode,
 nvs_handle *outHandle)

Open a given named storage area for access. The name of the area is supplied in the
name parameter. The open_mode may be one of:

• NVS_READWRITE – The application can read and write the storage.

• NVS_READONLY – The application can only read the storage.

The outHandle is a pointer to storage where a handle will be stored. This is the handle
passed into other NVS API calls.

If the call succeeded, ESP_OK will be returned. Otherwise other codes such as:

• ESP_ERR_NVS_NOT_FOUND – Namespace doesn't exist and opened read-only.

For example:

nvs_handle handle;
nvs_open("namespace", NVS_READWRITE, &handle);
…
nvs_close(handle);

Includes:

• #include <nvs.h>

See also:

Page 739

• nvs_close

nvs_set_blob
Save a blob of data to storage. The maximum size is 4000 bytes per blob.

esp_err_t nvs_set_blob(
 nvs_handle handle,
 const char *key,
 const void *value,
 size_t length)

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_set_str
Save a null terminated string.

esp_err_t nvs_set_str(
 nvs_handle handle,
 const char *key,
 const char *value)

The key is the key against which the string will be saved.

The value is the value to save.

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_set_i8
Save an 8 bit integer.

esp_err_t nvs_set_i8(
 nvs_handle handle,
 const char *key,
 int8_t value)

Includes:

• #include <nvs.h>

See also:

• nvs_commit

Page 740

nvs_set_i16
Save a 16 bit integer.

esp_err_t nvs_set_i16(
 nvs_handle handle,
 const char *key,
 int16_t value)

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_set_i32
Save a 32 bit integer.

esp_err_t nvs_set_i32(
 nvs_handle handle,
 const char *key,
 int32_t value)

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_set_i64
Save a 64 bit integer.

esp_err_t nvs_set_i64(
 nvs_handle handle,
 const char *key,
 int64_t value)

See also:

• nvs_commit

nvs_set_u8
Save an unsigned 8 bit integer.

esp_err_t nvs_set_u8(
 nvs_handle handle,

Page 741

 const char *key,
 uint8_t value)

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_set_u16
Save an unsigned 16 bit integer.

esp_err_t nvs_set_u16(
 nvs_handle handle,
 const char *key,
 uint16_t value)

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_set_u32
Save an unsigned 32 bit integer.

esp_err_t nvs_set_u32(
 nvs_handle handle,
 const char *key,
 uint32_t value)

Includes:

• #include <nvs.h>

See also:

• nvs_commit

nvs_set_u64
Save an unsigned 64 bit integer.

esp_err_t nvs_set_u64(
 nvs_handle handle,
 const char *key,
 uint64_t value)

Includes:

• #include <nvs.h>

Page 742

See also:

• nvs_commit

Partition API
See also:

• Partition table

esp_partition_erase_range
Erase a range of data within a partition.

esp_err_t esp_partition_erase_range(
 const esp_partition_t* partition,
 uint32_t start_addr,
 uint32_t size);

Includes

• #include <esp_partition.h>

esp_partition_find
Find a partition with a given type and optionally a subtype and/or label.

esp_partition_iterator_t esp_partition_find(
 esp_partition_type_t type,
 esp_partition_subtype_t subtype,
 const char* label)

• type – The type of partition being sought. One of:

◦ ESP_PARTITION_TYPE_APP

◦ ESP_PARTITION_TYPE_DATA

• subtype – The sub type of the partition being sought. One of:

◦ ESP_PARTITION_SUBTYPE_APP_FACTORY

◦ ESP_PARTITION_SUBTYPE_APP_OTA_xxx

◦ ESP_PARTITION_SUBTYPE_APP_TEST

◦ ESP_PARTITION_SUBTYPE_DATA_OTA

◦ ESP_PARTITION_SUBTYPE_DATA_PHY

◦ ESP_PARTITION_SUBTYPE_DATA_NVS

Page 743

◦ ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD

◦ ESP_PARTITION_SUBTYPE_DATA_FAT

◦ ESP_PARTITION_SUBTYPE_DATA_SPIFFS

◦ ESP_PARTITION_SUBTYPE_DATA_COREDUMP

◦ ESP_PARTITION_SUBTYPE_ANY

• label – The label of the partition being sought or NULL for don't care.

The return is an iterator that can be used to iterate over the found partitions. If no
partitions were found that matched, then NULL is returned. The iterator must be
released with esp_partition_iterator_release() when finished. To move to the next
iterator call esp_partition_next().

Includes

• #include <esp_partition.h>

See also:

• esp_partition_get

• esp_partition_iterator_release

esp_partition_find_first
Obtain the first partition that matches the details or NULL if none match.

const esp_partition_t* esp_partition_find_first(
 esp_partition_type_t type,
 esp_partition_subtype_t subtype,
 const char* label)

• type – The type of partition being sought. One of:

◦ ESP_PARTITION_TYPE_APP

◦ ESP_PARTITION_TYPE_DATA

• subtype – The sub type of the partition being sought. One of:

◦ ESP_PARTITION_SUBTYPE_APP_FACTORY

◦ ESP_PARTITION_SUBTYPE_APP_OTA_xxx

◦ ESP_PARTITION_SUBTYPE_APP_TEST

◦ ESP_PARTITION_SUBTYPE_DATA_OTA

◦ ESP_PARTITION_SUBTYPE_DATA_PHY

◦ ESP_PARTITION_SUBTYPE_DATA_NVS

Page 744

◦ ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD

◦ ESP_PARTITION_SUBTYPE_DATA_FAT

◦ ESP_PARTITION_SUBTYPE_DATA_SPIFFS

◦ ESP_PARTITION_SUBTYPE_DATA_COREDUMP

◦ ESP_PARTITION_SUBTYPE_ANY

• label – The label of the partition being sought or NULL for don't care.

The return is an instance of the description of the partition. That is a data structure that
contains:

• type – One of

◦ ESP_PARTITION_TYPE_APP

◦ ESP_PARTITION_TYPE_DATA

• subtype – One of:

◦ ESP_PARTITION_SUBTYPE_APP_FACTORY

◦ ESP_PARTITION_SUBTYPE_APP_OTA_xxx

◦ ESP_PARTITION_SUBTYPE_APP_TEST

◦ ESP_PARTITION_SUBTYPE_DATA_OTA

◦ ESP_PARTITION_SUBTYPE_DATA_PHY

◦ ESP_PARTITION_SUBTYPE_DATA_NVS

◦ ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD

◦ ESP_PARTITION_SUBTYPE_DATA_FAT

◦ ESP_PARTITION_SUBTYPE_DATA_SPIFFS

◦ ESP_PARTITION_SUBTYPE_DATA_COREDUMP

• address – Starting address of the partition in flash.

• size – Size of the partition in bytes.

• label – NULL terminated string describing the partition.

• encrypted – True if the partition is encrypted.

Includes

• #include <esp_partition.h>

Page 745

esp_partition_get
Get the partition details for the current iterator.

const esp_partition_t *esp_partition_get(esp_partition_iterator_t iterator)

The return is an instance of the description of the partition. That is a data structure that
contains:

• type – One of

◦ ESP_PARTITION_TYPE_APP (0x00)

◦ ESP_PARTITION_TYPE_DATA (0x01)

• subtype – One of:

◦ ESP_PARTITION_SUBTYPE_APP_FACTORY (0x00)

◦ ESP_PARTITION_SUBTYPE_APP_OTA_xxx (0x10 - 0x1F)

◦ ESP_PARTITION_SUBTYPE_APP_TEST (0x20)

◦ ESP_PARTITION_SUBTYPE_DATA_OTA (0x00)

◦ ESP_PARTITION_SUBTYPE_DATA_PHY (0x01)

◦ ESP_PARTITION_SUBTYPE_DATA_NVS (0x02)

◦ ESP_PARTITION_SUBTYPE_DATA_COREDUMP (0x03)

◦ ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD (0x80)

◦ ESP_PARTITION_SUBTYPE_DATA_FAT (0x81)

◦ ESP_PARTITION_SUBTYPE_DATA_SPIFFS (0x82)

• address – Starting address of the partition in flash.

• size – Size of the partition in bytes.

• label – NULL terminated string describing the partition.

• encrypted – True if the partition is encrypted.

Includes

• #include <esp_partition.h>

See also:

• esp_partition_find

Page 746

esp_partition_iterator_release
Release a previously constructed iterator.

void esp_partition_iterator_release(esp_partition_iterator_t iterator)

Includes

• #include <esp_partition.h>

See also:

• esp_partition_find

esp_partition_mmap
Memory map the partition.

esp_err_t esp_partition_mmap(
 const esp_partition_t* partition,
 uint32_t offset,
 uint32_t size,
 spi_flash_mmap_memory_t memory,
 const void** out_ptr,
 spi_flash_mmap_handle_t* out_handle)

Includes

• #include <esp_partition.h>

esp_partition_next
Move the iterator to the next partition element.

esp_partition_iterator_t esp_partition_next(esp_partition_iterator_t iterator)

Includes

• #include <esp_partition.h>

See also:

• esp_partition_find

• esp_partition_iterator_release

esp_partition_read
Read data from the partition.

esp_err_t esp_partition_read(
 const esp_partition_t* partition,
 size_t src_offset,
 void* dst,
 size_t size)

Page 747

Includes

• #include <esp_partition.h>

esp_partition_write
Write data to the partition.

esp_err_t esp_partition_write(
 const esp_partition_t* partition,
 size_t dst_offset,
 const void* src,
 size_t size)

Includes

• #include <esp_partition.h>

Virtual File System
See also:

• Virtual File System

esp_vfs_dev_uart_register
void esp_vfs_dev_uart_register()

Register the virtual file system known as "/dev/uart" as a serial port interface. We can
thus access "/dev/uart/0", "/dev/uart/1" and "/dev/uart/2".

Functions support by this file system are:

• open –

• close –

• write –

• fstat –

Note that read() is not yet supported.

See also:

• Using the VFS component with serial

esp_vfs_register
Register a new VFS.

esp_err_t esp_vfs_register(
 const char *base_path,

Page 748

 const esp_vfs_t *vfs,
 void *ctx);

Register a new virtual file system. The base_path is a C string that can be no more
than ESP_VFS_PATH_MAX characters in length (currently defined as 15). It must start with
a "/" character and must not end with a "/". This will serve as the junction point for
accessing data through this file system.

The vfs is a pointer to an esp_vfs_t that must be populated by the application making
the call to esp_vfs_register. The data structure does not have to be maintained after
making the call as a copy is made.

The ctx is a pointer to data that is passed to the registered functions if the vfs "flags"
attribute is set to ESP_VFS_FLAG_CONTEXT_PTR. When used, all the callback functions
have an additional option which is the context. The names of the functions change to
have an "_p" after them. For example, with the default setting, the close function
signature is:

int close(int fd)

while when the context flag is set, the function signature changes to:

int close_p(void *ctx, int fd)

and the assignment property in the esp_vfs_t structure changes to the "_p" versions.

Within the esp_vfs_t data structure we have the following fields:

• fd_offset – Offset value for numeric file descriptors.

• flags – Flags associated with this VFS. Choices today are:

◦ ESP_VFS_FLAG_DEFAULT – Default value.

◦ ESP_VFS_FLAG_CONTEXT_PTR – The context pointer functions are used and the
context data is passed in.

• write – A function called to write data.

size_t (*write)(int fd, const void *data, size_t size)

Write into the file specified by the fd file descriptor the data pointed to by data of length
size bytes. The return is the number of bytes actually written.

• lseek – A function called to seek within a file.

off_t (*lseek)(int fd, off_t offset, int whence)

Page 749

The whence parameter is the controller of how offset is applied:

◦ SEEK_SET – Set the position to an absolute of offset.

◦ SEEK_CUR – Set the position relative to the current position plus offset. Offset
can be negative to seek backwards.

◦ SEEK_END – Set the position relative to the end of the file plus offset. Offset
can be used as 0 or negative.

• read – A function called to read data.

ssize_t (*read)(int fd, void *dst, size_t size)

• open – A function called to open a file.

int (*open)(const char *path, int flags, int accessMode)

The path is the path to the local file. The VFS prefix is removed and only the local file
part is passed in. The flags are the operational flags as described in the Unix open()
system call. The accessMode are the permission of the file when it is created.

• close – A function called to close a file.

int (*close)(int fd)

• fstat – A function called to stat a file by file descriptor.

int (*fstat)(int fd, struct stat *st)

• stat – A function called to stat a file by name.

int (*stat)(const char *path, struct stat *st)

The struct stat contains:

◦ st_dev

◦ st_ino

◦ st_mode

◦ st_nlink

◦ st_uid

◦ st_gid

Page 750

◦ st_rdev

◦ st_size

◦ st_blksize

◦ st_blocks

◦ st_atime

◦ st_mtime

◦ st_ctime

• link – A function called to link a file.

int (*link)(const char *oldPath, const char *newPath)

The mapped POSIX api is: man(2) – link

• unlink – A function called to unlink a file.

int (*unlink)(const char *path)

The mapped POSIX api is: man(2) – unlink

• rename – A file called to rename a file.

int (*rename)(const char *oldPath, const char *newPath)

• opendir – Open a directory for reading.

DIR *opendir(const char *name)

• readdir – Read the next entry in the directory stream.

struct dirent readdir(DIR *pdir)

See also:

• man(3) – readdir

• telldir – Return the current location in the directory stream.

long telldir(DIR *pdir)

See also:

• man(3) – telldir

Page 751

https://linux.die.net/man/3/telldir
https://linux.die.net/man/3/readdir
https://linux.die.net/man/2/unlink
https://linux.die.net/man/2/link

• seekdir – Set the position of the next readdir().

void seekdir(DIR *pdir, long offset)

See also:

• man(3) – seekdir

• closedir – Close a directory.

int closedir(DIR *pdir)

See also:

• man(3) – closedir

• mkdir – Create a directory.

int mkdir(const char *name, mode_t mode)

See also:

• man(3) – mkdir

• rmdir – Delete a directory.

int rmdir(const char *name)

See also:

• man(2) – rmdir

Includes:

• esp_vfs.h

See also:

• man(2) – open

• man(2) – close

• man(3) – closedir

• man(2) – fstat

• man(2) – link

• man(3) – mkdir

• man(3) – readdir

• man(2) – rename

• man(2) – rmdir

• man(3) – seekdir

• man(2) – stat

• man(3) – telldir

• man(2) – unlink

• man(2) – write

Page 752

https://linux.die.net/man/2/write
https://linux.die.net/man/2/unlink
https://linux.die.net/man/3/telldir
https://linux.die.net/man/2/stat
https://linux.die.net/man/3/seekdir
https://linux.die.net/man/2/rmdir
https://linux.die.net/man/2/rename
https://linux.die.net/man/3/readdir
https://linux.die.net/man/3/mkdir
https://linux.die.net/man/2/link
https://linux.die.net/man/2/fstat
https://linux.die.net/man/3/closedir
https://linux.die.net/man/2/close
https://linux.die.net/man/2/open
https://linux.die.net/man/2/rmdir
https://linux.die.net/man/3/mkdir
https://linux.die.net/man/3/closedir
https://linux.die.net/man/3/seekdir

FatFs file system
See also:

• FATFS File System

esp_vfs_fat_register
esp_err_t esp_vfs_fat_register(
 const char *base_path,
 const char *fat_drive,
 size_t max_files,
 FATFS **out_fs)

The base_path is where the FAT file system should be registered.

The fat_drive is a FAT file system drive specification. If we only have one drive then
this can be the empty string.

The max_files is the maximum number of files we can have open at one time.

The out_fs is a pointer to the FATFS structure used in the f_mount() call.

Includes:

• #include <esp_vfs_fat.h>

esp_vfs_fat_sdmmc_mount
Mount an SD card as a posix file system.

esp_err_t esp_vfs_fat_sdmmc_mount(
 const char *base_path,
 const sdmmc_host_t *host_config,
 const sdmmc_slot_config_t *slot_config,
 const esp_vfs_fat_sdmmc_mount_config_t *mount_config,
 sdmmc_card_t **out_card)

The base_path is the path in the POSIX file system which acts as the mount point for
the files hosted in the FAT32 file system contained on the card. A common example is
"/sdcard".

The host_config is an instance of sdmmc_host_t and is commonly configured using
SDMMC_HOST_DEFAULT(). For example:

sdmmc_host_t host_config = SDMMC_HOST_DEFAULT();

The sdmmc_host_t is a C structure that contains:

• uint32_t flags – Define operational flags. These include:

◦ SDMMC_HOST_FLAG_1BIT – Host uses 1-line SD protocol.

Page 753

◦ SDMMC_HOST_FLAG_4BIT – Host uses 4-line SD protocol.

◦ SDMMC_HOST_FLAG_8BIT – Host uses 8-line SD protocol.

◦ SDMMC_HOST_FLAG_SPI – Host uses SPI protocol.

• int slot – Unknown

• int max_freq_khz – Unknown

• float io_voltage – Unknown

• init – Function to be called to initialize the host layer.

• set_bus_width – Function to be called to set the bus width.

• set_card_clk – Function to be called to set the clock.

• do_transaction – Function to be called to perform a transaction.

• deinit – Function to be called to de-initialize the host layer.

Using the SDMMC_HOST_DEFAULT() to initialize the structure sets the following default
values:

Property Value

flags SDMMC_HOST_FLAG_4BIT

slot SDMMC_HOST_SLOT_1

max_freq_khz SDMMC_FREQ_DEFAULT

io_voltage 3.3

init sdmmc_host_init

set_bus_width sdmmc_host_set_bus_width

set_card_clk sdmmc_host_set_card_clk

do_transaction sdmmc_host_do_transaction

deinit sdmmc_host_deinit

The slot_config parameter is an instance of sdmmc_slot_config_t and is commonly
configured using SDMMC_SLOT_CONFIG_DEFAULT().

The mount_config parameter is an instance of esp_vfs_far_sdmmc_mount_config_t
which has properties:

• format_if_mount_failed

• max_files

Includes:

• #include <esp_vfs_fat.h>

Page 754

See also:

• esp_vfs_fat_sdmmc_unmount

esp_vfs_fat_sdmmc_unmount
esp_err_t esp_vfs_fat_sdmmc_unmount()

Includes:

• #include <esp_vfs_fat.h>

See also:

• esp_vfs_fat_sdmmc_mount

esp_vfs_fat_spiflash_mount
Initialize FAT file system in SPI flash and register with VFS.

esp_err_t esp_vfs_fat_spiflash_mount(
 const char *base_path,
 const char *partition_label,
 const esp_vfs_fat_mount_config_t *mount_config,
 wl_handle_t *wl_handle)

This is a powerful convenience function that registers the FAT file system and
associates it with the Virtual File System (VFS) subsystem this making it available for
Posix based I/O APIs.

• base_path – Path where FAT file system partition should be mounted (eg.
/spiflash)

• partition_label – Label of the flash partition where the data will be stored.

• mount_config – Pointer to structure for parameters for mounting FAT file system.

• wl_handle – The returned/populated wear leveling driver handle.

The mount_config parameter points to a structure which provides control information for
the mount operation. Specifically, it contains:

• format_if_mount_failed (bool) – A flag that indicates whether or not to format
the SPI flash memory contained in the partition if the mount fails (presumably
because the partition was not previously initialized).

• max_files (int) – The permitted maximum number of concurrently open files.

An example of a partition record for a FAT file system held in SPI flash would be:

storage, data, fat, , 1M,

Page 755

As of 2017-05, the smallest allowable size of the partition is 528K.

Note the type of the partition is "data" and the subtype is "fat".

An example partition file might be (partitions.csv):

nvs, data, nvs, 0x9000, 0x6000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 1M,
storage, data, fat, , 1M,

If the partition area can not be found, we will get an error indication and if logging is
enabled, see the following (or similar) message:

vfs_fat_spiflash: Failed to find FATFS partition (type='data', subtype='fat',
partition_label='storage'). Check the partition table.

Example:

wl_handle wl_handle = WL_INVALID_HANDLE;
esp_vfs_fat_mount_config_t mount_config;
mount_config.max_files = 4;
mount_config.format_if_mount_failed = true;

esp_err_t err = esp_vfs_fat_spiflash_mount(
 "/spiflash", "storage", &mount_config, &wl_handle);

Includes:

• #include <esp_vfs_fat.h>

See also:

• Partition table

esp_vfs_fat_spiflash_unmount
Unmount the FAT file system and release the resources.

esp_err_t esp_vfs_fat_spiflash_unmount(
 const char *base_path,
 wl_handle_t wl_handle)

• base_path – The path where the FATFS file system was mounted.

• wl_handle – The handle returned from esp_vfs_fat_spiflash_mount().

Includes:

• #include <esp_vfs_fat.h>

esp_vfs_fat_unregister
esp_err_t esp_vfs_fat_unregister()

Page 756

This function has been deprecated in favor of esp_vfs_fat_unregister_path(). Don't
use it for new code.

Includes:

• #include <esp_vfs_fat.h>

esp_vfs_fat_unregister_path
Un-register the FATFS from VFS.

esp_err_t esp_vfs_fat_unregister_path(const char *base_path)

• base_path – The path prefix where FATFS was registered. This must be the
same path as used in esp_vfs_fat_register().

Includes:

• #include <esp_vfs_fat.h>

•

f_mount
FRESULT f_mount(FATFS *fs, const char *path, BYTE opt)

The values of opt can be:

• 0 – Don't mount now.

• 1 – Mount now and check it is ready for work.

See also:

• FatFs manual – f_mount

ff_diskio_register
void ff_diskio_register(
 BYTE pdrv,
 const ff_diskio_impl_t *diskio_impl)

SPI Flash
The SPI Flash apis allow us to read, write and erase sectors contained within flash
memory. When working with flash address spaces, we need to ensure that we tell the
ESP-IDF configuration how much flash space is available. We do that in the "make
menuconfig" options. The default is 2MBytes. Attempts to access above 2MBytes will
be flagged as an error, even if your real storage exceeds that.

Page 757

http://elm-chan.org/fsw/ff/en/mount.html

spi_flash_erase_range
Erase a range of flash storage.

esp_err_t spi_flash_erase_range(size_t startAddr, size_t size)

Includes:

• #include <esp_spi_flash.h>

spi_flash_erase_sector
Erase a flash sector. Each sector is 4k in size.

esp_err_t spi_flash_erase_sector(size_t sector)

The sec parameter is the sector number (a sector is 4096 bytes in size).

Includes:

• #include <esp_spi_flash.h>

See also:

spi_flash_get_chip_size
Get the size of the declared storage for the flash device.

size_t spi_flash_get_chip_size()

The return is the amount of storage that the environment has declared to be available
on the flash device.

Includes:

• #include <esp_spi_flash.h>

Page 758

spi_flash_get_counters
const spi_flash_counters_t *spi_flash_get_counters()

Includes:

• #include <esp_spi_flash.h>

spi_flash_init
void spi_flash_init()

Includes:

• #include <esp_spi_flash.h>

spi_flash_mmap
Map flash storage into the ESP32 address bus.

esp_err_t spi_flash_mmap(
 uint32_t srcAddr,
 size_t size,
 spi_flash_mmap_memory_t memory,
 const void** outPtr,
 spi_flash_mmap_handle_t* outHandle)

The srcAddr is the address in flash address range that is the start of the data we are
going to map from. It must be located on a 64K boundary (i.e. be evenly divisible by
64*1024 which is 0x1 0000).

The size is the size of data to be mapped. It will be rounded up to the nearest 64K
multiple.

The memory parameter is where the memory should be mapped. Choices are:

• SPI_FLASH_MMAP_DATA – Map to data memory.

• SPI_FLASH_MMAP_INST – Map to instruction memory.

The outPtr is the address in the CPU address range where the mapped data can be
found.

The outHandle is the handle used to release the mapping (if needed) in a call to
spi_flash_munmap.

Includes:

• #include <esp_spi_flash.h>

Page 759

See also:

• spi_flash_munmap

• spi_flash_mmap_dump

• esp_partition_mmap

spi_flash_mmap_dump
void spi_flash_mmap_dump()

Includes:

• #include <esp_spi_flash.h>

spi_flash_munmap
void spi_flash_munmap(spi_flash_mmap_handle_t handle)

Includes:

• #include <esp_spi_flash.h>

spi_flash_read
Read data from flash

esp_err_t spi_flash_read(size_t src_addr, void* destAddr, size_t size)

The src_addr parameter is the address in flash that will be read. The destAddr is the
address in memory which will be written. The size parameter is the size of data to be
read.

Includes:

• #include <spi_flash.h>

See also:

spi_flash_reset_counters
void spi_flash_reset_counters()

spi_flash_write
Write data to flash

esp_err_t spi_flash_write(size_t destAddr, const void* srcAddr, size_t_t size)

The destAddr is the address in flash which is to be written. The srcAddr is the source
address in memory from where the new data is to be taken. The size parameter is the
size of the data to be written.

Includes:

Page 760

• #include <spi_flash.h>

See also:

SDMMC

sdmmc_card_init
esp_err_t sdmmc_card_init(
 const sdmmc_host_t* host,
 sdmmc_card_t* out_card)

Includes:

• #include <sdmmc_cmd.h>

sdmmc_card_print_info
void sdmmc_card_print_info(
 FILE* stream,
 const sdmmc_card_t* card)

Includes:

• #include <sdmmc_cmd.h>

sdmmc_host_deinit
esp_err_t sdmmc_host_deinit()

Includes:

• #include <sdmmc_host.h>

sdmmc_host_do_transaction
esp_err_t sdmmc_host_do_transaction(
 int slot,
 sdmmc_command_t* cmdinfo)

Includes:

• #include <sdmmc_host.h>

sdmmc_host_init
esp_err_t sdmmc_host_init()

Includes:

Page 761

• #include <sdmmc_host.h>

sdmmc_host_init_slot
esp_err_t sdmmc_host_init_slot(
 int slot,
 const sdmmc_slot_config_t *slot_config)

Includes:

• #include <sdmmc_host.h>

sdmmc_host_set_bus_width
esp_err_t sdmmc_host_set_bus_width(
 int slot,
 size_t width)

Includes:

• #include <sdmmc_host.h>

sdmmc_host_set_card_clk
esp_err_t sdmmc_host_set_card_clk(
 int slot,
 uint32_t freq_khz)

Includes:

• #include <sdmmc_host.h>

sdmmc_read_sectors
esp_err_t sdmmc_read_sectors(
 sdmmc_card_t *card,
 void *dst,
 size_t start_sector,
 size_t sector_count)

Includes:

• #include <sdmmc_cmd.h>

sdmmc_write_sectors
esp_err_t sdmmc_write_sectors(
 sdmmc_card_t *card,
 const void* src,
 size_t start_sector,
 size_t sector_count)

Page 762

Includes:

• #include <sdmmc_cmd.h>

Hardware Timers

timer_disable_intr
esp_err_t timer_disable_intr(
 timer_group_t group_num,
 timer_idx_t timer_num)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

timer_enable_intr
esp_err_t timer_enable_intr(
 timer_group_t group_num,
 timer_idx_t timer_num)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

timer_get_alarm_value
Get the value at which a timer event should fire.

Page 763

esp_err_t timer_get_alarm_value(
 timer_group_t group_num,
 timer_idx_t timer_num,
 uint64_t *alarm_value)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

timer_get_config
esp_err_t timer_get_config(
 timer_group_t group_num,
 timer_idx_t timer_num,
 timer_config_t *config)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

• config – Contains

◦ alarm_en

◦ counter_en

◦ counter_dir

◦ intr_type

◦ auto_reload

◦ divider

Includes:

• #include <driver/timer.h>

Page 764

timer_get_counter_time_sec
Read the counter value as a double in seconds.

esp_err_t timer_get_counter_time_sec(
 timer_group_t group_num,
 timer_idx_t timer_num,
 double *time)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

timer_get_counter_value
Get the value of the timer.

esp_err_t timer_get_counter_value(
 timer_group_t group_num,
 timer_idx_t timer_num,
 uint64_t *timer_val)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

Page 765

timer_group_intr_enable
esp_err_t timer_group_intr_enable(
 timer_group_t group_num,
 uint32_t en_mask)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

Includes:

• #include <driver/timer.h>

timer_group_intr_disable
esp_err_t timer_group_intr_disable(
 timer_group_t group_num,
 uint32_t disable_mask)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

Includes:

• #include <driver/timer.h>

timer_isr_register
esp_err_t timer_isr_register(
 timer_group_t group_num,
 timer_idx_t timer_num,
 void (*fn)(void*), void * arg
 int intr_alloc_flags,
 timer_isr_handle_t *handle)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

Page 766

timer_init
esp_err_t timer_init(
 timer_group_t group_num,
 timer_idx_t timer_num,
 timer_config_t* config)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

• config – Contains

◦ alarm_en

◦ counter_en

◦ counter_dir

◦ intr_type

◦ auto_reload

◦ divider

Includes:

• #include <driver/timer.h>

timer_pause
Pause a specific timer.

esp_err_t timer_pause(
 timer_group_t group_num,
 timer_idx_t timer_num)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Page 767

timer_set_counter_value
Set the counter value to a specific value.,

esp_err_t timer_set_counter_value(
 timer_group_t group_num,
 timer_idx_t timer_num,
 uint64_t load_val)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

timer_start
Start a specific timer.

esp_err_t timer_start(
 timer_group_t group_num,
 timer_idx_t timer_num)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

timer_set_alarm
Determine if an alarm should fire.

esp_err_t timer_set_alarm(
 timer_group_t group_num,

Page 768

 timer_idx_t timer_num,
 timer_alarm_t alarm_en)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

• alarm_en – One of:

◦ TIMER_ALARM_DIS

◦ TIMER_ALARM_EN

Includes:

• #include <driver/timer.h>

timer_set_alarm_value
Define the value at which an alarm event should occur when reached by the timer.

esp_err_t timer_set_alarm_value(
 timer_group_t group_num,
 timer_idx_t timer_num,
 uint64_t alarm_value)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

timer_set_auto_reload
Determine whether or not the timer should reload following an alarm event.

Page 769

esp_err_t timer_set_auto_reload(
 timer_group_t group_num,
 timer_idx_t timer_num,
 timer_autoreload_t reload)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

• reload – One of:

◦ TIMER_AUTORELOAD_DIS – Do not load the counter after an alarm event.

◦ TIMER_AUTORELOAD_EN – Load the counter after an alarm event.

Includes:

• #include <driver/timer.h>

timer_set_counter_mode
Set the mode of a specific counter.

esp_err_t timer_set_counter_mode(
 timer_group_t group_num,
 timer_idx_t timer_num,
 timer_count_dir_t counter_dir)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

• counter_dir – One of:

◦ TIMER_COUNT_DOWN

◦ TIMER_COUNT_UP

Includes:

Page 770

• #include <driver/timer.h>

timer_set_divider
Set the underlying clock divider.

esp_err_t timer_set_divider(
 timer_group_t group_num,
 timer_idx_t timer_num,
 uint16_t divider)

• group_num – One of:

◦ TIMER_GROUP_0

◦ TIMER_GROUP_1

• timer_num – One of:

◦ TIMER_0

◦ TIMER_1

Includes:

• #include <driver/timer.h>

Watchdog processing
The watchdog functions are all about monitoring liveness of tasks to ensure that they
aren't stuck in loops or otherwise starving. The watchdog functions are controlled by
the master settings defined by running "make menuconfig". There are entries in there
which define whether or not task specific watchdog functions are enabled and, if so,
how long between watchdog checks. The interval is measured in seconds with a
default of 5. The duration is measured in seconds which feels like an exceptionally long
time in processing units.

If a Watchdog timer expires before being fed, then a message is logged (by default).
Alternatively, we can invoke a panic handler which can:

• print the registers and halt

• print the registers and reboot

• silently reboot

• invoke the built-in gdb stub

Page 771

esp_int_wdt_init
Initialize the interrupt watchdog.

void esp_int_wdt_init()

esp_task_wdt_init
Initialize the task watchdog.

void esp_task_wdt_init()

esp_task_wdt_feed
Register a task or feed a task watchdog.

void esp_task_wdt_feed()

If called for the first time on a given FreeRTOS task then the task becomes registered
as one that is being monitored for liveness. It must be regularly called from then on to
ensure that the watchdog is fed.

esp_task_wdt_delete
Delete an association between a task and watchdog.

void esp_task_wdt_delete()

If in the past, the current task has called esp_task_wdt_feed() then it is considered on
the watch list. If the task no longer wishes to watched for liveness or else is about to
end, then we should call this function to remove the task from the list of monitored tasks
by the watchdog.

AWS-IoT

aws_iot_is_autoreconnect_enabled
Determine if auto-reconnect is enabled.

bool aws_iot_is_autoreconnect_enabled(AWS_IoT_Client *pClient)

See also:

• aws_iot_mqtt_autoreconnect_set_status

aws_iot_mqtt_attempt_reconnect
IoT_Error_t aws_iot_mqtt_attempt_reconnect(AWS_IoT_Client *pClient)

Page 772

Includes:

• #include <aws_iot_mqtt_client_interface.h>

aws_iot_mqtt_autoreconnect_set_status
Enabled or disable auto-reconnect.

IoT_Error_t aws_iot_mqtt_autoreconnect_set_status(
 AWS_IoT_Client *pClient,
 bool newStatus)

Includes:

• #include <aws_iot_mqtt_client.h>

See also:

• aws_iot_is_autoreconnect_enabled

aws_iot_mqtt_connect
Connecto the AWS IoT service.

IoT_Error_t aws_iot_mqtt_connect(
 AWS_IoT_Client *pClient,
 const IoT_Client_Connect_Params *pConnectParams)

The pConnectParams is a pointer to a structure containing:

• char struct_id

• MQTT_Ver_t MQTTVersion

• const char *pClientID

• uint16_t clientIdLen

• uint16_t keepAliveIntervalInSec

• bool isCleanSession

• bool isWillMsgPresent

• IoT_MQTT_Will_Options will

• char *pUsername

• uint16_t usernamelen

• char *pPassword

• uin16_t passwordLen

Page 773

Includes:

• #include <aws_iot_mqtt_client_interface.h>

aws_iot_mqtt_disconnect
IoT_Error_t aws_iot_mqtt_disconnect(AWS_IoT_Client *pClient)

Includes:

• #include <aws_iot_mqtt_client_interface.h>

aws_iot_mqtt_get_client_state
Get the current state of the client.

ClientState aws_iot_mqtt_get_client_state(AWS_IoT_Client *pClient)

Client state is one of:

• CLIENT_STATE_INVALID = 0,

• CLIENT_STATE_INITIALIZED = 1,

• CLIENT_STATE_CONNECTING = 2,

• CLIENT_STATE_CONNECTED_IDLE = 3,

• CLIENT_STATE_CONNECTED_YIELD_IN_PROGRESS = 4,

• CLIENT_STATE_CONNECTED_PUBLISH_IN_PROGRESS = 5,

• CLIENT_STATE_CONNECTED_SUBSCRIBE_IN_PROGRESS = 6,

• CLIENT_STATE_CONNECTED_UNSUBSCRIBE_IN_PROGRESS = 7,

• CLIENT_STATE_CONNECTED_RESUBSCRIBE_IN_PROGRESS = 8,

• CLIENT_STATE_CONNECTED_WAIT_FOR_CB_RETURN = 9,

• CLIENT_STATE_DISCONNECTING = 10,

• CLIENT_STATE_DISCONNECTED_ERROR = 11,

• CLIENT_STATE_DISCONNECTED_MANUALLY = 12,

• CLIENT_STATE_PENDING_RECONNECT = 13

aws_iot_mqtt_get_network_disconnected_count
Get the number of disconnects that have occurred due to errors.

uint32_t aws_iot_mqtt_get_network_disconnected_count(AWS_IoT_Client *pClient)

Page 774

aws_iot_mqtt_get_next_packet_id
Get the next packet id.

uint16_t aws_iot_mqtt_get_next_packet_id(AWS_IoT_Client *pClient)

aws_iot_mqtt_init
Initialize the MQTT client.

IoT_Error_t aws_iot_mqtt_init(
 AWS_IoT_Client *pClient,
 const IoT_Client_Init_Params *pInitParams)

The pInitParams points to a structure which contains:

• bool enableAutoReconnect

• char *pHostURL

• uint16_t port

• const char *pRootCALocation

• const char *pDeviceCertLocation

• const char *pDevicePrivateKeyLocation

• uint32_t mqttPacketTimeout_ms

• uint32_t mqttCommandTimeout_ms

• uint32_t tlsHandshakeTimeout_ms

• bool isSSLHostnameVerify

• iot_disconnect_handler disconnectHandler

• void *disconnectHandlerData

Includes:

• #include <aws_iot_mqtt_client_interface.h>

See also:

aws_iot_mqtt_is_client_connected
Determine if the device is currently connected.

bool aws_iot_mqtt_is_client_connected(AWS_IoT_Client *pClient)

Page 775

aws_iot_mqtt_publish
IoT_Error_t aws_iot_mqtt_publish(
 AWS_IoT_Client *pClient,
 const char *pTopicName,
 uint16_t topicNameLen,
 IoT_Publish_Message_Params *pParams)

• pClient

• pTopicName

• topicNameLen

• pParams – A structure that includes:

◦ QoS qos – Quality of service.

◦ uint8_t isRetained – Is this a retained message. Not supported by AWS
IoT.

◦ uint8_t isDup – Is this message a duplicate.

◦ uint16_t id – Handled automatically.

◦ void *payload – Pointer to the payload to be published.

◦ size_t payloadLen – Length of the payload.

Includes:

• #include <aws_iot_mqtt_client_interface.h>

aws_iot_mqtt_reset_network_disconnected_count
Reset the network disconnect error counter to zero.

void aws_iot_mqtt_reset_network_disconnected_count(AWS_IoT_Client *pClient)

aws_iot_mqtt_resubscribe
IoT_Error_t aws_iot_mqtt_resubscribe(AWS_IoT_Client *pClient)

Includes:

• #include <aws_iot_mqtt_client_interface.h>

aws_iot_mqtt_set_connect_params
Set the connection parameters.

Page 776

IoT_Error_t aws_iot_mqtt_set_connect_params(
 AWS_IoT_Client *pClient,
 const IoT_Client_Connect_Params *pNewConnectParams)

The pNewConnectParams is a pointer to a structure containing:

• char struct_id

• MQTT_Ver_t MQTTVersion

• const char *pClientID

• uint16_t clientIdLen

• uint16_t keepAliveIntervalInSec

• bool isCleanSession

• bool isWillMsgPresent

• IoT_MQTT_Will_Options will

• char *pUsername

• uint16_t usernamelen

• char *pPassword

• uin16_t passwordLen

aws_iot_mqtt_set_disconnect_handler
Set the IoT client disconnect handler.

IoT_Error_t aws_iot_mqtt_set_disconnect_handler(
 AWS_IoT_Client *pClient,
 iot_disconnect_handler pDisconnectHandler,
 void *pDisconnectHandlerData)

Invoke a function when the client disconnects due to an error.

aws_iot_mqtt_subscribe
Subscribe to a topic.

IoT_Error_t aws_iot_mqtt_subscribe(
 AWS_IoT_Client *pClient,
 const char *pTopicName,
 uint16_t topicNameLen,
 QoS qos,
 pApplicationHandler_t pApplicationHandler,
 void *pApplicationHandlerData)

Page 777

• pClient – Reference to the client.

• pTopicName – The name of the topic.

• topicNameLen – The length of the name of the topic.

• qos – Quality of service.

• pApplicationHandler – Handler function for this subscription.

• pApplicationHandlerData – Data for the handler function.

The callback handler for a subscription has the following signature:

typedef void (*pApplicationHandler_t)(
 AWS_IoT_Client *pClient,
 char *pTopicName, uint16_t topicNameLen,
 IoT_Publish_Message_Params *pParams,
 void *pClientData);

Includes:

• #include <aws_iot_mqtt_client_interface.h>

aws_iot_mqtt_unsubscribe
IoT_Error_t aws_iot_mqtt_unsubscribe(
 AWS_IoT_Client *pClient,
 const char *pTopicFilter,
 uint16_t topicFilterLen)

Includes:

• #include <aws_iot_mqtt_client_interface.h>

aws_iot_mqtt_yield
IoT_Error_t aws_iot_mqtt_yield(
 AWS_IoT_Client *pClient,
 uint32_t timeout_ms)

Includes:

• #include <aws_iot_mqtt_client_interface.h>

JSON processing
The ESP-IDF provides a C implementation of JSON processing through the component
called "json".

Note: There is a second JSON parsing option called "jsmn" which uses an alternate
technique that exchanges minimalism for efficiency.

Page 778

We can parse a JSON string using cJSON_Parse(). This will return a cJSON data
structure. This data structure exposes:

• valueint – The number value as an integer.

• valuedouble – The number value as a double.

• valuestring – The string value.

To serialize a JSON object to a string representation we can call cJSON_Print().

The complete list of functions are:

• cJSON_Parse

• cJSON_Print

• cJSON_PrintUnformatted

• cJSON_PrintBuffered

• cJSON_PrintPreallocated

• cJSON_Delete

• cJSON_GetArraySize

• cJSON_GetArrayItem

• cJSON_GetObjectItem

• cJSON_GetErrorPtr

• cJSON_CreateArray

• cJSON_CreateBool

• cJSON_CreateDoubleArray

• cJSON_CreateFalse

• cJSON_CreateFloatArray

• cJSON_CreateIntArray

• cJSON_CreateObject

• cJSON_CreateNull

• cJSON_CreateNumber

• cJSON_CreateString

• cJSON_CreateStringArray

Page 779

• cJSON_CreateTrue

• cJSON_AddItemToArray

• cJSON_AddItemToObject

• cJSON_AddItemToObjectCS

• cJSON_AddItemReferenceToArray

• cJSON_AddItemReferenceToObject

• cJSON_DetachItemFromArray

• cJSON_DeleteItemFromArray

• cJSON_DetachItemFromObject

• cJSON_DeleteItemFromObject

• cJSON_InsertItemInArray

• cJSON_ReplaceItemInArray

• cJSON_ReplaceItemInObject

• cJSON_Duplicate

• cJSON_Minify

• cJSON_AddNullToObject

• cJSON_AddTrueToObject

• cJSON_AddFalseToObject

• cJSON_AddBoolToObject

• cJSON_AddNumberToObject

• cJSON_AddStringToObject

• cJSON_ArrayForEach

• cJSON_SetIntValue

• cJSON_SetNumberValue

Includes:

• #include <cJSON.h>

See also:

• Github: DaveGamble/cJSON

• JSMN

• JSON.org

Page 780

http://www.json.org/
http://zserge.com/jsmn.html
https://github.com/DaveGamble/cJSON

HTTP/2 processing
The ESP-IDF provides an implementation of HTTP/2 parsing through "nghttp2".

See also:

• HTTP/2 C library and tools – nghttp2.org

Parsing XML – expat
The ESP-IDF provides a version of expat which is an XML parsing library.

See also:

• Expat home page

• Using Expat

• Expat reference document

Arduino – ESP32 HAL for UART

uartAvailable
uint32_t uartAvailable(uart_t *uart)

Includes:

• #include <esp32-hal-uart.h>

uartBegin
Initialize a UART for work.

uart_t *uartBegin(
 uint8_t uartNumber,
 uint32_t baudrate,
 uint32_t config,
 int8_t rxPin,
 int8_t txPin,
 uint16_t queueLen,
 bool inverted)

The uartNumber can be one of the three UARTs on the device. They are numbered 0, 1
and 2. The rxPin is the pin used for receiving incoming data, The txPin is the pin used
to transmit data. If -1 is specified, then the UART is input or output only. It is invalid to
specify -1 for both pins (i.e. a uart with neither input nor output). The config parameter
is the configuration for the UART. A configuration is broken into three parameters:

• Number of bits – 5,6,7 or 8

Page 781

http://www.xml.com/pub/a/1999/09/expat/reference.html
http://www.xml.com/pub/a/1999/09/expat/index.html
http://www.libexpat.org/
https://nghttp2.org/

• Parity checking – None, Even or Odd

• Number of stop bits – 1 or 2

Constants are defined for all possibilities in the form:

SERIAL_<NUMBER OF BITS><PARITY><NUMBER OF STOP BITS>

For example:

SERIAL_8N1

Means 8 bits, no parity check, 1 stop bit.

Includes:

• esp32-hal-uart.h

See also:

• uartEnd

uartEnd
Release resources associated with the uart.

void uartEnd(uart_t *uart)

Includes:

• esp32-hal-uart.h

See also:

• uartBegin

uartFlush
void uartFlush(uart_t *uart)

Includes:

• esp32-hal-uart.h

uartGetBaudRate
Get the current baud rate of the uart.

uint32_t uartGetBaudRate(uart_t *uart)

Includes:

• esp32-hal-uart.h

See also:

• uartSetBaudRate

Page 782

• uartBegin

uartGetDebug
int uartGetDebug()

Includes:

• esp32-hal-uart.h

See also:

• uartSetDebug

uartPeek
Retrieve the next byte to be read without actually consuming it.

uint8_t uartPeek(uart_t *uart)

Includes:

• esp32-hal-uart.h

See also:

• uartRead

uartRead
Read a byte from the uart.

uint8_t uartRead(uart_t *uart)

Includes:

• esp32-hal-uart.h

See also:

• uartAvailable

• uartPeek

uartSetBaudRate
Set the baud rate of the uart.

void uartSetBaudRate(uart_t *uart, uint32_t baud_rate)

Includes:

• esp32-hal-uart.h

• uartGetBaudRate

• uartBegin

Page 783

uartSetDebug
Specify a uart as the target of debug data.

void uartSetDebug(uart_t *uart)

Includes:

• esp32-hal-uart.h

See also:

• uartGetDebug

uartWrite
Write a single byte to the uart.

void uartWrite(uart_t *uart, uint8_t c)

This is a blocking call and waits for the transmission to complete.

Includes:

• esp32-hal-uart.h

uartWriteBuf
Write a buffer of bytes to the uart.

void uartWriteBuf(
 uart_t *uart,
 const uint8_t *data,
 size_t len)

Writes the buffer to the uart blocking until completion.

Includes:

• esp32-hal-uart.h

Arduino – ESP32 HAL for I2C
See also:

• Using Arduino I2C libraries

i2cAttachSCL
Associate the bus's clock signal with a specific GPIO pin.

i2c_err_t i2cAttachSCL(i2c_t *i2c, int8_t scl)

Page 784

i2cAttachSDA
i2c_err_t i2cAttachSDA(i2c_t *i2c, int8_t sda)

Associate the bus's data signal with a specific GPIO pin.

i2cDetachSCL
i2c_err_t i2cDetachSCL(i2c_t *i2c, int8_t scl)

Disassociate the bus's clock signal with a specific GPIO pin.

i2cDetachSDA
i2c_err_t i2cDetachSDA(i2c_t *i2c, int8_t sda)

Disassociate the bus's data signal with a specific GPIO pin.

i2cGetFrequency
uint32_t i2cGetFrequency(i2c_t *i2c)

i2cInit
Initialize access to the I2C bus.

i2c_t *i2cInit(
 uint8_t i2c_num,
 uint16_t slave_addr,
 bool addr_10bit_en)

The i2c_num is the identify of the I2C bus we are planning on using. The slave_addr is
the address of the slave device we wish to appear as. The addr_10bit_en would be set
to true if we are using 10 bit slave addressing.

The return from this call is a handle that is passed into other calls to refer to this
bus/device.

See also:

• Using Arduino I2C libraries

i2cRead
Read data from the I2C bus.

i2c_err_t i2cRead(
 i2c_t *i2c,

Page 785

 uint16_t address,
 bool addr_10bit,
 uint8_t *data,
 uint8_t len,
 bool sendStop)

The i2c is a handle to an I2C bus. The address is the address of the device with which
we are communicating. The addr_10bit is set to true if we are using 10 bit addressing.
The data is a pointer to a buffer to be filled in by the read. The len is the number of
bytes to read. The sendStop is a flag which indicates whether we should send a stop
indication.

i2cSetFrequency
i2c_err_t i2cSetFrequency(i2c_t *i2c, uint32_t clk_speed)

i2cWrite
Write data down the I2C bus.

i2c_err_t i2cWrite(
 i2c_t *i2c,
 uint16_t address,
 bool addr_10bit,
 uint8_t *data,
 uint8_t len,
 bool sendStop)

The i2c is a handle to an I2C bus. The address is the address of the device with which
we are communicating. The addr_10bit is set to true if we are using 10 bit addressing.
The data is a pointer to a buffer of data to be transmitted. The len is the size of the
data to transmit. The sendStop should be true if we are sending a stop flag at the end of
the transmission.

Arduino – ESP32 HAL for SPI
See also:

• The Arduino Hardware Abstraction Layer SPI

spiAttachMISO
Specify the pin to use for MISO.

void spiAttachMISO(spi_t *spi, int8_t miso)

Page 786

spiAttachMOSI
Specify the pin to use for MOSI.

void spiAttachMOSI(spi_t *spi, int8_t mosi)

spiAttachSCK
Specify the pin to use for SCK.

void spiAttachSCK(spi_t *spi, int8_t sck)

spiAttachSS
Specify the pin to use for SS.

void spiAttachSS(spi_t *spi, uint8_t cs_num, int8_t ss)

spiClockDivToFrequency
Convert a clock divider to a frequency.

uint32_t spiClockDivToFrequency(uint32_t clockDiv)

A given clock divider value results in an SPI clock frequency. This function takes a clock
divider and returns the frequency that would result from using the divider.

spiDetachMISO
void spiDetachMISO(spi_t *spi, int8_t miso)

spiDetachMOSI
void spiDetachMOSI(spi_t *spi, int8_t mosi)

spiDetachSCK
void spiDetachSCK(spi_t *spi, int8_t sck)

spiDetachSS
Detach the pin from SS.

void spiDetachSS(spi_t *spi, int8_t ss)

Page 787

spiDisableSSPins
void spiDisableSSPins(spi_t *spi, uint8_t cs_mask)

spiEnableSSPins
void spiEnableSSPins(spi_t *spi, uint8_t cs_mask)

spiFrequencyToClockDiv
Calculate a clock divider needed for a given frequency.

uint32_t spiFrequencyToClockDiv(uint32_t freq)

Internally, the SPI clock is based on a given clock divider. Commonly, we want to think
about SPI clock frequencies. This function calculates the divider necessary to achieve
a specific frequency.

spiGetBitOrder
Retrieve the current bit order.

uint8_t spiGetBitOrder(spi_t *spi)

Retrieve the current bit order being used. It will be one of:

• SPI_LSBFIRST

• SPI_MSBFIRST

spiGetClockDiv
Get the underlying clock divider.

uint32_t spiGetClockDiv(spi_t *spi)

For a given SPI device, get the clock divider. Note that this is not the same as the SPI
clock frequency.

spiGetDataMode
Retrieve the current data mode.

uint8_t spiGetDataMode(spi_t *spi)

Retrieve the current data mode of SPI. It should be one of:

• SPI_MODE0

• SPI_MODE1

• SPI_MODE2

Page 788

• SPI_MODE3

spiRead
Read a buffer of data through SPI.

void spiRead(spi_t *spi, uint32_t *out, uint8_t len)

spiReadByte
Read a single byte of data through SPI.

uint8_t spiReadByte(spi_t *spi)

spiReadLong
Read a 32 bit value (a long) from SPI.

uint32_t spiReadLong(spi_t *spi)

spiReadWord
Read a 16 bit value (a word) from SPI.

uint16_t spiReadWord(spi_t *spi)

spiSetBitOrder
Set the bit order.

void spiSetBitOrder(spi_t *spi, uint8_t bitOrder)

The bitOrder should be the bit order to be used. It should be one of:

• SPI_LSBFIRST

• SPI_MSBFIRST

spiSetClockDiv
Set the clock based on a clock divisor.

void spiSetClockDiv(spi_t *spi, uint32_t clockDiv)

spiSetDataMode
Set the data mode.

Page 789

void spiSetDataMode(spi_t *spi, uint8_t dataMode)

The dataMode is the data mode of SPI. It should be one of:

• SPI_MODE0

• SPI_MODE1

• SPI_MODE2

• SPI_MODE3

spiSSClear
void spiSSClear(spi_t *spi)

spiSSDisable
void spiSSDisable(spi_t *spi)

spiSSEnable
void spiSSEnable(spi_t *spi)

spiSSSet
void spiSSSet(spi_t *spi)

spiStartBus
Initialize an instance of the bus.

spi_t *spiStartBus(
 uint8_t spi_num,
 uint32_t freq,
 uint8_t dataMode,
 uint8_t bitOrder)

Initialize an instance of one of the three buses specifying how it should be driven. The
spi_num is the identity of one of the three buses. It may be one of:

• FSPI

• HSPI

• VSPI

Note that FSPI is believe to be off-limits for application usage.

The freq is the speed of the bus. For example 1000000 for 1MHz. The dataMode is the
data mode of SPI. It should be one of:

Page 790

• SPI_MODE0

• SPI_MODE1

• SPI_MODE2

• SPI_MODE3

The bitOrder should be the bit order to be used. It should be one of:

• SPI_LSBFIRST

• SPI_MSBFIRST

The return is a reference to an SPI instance.

See also:

• spiStopBus

spiStopBus
Release the resources for an SPI bus.

void spiStopBus(spi_t *spi)

The spi is a handle to a bus previously created with a call to spiStartBus().

See also:

• spiStartBus

spiTransferBits
Transfer bits over SPI and optionally receive response bits.

void spiTransferBits(
 spi_t *spi,
 uint32_t sendData,
 uint32_t *receiveData,
 uint8_t bits)

The bits is the number of bits to send. A maximum of 32 bits at one shot. The
sendData is the data to send, the receiveData is a pointer to storage to hold retrieved
data. It may be NULL to indicate that we don't want to receive data. The spi is the
handle of the SPI interface.

See also:

• spiStartBus

Page 791

spiTransferBytes
Write and read data through SPI.

void spiTransferBytes(
 spi_t *spi,
 uint8_t *sendData,
 uint8_t *receiveData,
 uint32_t size)

This is the key function in SPI. Here we specify a buffer of data to send through SPI
and a buffer of data to read from SPI. If we don't need to send data we can specify
NULL for the sendData and if we don't need to receive, we can specify NULL for
receiveData. The size is the number of bytes that we are to send and receive.

spiWaitReady
void spiWaitReady(spi_t *spi)

spiWrite
Write a buffer of data out through SPI.

void spiWrite(spi_t *spi, uint32_t *data, uint8_t len)

spiWriteByte
Write a single byte of data out through SPI.

void spiWriteByte(spi_t *spi, uint8_t data)

spiWriteLong
Write a 32 bit value (a long) out through SPI.

void spiWriteLong(spi_t *spi, uint32_t data)

spiWriteWord
Write a 16 bit value (a word) out through SPI.

void spiWriteWord(spi_t *spi, uint16_t data)

Newlib
When we think of the C programming language we must realize that is exactly what it is
… a programming language. Functions like "printf" and "strcpy" and "malloc" are not

Page 792

part of the C language. They are functions commonly provided by the environment in
which the compiled program executes. These functions are so prevalent that we
assume them just to be there when C programming but the reality is that something has
to provide them. On a Unix/Linux environment, it is the kernel and support user level
libraries. But what of our ESP32? The answer is an open source library called "newlib".
Newlib takes the common specifications for many of the functions that we expect to be
there on a C platform and provides an open source implementation of them. Within the
ESP32 environment a version of newlib is provided that has been mapped for the
ESP32.

From the newlib library, the following functions are exported (and others):

See also:

• newlib

abort
Results in the abnormal termination of the environment (a halt).

void abort()

See also:

• man(3) – abort

abs
Compute the absolute (non-negative) value of an integer.

int abs(int val)

Includes:

• stdlib.h

See also:

• man(3) – abs

asctime
Format a struct tm time value into a text string.

char *asctime(const struct tm *tm)
char *asctime_r(const struct tm *tm, char *buf)

The struct tm contains:

• tm_sec – 0-59

Page 793

https://linux.die.net/man/3/abs
https://linux.die.net/man/3/abort
https://sourceware.org/newlib/

• tm_min – 0-59

• tm_hour – 0-23

• tm_mday – 1-31

• tm_mon – 0-11

• tm_year – Years since 1900 (eg. 2017 = 117)

• tm_wday – 0-6

• tm_yday – 0-365

• tm_isdst – 1/0

The output format is the same as ctime().

See also:

• Timers and time

• man(3) – asctime

atoi
Convert a string to an integer.

int atoi(const char *s)

See also:

• man(3) – atoi

atol
Convert a string to an integer.

long atol(const char *s)

See also:

• man(3) – atol

bzero
Zero an area of memory.

void bzero(void *s, size_t n)

See also:

• man(3) – bzero

calloc
Allocate an area of storage for a number of fixed size entries.

Page 794

https://linux.die.net/man/3/bzero
https://linux.die.net/man/3/atol
https://linux.die.net/man/3/atoi
https://linux.die.net/man/3/asctime

void *calloc(size_t c, size_t n)

See also:

• free

• malloc

• realloc

• man(3) – calloc

check_pos

close
Close a file descriptor.

int close(int fd)

See also:

• man(3) – close

creat
Create a new file.

int create(const char *path, mode_t mode)

Includes:

• fcntl.h

See also:

• man(3) – creat

ctime
Convert time_t data to a string.

char *ctime(const time_t *timep)
char *ctime_r(const ctime_t *timep, char *buf)

The time_t can be obtained from a call to time(). An example of output would be:

Thu Jan 1 00:00:00 1970\n

The length of the string is a constant 25 characters (including the newline). This means
we can efficiently terminate the line before the newline or just print the first 24
characters if we don't want to print the newline.

Note that a newline is found on the end.

Includes:

Page 795

https://linux.die.net/man/3/creat
https://linux.die.net/man/3/close
https://linux.die.net/man/3/calloc

• time.h

See also:

• Timers and time

• time

• man(3) – ctime

div
Compute quotient and remainder.

div_t div(int numerator, int denominator)

Includes:

• stdlib.h

See also:

• man(3) – div

environ
Access environment variables.

char **environ

Includes:

• unistd.h

See also:

• man(3) – environ

fclose
Close a stream.

int fclose(FILE *fp)

Includes:

• #include <stdio.h>

See also:

• man(3) – fclose

fflush
Flush a stream.

int fflush(FILE *fp)

Includes:

Page 796

https://linux.die.net/man/3/fclose
https://linux.die.net/man/3/environ
https://linux.die.net/man/3/div
https://linux.die.net/man/3/ctime

• #include <stdio.h>

See also:

• man(3) – fflush

fmemopen
Perform stream I/O on a buffer of memory.

FILE *fmemopen(void *buf, size_t size, const char *mode)

The return is a FILE pointer that can be used with other stream I/O functions. The
mode is the same as found for fopen().

Includes:

• #include <stdio.h>

See also:

• man(3) – fmemopen

fprintf
Print to a stream.

int printf(const char *format, …)

Includes:

• #include <stdio.h>

See also:

• printf

• man(3) – fprintf

fread
Read from the file into a memory area.

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)

Includes:

• #include <stdio.h>

See also:

• man(3) – fread

Page 797

https://linux.die.net/man/3/fread
https://linux.die.net/man/3/fprintf
https://linux.die.net/man/3/fmemopen
https://linux.die.net/man/3/fflush

free
Free allocated memory.

void free(void *p)

Releases memory previously allocated by a call to malloc().

Includes:

• #include <stdlib.h>

See also:

• calloc

• malloc

• realloc

• man(3) – free

fscanf
Scan from a stream.

int fscanf(FULE *stream, const char *format, …)

Includes:

• #include <stdio.h>

See also:

• man(3) – fscanf

fseek

fstat
Obtain the stats of an open file.

int fstat(int fd, struct stat *buf)

See also:

• man(2) – fstat

fwrite
Write data to an output stream.

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)

Includes:

• #include <stdio.h>

See also:

• man(3) – fwrite

Page 798

https://linux.die.net/man/3/fwrite
https://linux.die.net/man/2/fstat
https://linux.die.net/man/3/fscanf
https://linux.die.net/man/3/free

gettimeofday
Get the current time.

int gettimeofday(struct timeval *tv, struct timezone *tz)

Return the current time of day as a struct timeval. This structure contains the following
fields:

• time_t tv_sec – Seconds since epoch.

• suseconds_t tv_usec – Microseconds within current second.

A sample set of C functions is available here <insert URL> that provides some simple
routines for working with struct timeval including:

• struct timeval timeval_add(struct timeval *a, struct timeval *b) – Add
two time values together.

• void timeval_addMsecs(struct timeval *a, uint32_t msecs) – Add
milliseconds to time value.

• uint32_t timeval_durationBeforeNow(struct timeval *a) – Determine how
many milliseconds the supplied time value was in the past.

• uint32_t timeval_durationFromNow(struct timeval *a) – Determine how
many milliseconds the given future time value will be from now or 0 if it has
already passed.

• struct timeval timeval_sub(struct timeval *a, struct timeval *b) –
Subtract one time value from another. The first parameter should be further
along the time line (sooner) than the second (later).

• uint32_t timeval_toMsecs(struct timeval *a) – Return the number of
milliseconds within the time value.

Includes:

• #include <sys/time.h>

See also:

• settimeofday

• Timers and time

• man(2) – gettimeofday

Page 799

https://linux.die.net/man/2/gettimeofday

gmtime
Break down a time into its components based on UTC.

struct tm *gmtime(const time_t *timep)
struct tm *gmtime_r(const time_t *timep, struct tm *result)

The time_t value can be obtained from a call to time().

Includes:

• #include <time.h>

See also:

• Timers and time

• time

• man(3) – gmtime

isalnum
Determine if a character is alpha/numeric.

int isalnum(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isalnum

isalpha
Determine if a character is an alpha.

int isalpha(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isalpha

isascii
int isascii(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isascii

Page 800

https://linux.die.net/man/3/isascii
https://linux.die.net/man/3/isalpha
https://linux.die.net/man/3/isalnum
https://linux.die.net/man/3/gmtime

isblank
int isblank(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isblank

isdigit
int isdigit(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isdigit

islower
int islower(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – islower

isprint
int isprint(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isprint

ispunct
int ispunct(int c)

Includes:

Page 801

https://linux.die.net/man/3/isprint
https://linux.die.net/man/3/islower
https://linux.die.net/man/3/isdigit
https://linux.die.net/man/3/isblank

• #include <ctype.h>

See also:

• man(3) – ispunct

isspace
int isspace(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isspace

isupper
int isupper(int c)

Includes:

• #include <ctype.h>

See also:

• man(3) – isupper

itoa
See also:

man(3) –

labs
long labs(long val)

Includes:

• #include <stdlib.h>

See also:

• man(3) – labs

ldiv
ldiv_t ldiv(long numerator, long demominator)

Includes:

• #include <stdlib.h>

Page 802

https://linux.die.net/man/3/labs
https://linux.die.net/man/3/isupper
https://linux.die.net/man/3/isspace
https://linux.die.net/man/3/ispunct

See also:

• man(3) – ldiv

localtime
struct tm *localtime(const time_t *timep)
struct tm *localtime_r(const time_t *timep, struct tm *result)

Includes:

• #include <time.h>

See also:

• Timers and time

• man(3) – localtime

malloc
Allocate storage from the heap.

void *malloc(size_t n)

When no longer needed, the storage should be returned by a call to free().

Includes:

• #include <stdlib.h>

See also:

• calloc

• free

• realloc

• man(3) – malloc

memchr
Find a character/byte within a given piece of memory.

void *memchr(const void *s, int c, size_t n)

Includes:

• #include <string.h>

See also:

• man(3) – memchr

memcmp
Compare the content of one piece of memory against another.

Page 803

https://linux.die.net/man/3/memchr
https://linux.die.net/man/3/malloc
https://linux.die.net/man/3/localtime
https://linux.die.net/man/3/ldiv

int memcmp(const void *m1, const void *m2, size_t n)

Includes:

• #include <string.h>

See also:

• man(3) – memcmp

memcpy
Copy one piece of memory to another.

int memcpy(void *dest, const void *src, size_t n)

Includes:

• #include <string.h>

See also:

• man(3) – memcpy

memmove
Copy memory from one place to another handling overlaps.

void *memmove(void *dst, const void *src, size_t n)

Includes:

• #include <string.h>

See also:

• man(3) – memmove

memrchr
Find a character within a piece of memory searching backwards from the end.

void *memrchr(const void *s, int c, size_t n)

Includes:

• #include <string.h>

See also:

• man(3) – memrchr

memset
Set a piece of memory to a specific value.

void *memset(void *dst, int c, size_t n)

Page 804

https://linux.die.net/man/3/memrchr
https://linux.die.net/man/3/memmove
https://linux.die.net/man/3/memcpy
https://linux.die.net/man/3/memcmp

Includes:

• #include <string.h>

See also:

• man(3) – memset

mkdir
Create a directory.

int mkdir(const char *pathname, mode_t mode)

Returns 0 on success.

Includes:

• #include <sys/stat.h>

See also:

• man(2) – mkdir

mktime
time_t mktime(struct tm *tm)

Includes:

• #include <time.h>

See also:

• Timers and time

• man(3) – mktime

open
Open a file.

int open(const char *path, int oflag, ...)

The path is the path to the file to open.

The oflag is a set if bitwise flags used to control how the file is opened. One of the
following must be supplied:

• O_RDONLY

• O_WRONLY

• O_RDWR

Page 805

https://linux.die.net/man/3/mktime
https://linux.die.net/man/2/mkdir
https://linux.die.net/man/3/memset

In addition, the following combination may also be supplied:

• O_APPEND

• O_CREAT

• O_EXCL

• O_TRUNC

For example:

struct stat statBuf;
int fd = open(path, O_RDONLY);
fstat(fd, &statBuf);
data = malloc(statBuf.st_size);
read(fd, data, statBuf.st_size);
close(fd);

On return, the value is the handle to the open file descriptor or -1 if there was an error in
which case "errno" will be set.

Includes:

• #include <fcntl.h>

See also:

• close

• stat

• fstat

• read

• write

• man(3) – open

open_memstream
Create a dynamic buffer for writing.

FILE *open_memstream(char **ptr, size_t *sizeloc)

The return is a FILE pointer that can be used to write into. After an fclose() or an
fflush() the ptr and sizeloc are updated to point to the buffer and size. The storage
should be released with a call to free() when done.

Includes:

• #include <stdio.h>

See also:

• man(3) – open_memstream

Page 806

https://linux.die.net/man/3/open_memstream
https://linux.die.net/man/3/open

printf
Print a formatted string to stdout.

int printf(const char *format, …)

Includes:

• #include <stdio.h>

See also:

• fprintf

• man(3) – printf

qsort
void qsort(
 void base,
 size_t nmemb,
 size_t size,
 int (*compar)(const void *, const void *))

Includes:

• #include <stdlib.h>

See also:

• man(3) – qsort

rand
Generate a random number.

int rand()

Return a random number. Note that the result is an integer which is signed.

Includes:

• #include <stdlib.h>

See also:

• man(3) – rand

read
Read data from a file or socket.

ssize_t read(int fd, void *buf, size_t nbytes)

Includes:

Page 807

https://linux.die.net/man/3/rand
https://linux.die.net/man/3/qsort
https://linux.die.net/man/3/printf

• #include <unistd.h>

See also:

• man(3) – read

readdir

realloc
Reallocate a portion of malloced data to a new size.

void *realloc(void *originalData, size_t newSize)

Includes:

• #include <stdlib.h>

See also:

• free

• calloc

• malloc

• man(3) – realloc

scanf
int scanf(const char *format, …)

Includes:

• #include <stdio.h>

See also:

• man(3) – scanf

setenv
Set the value of an environment variable.

int setenv(const char *name, const char *value, int overwrite)

setlocale
char *setlocale(int category, const char *locale)

See also:

• man(3) – setlocale

settimeofday
Set the current time of day.

Page 808

https://linux.die.net/man/3/setlocale
https://linux.die.net/man/3/scanf
https://linux.die.net/man/3/realloc
https://linux.die.net/man/3/read

int settimeofday(const struct timeval *tv, const struct timezone *tz)

Includes:

• #include <sys/time.h>

See also:

• gettimeofday

• Timers and time

• man(2) – settimeofday

sprintf
Perform a printf to a region of memory.

int sprintf(char *out, const char *format, …)

Includes:

• #include <stdio.h>

See also:

• man(3) – sprintf

srand
Set the random number seed.

void srand(unsigned int seed)

See also:

• man(3) – srand

sscanf
int sscanf(const char *str, const char *format, ...)

See also:

• man(3) – scanf

stat
Get the status of a file by path.

int stat(const char *path, struct stat *buf)

Includes:

#include <

Page 809

https://linux.die.net/man/3/sscanf
https://linux.die.net/man/3/srand
https://linux.die.net/man/3/sprintf
https://linux.die.net/man/2/settimeofday

See also:

• man(2) – stat

strcasecmp
int strcasecmp(const char *s1, const char *s2)

See also:

• man(3) – strcasecmp

strcasestr
char *strcasestr(const char *haystack, const char *needle)

See also:

• man(3) – strcasestr

strcat
Concatenate two strings together.

char *strcat(char *dst, const char *src)

See also:

• man(3) – strcat

strchr
Search for a character in a string.

char *strchr(const char *s, int c)

See also:

• man(3) – strchr

strcmp
Compare two strings.

int strcmp(const char *s1, const char *s2)

See also:

• man(3) – strcmp

strcoll
int strcoll(const char *s1, const char *s2)

See also:

Page 810

https://linux.die.net/man/3/strcmp
https://linux.die.net/man/3/strchr
https://linux.die.net/man/3/strcat
https://linux.die.net/man/3/strcasestr
https://linux.die.net/man/3/strcasecmp
https://linux.die.net/man/2/stat

• man(3) – strcoll

strcpy
Copy a null terminated string.

char *strcpy(char *dst, const char *src)

Copy the null terminated string pointed to by "src" to the storage area pointed to by
"dst". The destination must have enough storage to hold the source string including its
null terminator.

Includes:

• #include <string.h>

See also:

• man(3) – strcpy

strcspn
size_t strcspn(const char *s, const char *reject)

See also:

• man(3) – strcspn

strdup
Duplicate the null terminate string via malloc().

char *strdup(const char *s)

A simple but powerful function. The null terminated string supplied as an input
parameter is duplicated bu mallocing enough storage to hold a copy and then the string
is actually copied. The returned value is a pointer to the new string copy. The storage
for the new string should eventually be released with a call to free().

See also:

• man(3) – strdup

strerror
Convert an error code into a string representation.

char *strerror(int errnum)

Includes:

• #include <string.h>

Page 811

https://linux.die.net/man/3/strdup
https://linux.die.net/man/3/strcspn
https://linux.die.net/man/3/strcpy
https://linux.die.net/man/3/strcoll

• #include <errno.h>

See also:

• man(3) – strerror

strftime
size_t strftime(char *s, size_t max, const char *format, const struct tm *tm)

See also:

• man(3) – strftime

strlcat
size_t strlcat(char *dst, const char *src, size_t size)

See also:

• man(3) – strlcat

strlcpy
size_t strlcpy(char *dst, const char *src, size_t size)

See also:

• man(3) – strlcpy

strlen
Return the length of a null terminated string.

size_t strlen(const char *s)

Return the length of a null terminated string.

See also:

• man(3) – strlen

strncasecmp
int strncasecmp(const char *s1, const char *s2, size_t n)

See also:

• man(3) – strncasecmp

strncat
char *strncat(char *dst, const char *src, size_t count)

See also:

Page 812

https://linux.die.net/man/3/strncasecmp
https://linux.die.net/man/3/strlen
https://linux.die.net/man/3/strlcpy
https://linux.die.net/man/3/strlcat
https://linux.die.net/man/3/strftime
https://linux.die.net/man/3/strerror

• man(3) – strncat

strncmp
int strncmp(const char *s1, const char *s2, size_t n)

See also:

• man(3) – strncmp

strncpy
char *strncpy(char *dst, const char *src, size_t n)

See also:

• man(3) – strncpy

strndup
char *strdup(const char *s)

See also:

• man(3) – strndup

strnlen
size_t strnlen(const char *s, size_t maxlen)

See also:

• man(3) – strnlen

strrchr
char *strrchr(const char *s, int c)

See also:

• man(3) – strrchr

strsep
char *strsep(char **stringp, const char *delim)

See also:

• man(3) – strsep

strspn
size_t strspn(const char *s, const char *accept)

Page 813

https://linux.die.net/man/3/strsep
https://linux.die.net/man/3/strrchr
https://linux.die.net/man/3/strnlen
https://linux.die.net/man/3/strdup
https://linux.die.net/man/3/strncpy
https://linux.die.net/man/3/strncmp
https://linux.die.net/man/3/strncat

See also:

• man(3) – strspn

strstr
char *strstr(const char *haystack, const char *needle)

See also:

• man(3) – strstr

strtod
double strtod(const char *nptr, char **endptr)

See also:

• man(3) – strtod

strtof
float strtof(const char *nptr, char **endptr)

See also:

• man(3) – strtof

strtol
long strtol(const char *str, char **endptr, int base)

See also:

• man(3) – strtol

strtoul
unsigned long strtoul(const char *nptr, char **endptr, int base)

See also:

• man(3) – strtoul

strupr
See also:

man(3) – strupr

time
Retrieve the current time as the number of seconds since the epoch.

Page 814

https://linux.die.net/man/3/strtoul
https://linux.die.net/man/3/strtol
https://linux.die.net/man/3/strtof
https://linux.die.net/man/3/strtod
https://linux.die.net/man/3/strstr
https://linux.die.net/man/3/strspn

time_t time(time_t *t)

If t is supplied, then the time will be stored at that location. If NULL, the time will only be
returned as a return value.

Includes:

• #include <time.h>

See also:

• Timers and time

• man(2) – time

times
clock_t times(struct tms *buffer)

The struct tms contains:

• clock_t tms_utime – user time

• clock_t tms_stime – system time

• clock_t tms_cutime – user time children

• clock_t tms_cstime – system time children

See also:

• Timers and time

• man(3) – times

toascii
int toascii(int c)

See also:

• man(3) – toascii

tolower
int tolower(int c)

See also:

• man(3) – tolower

toupper
int toupper(int c)

See also:

Page 815

https://linux.die.net/man/3/tolower
https://linux.die.net/man/3/toascii
https://linux.die.net/man/3/times
https://linux.die.net/man/2/time

• man(3) – toupper

tzset
Use the time zone information found in the TZ environment variable.

void tzset()

Examples …

CST+6

for example, in code:

setenv("TZ", "CST+6", 1);
tzset();

See also:

• man(3) – tzset

• Specifying the Time Zone with TZ

ungetc
int ungetc(int c, FILE *fp)

See also:

• man(3) – ungetc

unlink
int unlink(const char *pathName)

Delete a file.

Includes:

• #include <unistd.h>

See also:

• man(2) – unlink

utoa
See also:

• man(3) – utoa

vprintf
int vprintf(const char *format, va_list ap)

Includes:

• #include <stdio.h>

Page 816

https://linux.die.net/man/2/unlink
https://linux.die.net/man/3/ungetc
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://linux.die.net/man/3/tzset
https://linux.die.net/man/3/toupper

See also:

• man(3) – vrprintf

vscanf
int vscanf(const char *format, va_list ap)

Includes:

• #include <stdio.h>

See also:

• man(3) – vscanf

write
ssize_t write(int fd, const void *buf, size_t nbyte)

See also:

• man(3) – write

SPIFFs API
See also:

• Spiffs File System

• Github: pellepl/spiffs

SPIFFS_check
Perform a consistency check on the file system.

s32_t SPIFFS_check(spiffs *fs)

• fs – The file system to be checked for consistency.

SPIFFS_clearerr
Clear the last error.

void SPIFFS_clearerr(spiffs *fs)

• fs – The file system reference.

Page 817

https://github.com/pellepl/spiffs
https://linux.die.net/man/3/write
https://linux.die.net/man/3/vscanf
https://linux.die.net/man/3/vprintf

SPIFFS_close
Close a previously opened file.

s32_t SPIFFS_close(spiffs *fs, spiffs_file fh)

• fs – The file system reference.

• fh – A handle to a previously opened file.

SPIFFS_closedir
Close a previously opened directory.

s32_t SPIFFS_closedir(spiffs_DIR *dir)

• dir – A directory previously opened by SPIFFS_opendir().

SPIFFS_creat
Create a new file.

s32_t SPIFFS_creat(spiffs *fs, const char *path, spiffs_mode mode)

• fs – The file system reference.

• path – The path to the new file.

• mode – Ignored.

SPIFFS_eof
Determine if we are at the end of the file.

s32_t SPIFFS_eof(spiffs *fs, spiffs_file fh)

• fs – The file system reference.

• fh – A handle to an open file.

SPIFFS_errno
Returns the last error detected by performing a SPIFFs API call.

s32_t SPIFFS_errno(spiffs *fs)

• fs – The file system reference.

The defined codes are:

• SPIFFS_OK – 0

• SPIFFS_ERR_NOT_MOUNTED – -10000

Page 818

• SPIFFS_ERR_FULL – -10001 – ENOSPC

• SPIFFS_ERR_NOT_FOUND – -10002 – ENOENT

• SPIFFS_ERR_END_OF_OBJECT – -10003

• SPIFFS_ERR_DELETED – -10004

• SPIFFS_ERR_NOT_FINALIZED – -10005

• SPIFFS_ERR_NOT_INDEX – -10006

• SPIFFS_ERR_OUT_OF_FILE_DESCS – -10007 – ENFILE

• SPIFFS_ERR_FILE_CLOSED – -10008

• SPIFFS_ERR_FILE_DELETED – -10009

• SPIFFS_ERR_BAD_DESCRIPTOR – -10010

• SPIFFS_ERR_IS_INDEX – -10011

• SPIFFS_ERR_IS_FREE – -10012

• SPIFFS_ERR_INDEX_SPAN_MISMATCH – -10013

• SPIFFS_ERR_DATA_SPAN_MISMATCH – -10014

• SPIFFS_ERR_INDEX_REF_FREE – -10015

• SPIFFS_ERR_INDEX_REF_LU – -10016

• SPIFFS_ERR_INDEX_REF_INVALID – -10017

• SPIFFS_ERR_INDEX_FREE – -10018

• SPIFFS_ERR_INDEX_LU – -10019

• SPIFFS_ERR_INDEX_INVALID – -10020

• SPIFFS_ERR_NOT_WRITABLE – -10021

• SPIFFS_ERR_NOT_READABLE – -10022

• SPIFFS_ERR_CONFLICTING_NAME – -10023

• SPIFFS_ERR_NOT_CONFIGURED – -10024

• SPIFFS_ERR_NOT_A_FS – -10025 – Commonly seen when we mount a file system
at an SPI address range and the data found on flash isn't formatted as a SPIFFs
file system. We can then use SPIFFS_format() to format the data and attempt
the mount again.

• SPIFFS_ERR_MOUNTED – -10026

Page 819

• SPIFFS_ERR_ERASE_FAIL – -10027

• SPIFFS_ERR_MAGIC_NOT_POSSIBLE – -10028

• SPIFFS_ERR_NO_DELETED_BLOCKS – -10029

• SPIFFS_ERR_FILE_EXISTS – -10030 – EEXIST

• SPIFFS_ERR_NOT_A_FILE – -10031 – EBADF

• SPIFFS_ERR_RO_NOT_IMPL – -10032

• SPIFFS_ERR_RO_ABORTED_OPERATION – -10033

• SPIFFS_ERR_PROBE_TOO_FEW_BLOCKS – -10034

• SPIFFS_ERR_PROBE_NOT_A_FS – -10035

• SPIFFS_ERR_NAME_TOO_LONG – -10036

• SPIFFS_ERR_IX_MAP_UNMAPPED – -10037

• SPIFFS_ERR_IX_MAP_MAPPED – -10038

• SPIFFS_ERR_IX_MAP_BAD_RANGE – -10039

• SPIFFS_ERR_INTERNAL – -10050

• SPIFFS_ERR_TEST – -10100

SPIFFS_fflush
Flush the content of a file to flash.

s32_t SPIFFS_fflush(spiffs *fs, spiffs_file fh)

• fs – A reference to the file system structure.

• fh – A file handle to a previously opened file.

SPIFFS_format
Format the file system.

s32_t SPIFFS_format(spiffs *fs)

• fs – A reference to the file system structure.

SPIFFS_fremove
Remove a file by file handle.

s32_t SPIFFS_fremove(spiffs *fs, spiffs_file fh)

Page 820

• fs – A reference to the file system structure.

• fh – A file handle to a previously opened file.

SPIFFS_fstat
s32_t SPIFFS_fstat(spiffs *fs, spiffs_file fh, spiffs_stat *s)

• fs – Reference to the file system structure.

• fh – A file handle that has been previously opened.

• s - A pointer to a spiffs_stat data structure that will be populated.

◦ obj_id

◦ size – The size of the file.

◦ type – The type of entry. Possibilities are:

▪ SPIFFS_TYPE_FILE – Entry is a file.

▪ SPIFFS_TYPE_DIR – Entry is a directory.

▪ SPIFFS_TYPE_HARD_LINK – Entry is a hard link.

▪ SPIFFS_TYPE_SOFT_LINK – Entry is a soft link.

◦ pix – Page index.

◦ name – The name of the file.

SPIFFS_gc
Perform a garbage collection.

s32_t SPIFFS_gc(spiffs *fs, u32_t size)

• fs – Reference to the file system structure.

• size – The amount of space being sought.

SPIFFS_gc_quick
s32_t SPIFFS_gc_quick(spiffs *fs, u16_t max_free_pages)

• fs – Reference to the file system structure.

• max_free_pages

Page 821

SPIFFS_info
Determine information about the file system.

s32_t SPIFFS_info(spiffs *fs, u32_t *total, u32_t *used)

• fs – A reference to the file system structure.

• total – The total size of the file system.

• used – The number of bytes used from the file system.

SPIFFS_lseek
Change the file pointer.

s32_t SPIFFS_lseek(
 spiffs *fs,
 spiffs_file fh,
 s32_t offs,
 int whence)

• fs – A reference to the file system structure.

• fh – A file handle to an open file.

• offs – The numeric by which to change the file pointer.

• whence – An indication of how to change the file pointer:

◦ SPIFFS_SEEK_SET – Change the file pointer to an absolute value.

◦ SPIFFS_SEEK_CUR – Change the file pointer with reference to its current value.

◦ SPIFFS_SEEK_END – Change the file pointer relative to the end of the file.

SPIFFS_mount
Mount a file system specifying the flash memory address range.

s32_t SPIFFS_mount(
 spiffs *fs,
 spiffs_config *config,
 u8_t *work,
 u8_t *fd_space,
 u32_t fd_space_size,
 void *cache,
 u32_t cache_size,
 spiffs_check_callback check_cb_f)

• fs – The File System control structure.

• config – The physical and logical configuration of the file system.

• work – A memory buffer that should be 2 * log page size used for local work.

Page 822

• fd_space – A pointer to memory to hold file descriptor working space. Typically
sized at the max number of open file descriptors * sizeof(uint32).

• fd_space_size – The size of the file descriptor space.

• cache – Cache memory.

• cache_size – The size of cache memory. An example would be (log page size +
32) x 4.

• check_cb_f – Callback function invoked to report file system inconsistencies.
Can be NULL.

SPIFFS_mounted
Determine whether or not the file system is mounted.

u8_t SPIFFS_mounted(spiffs *fs)

• fs – The file system to be checked.

SPIFFS_open
Open a new or existing file.

spiffs_file SPIFFS_open(
 spiffs *fs,
 const char *path,
 spiffs_flags flags,
 spiffs_mode mode)

• fs – The reference to the file system control data.

• path – The path of the file to be opened or created.

• flags – Flags controlling access to the file.

◦ SPIFFS_O_APPEND

◦ SPIFFS_O_CREAT

◦ SPIFFS_O_DIRECT

◦ SPIFFS_O_EXCL

◦ SPIFFS_O_RDONLY

◦ SPIFFS_O_RDWR

◦ SPIFFS_O_TRUNC

◦ SPIFFS_O_WRONLY

Page 823

• mode – Ignored.

SPIFFS_open_by_dirent
Open a file by its directory entry.

spiffs_file SPIFFS_open_by_dirent(
 spiffs *fs,
 struct spiffs_dirent *entry,
 spiffs_flags flags,
 spiffs_mode mode)

• fs – The reference to the file system control data.

• entry – The directory entry to be opened.

• flags – Flags controlling access to the file.

◦ SPIFFS_O_APPEND

◦ SPIFFS_O_DIRECT

◦ SPIFFS_O_EXCL

◦ SPIFFS_O_RDONLY

◦ SPIFFS_O_RDWR

◦ SPIFFS_O_TRUNC

◦ SPIFFS_O_WRONLY

• mode – Ignored.

SPIFFS_open_by_page
Open a file given the page it exists within the file system.

spiffs_file SPIFFS_open_by_page(
 spiffs *fs,
 spiffs_page_ix page_ix,
 spiffs_flags flags,
 spiffs_mode mode)

• fs – The reference to the file system control data.

• page_ix – The page to open.

• flags – Flags controlling access to the file.

◦ SPIFFS_O_APPEND

◦ SPIFFS_O_DIRECT

◦ SPIFFS_O_EXCL

Page 824

◦ SPIFFS_O_RDONLY

◦ SPIFFS_O_RDWR

◦ SPIFFS_O_TRUNC

◦ SPIFFS_O_WRONLY

• mode – Ignored.

SPIFFS_opendir
Open a directory to work with it.

spiffs_DIR *SPIFFS_opendir(spiffs *fs, const char *name, spiffs_DIR *dir)

• fs – The reference to the file system control data.

• name – The name of a directory.

• dir – Pointer to the directory structure to be populated.

The return is an opaque data type referring to the directory.

SPIFFS_read
Read data from an open file.

s32_t SPIFFS_read(
 spiffs *fs,
 spiffs_file fh,
 void *buf, s32_t len)

• fs – Reference to the file system structure.

• fh – The file handle to a previously opened file.

• buf – The buffer into which to read the data.

• len – The size of the buffer in bytes.

The return is the number of bytes read or -1 if there was an error.

SPIFFS_readdir
Read the content of a directory.

struct spiffs_dirent *SPIFFS_readdir(spiffs_DIR *dir, struct spiffs_dirent *dirent)

• dir – The directory to be read. An opaque data type returned by
SPIFFS_opendir().

Page 825

• dirent – A directory entry that was read.

◦ obj_id – Internal id of the file.

◦ name – Name of the file.

◦ type (spiffs_obj_type) – Type of the file. Possibilities are:

▪ SPIFFS_TYPE_FILE – Entry is a file.

▪ SPIFFS_TYPE_DIR – Entry is a directory.

▪ SPIFFS_TYPE_HARD_LINK – Entry is a hard link.

▪ SPIFFS_TYPE_SOFT_LINK – Entry is a soft link.

◦ size – Size of the file.

◦ pix – Page index of the file.

Return NULL on error of end of stream of entries.

SPIFFS_remove
Remove a file by path.

s32_t SPIFFS_remove(spiffs *fs, const char *path)

• fs – Reference to the file system structure.

• path – The path to the file to be removed.

SPIFFS_rename
Rename a file.

s32_t SPIFFS_rename(spiffs *fs, const char *oldPath, const char *newPath)

• fs – Reference to the file system structure.

• oldPath – The old path of the file.

• newPath – The new path of the file.

SPIFFS_stat
Get information about a file.

s32_t SPIFFS_stat(spiffs *fs, const char *path, spiffs_stat *s)

• fs – Reference to the file system structure.

• path – The path to the file to be examined.

Page 826

• s - A pointer to a spiffs_stat data structure that will be populated.

◦ obj_id

◦ size – The size of the file.

◦ type – The type of entry. Possibilities are:

▪ SPIFFS_TYPE_FILE – Entry is a file.

▪ SPIFFS_TYPE_DIR – Entry is a directory.

▪ SPIFFS_TYPE_HARD_LINK – Entry is a hard link.

▪ SPIFFS_TYPE_SOFT_LINK – Entry is a soft link.

◦ pix – Page index.

◦ name – The name of the file.

SPIFFS_tell
Find position within file.

s32_t SPIFFS_tell(spiffs *fs, spiffs_file fh)

• fs – Reference to the file system structure.

• fh – An open file handle.

SPIFFS_unmount
Un-mount a previously mounted file system.

void SPIFFS_unmount(spiffs *fs)

The fs is the file system structure previously populated from a SPIFFS_mount() call.

See also:

• SPIFFS_mount

SPIFFS_write
Write data into a file.

s32_t SPIFFS_write(
 spiffs *fs,
 spiffs_file fh,
 void *buf, s32_t len)

• fs – A reference to the file system structure.

Page 827

• fh – A file handle previously opened.

• buf – A pointer to a buffer containing the data to be written.

• len – The length of the data to write.

The return is the number of bytes actually written or -1 if there was an error.

Eclipse Paho – MQTT Embedded C
The Eclipse Paho project is a collection of implementations of MQTT based functions
governed by the Eclipse foundation. Included in this suite is an embedded C
implementation which is an MQTT client written in as vanilla a C language as is
possible.

See also:

• MQTT

• Eclipse paho

• Eclipse Paho – embedded C

• Eclipse Paho

MQTTClientInit
Initialize an MQTTClient.

void MQTTClientInit(
 MQTTClient* c,
 Network *network,
 unsigned int command_timeout_ms,
 unsigned char *sendbuf,
 size_t sendbuf_size,
 unsigned char *readbuf,
 size_t readbuf_size)

The network is a populated connection to the target broker.

MQTTConnect
Connect to a remote MQTT broker.

int MQTTConnect(
 MQTTClient *c,
 MQTTPacket_connectData *options)

The options structure should always be initialized through assignment from
MQTTPacket_connectData_initializer. For example:

MQTTPacket_connectionData data = MQTTPacket_connectData_initializer

Once populated, we can then over-ride some of the defaults to reflect our desired
changes. Within the object we have:

Page 828

https://eclipse.org/paho/
https://eclipse.org/paho/clients/c/embedded/

• MQTTString clientID – An indenitication used by this client.

• unsigned short keepAliveInterval – The keep-alive interval for the connection
in seconds. If the client doesn't communicate from its last message within this
interval then the broker can consider the client lost. The special value of 0
means that there will be no keep-alive checking.

• unsigned char cleansession – Set to 1 to begin a clean session otherwise
supply 0.

• unsigned char willFlag

• MQTTPacket_willOptions will

• MQTTString username – The user name passed for authentication.

• MQTTString password – The password passed for the user for authentication.

The return codes from this call are:

• SUCCESS (0) – connected successfully.

• FAILURE (-1) – General failure.

• BUFFER_OVERFLOW (-2) – Buffer overflow.

Other than these, the returns are MQTT CONNACK responses which are:

• 1 – Unacceptable protocol version.

• 2 – Client identifier rejected.

• 3 – Server unavailable.

• 4 – Bad username or password.

• 5 – Not authorized.

MQTTDisconnect
Disconnect from the broker.

int MQTTDisconnect(MQTTClient* c)

Followiing a successful previous call to MQTTConnect(), this function disconnects us
from the broker.

MQTTPublish
Publish a message to the broker.

int MQTTPublish(
 MQTTClient *c,

Page 829

 const char *topicName,
 MQTTMessage *message)

The MQTTMessage is a structure that reflects the message to be published. It includes:

• enum QoS qos – The desired quality of service of the published message.

• unsigned char retained – Not used in a publish.

• unsigned char dup – Not used in a publish.

• unsigned short id – The identity of this message.

• void *payload – The payload content of this message.

• size_t payloadlen – The length of the message payload.

MQTTRun
void MQTTRun(void* parm)

MQTTSubscribe
Subscribe to a topic.

int MQTTSubscribe(
 MQTTClient *c,
 const char *topicFilter,
 enum QoS qos,
 messageHandler messageHandler)

The messageHandler is a function that is called when a new message is received as
published by the broker. The signature of the function is:

void func(MessageData *data)

The MessageData contains:

• MQTTString *topicName – The topic on which the message was published. To
examine the topicName, we should use the form topicName->lenstring.len and
topicName->lenstring.data.

MQTTMessage *message – The content of the message received.

The MQTTMesage contains:

• enum QoS qos – What is the quality of service.

• unsigned char retained – Was this a retained message.

• unsigned char dup – Was this message sent more than once.

• unsigned short id – The id of the message.

Page 830

• void *payload – The payload data of the message.

• size_t payloadlen – The length of the payload data.

MQTTUnsubscribe
Unsubscribe from receiving further publications on the topic.

int MQTTUnsubscribe(
 MQTTClient *c,
 const char* topicFilter)

MQTTYield
int MQTTYield(
 MQTTClient *c,
 int timeout_ms)

NetworkConnect
Connect to an MQTT broker

int NetworkConnect(Network *network, char *address, int port)

If the return is 0, then the connection succeeded.

Arduino ESP32 Libraries

Arduino WiFi library
The Arduino has a WiFi library for use with its WiFi shield. A library with a similar
interface has been supplied for the Arduino environment for the ESP32.

To use the ESP32 WiFi library you must include its header:

#include <WiFi.h>

We must also call

initWiFi()

and

startWiFi()

before using any of the other WiFi functions in the Arduino library. It is recommended
NOT to mix WiFi setup in ESP-IDF with WiFi setup in the Arduino environment.

To be a station and connect to an access point, execute a call to WiFi.begin(ssid,
password). Now we need to to poll WiFi.status(). When this returns WL_CONNECTED,
then we are connected to the network.

Page 831

To set up an access point, we would call WiFi.softAP() supplying the SSID and
password information.

Here is an example of us connecting as a station:

WiFi.mode(WIFI_STA);
WiFi.begin(SSID, PASSWORD);
if (WiFi.waitForConnectResult() != WL_CONNECTED) {

Serial1.println("Failed");
return;

}
WiFi.printDiag(Serial1);
// We are now connected as a station

See also:

• Arduino WiFiClient
• Arduino WiFiServer
• Arduino WiFi library

WiFi.begin
Start a WiFi connection as a station.

int begin(
 const char *ssid,
 const char *passPhrase=NULL,
 int32_t channel=0,
 uint8_t bssid[6]=NULL)

int begin(
 char *ssid,
 char *passPhrase=NULL,
 int32_t channel=0,
 uint8_t bssid[6]=NULL)

Begin a WiFi connection as a station. The ssid parameter is mandatory but the others
can be left as default. The return value is our current connection status.

Includes:

• WiFiSTA.h

WiFi.beingSmartConfig
bool beginSmartConfig()

WiFi.beginWPSConfig
bool beginWPSConfig()

Page 832

https://www.arduino.cc/en/Reference/WiFi

WiFi.BSSID
Retrieve the current BSSID.

uint8_t BSSID()
uint8_t *BSSID(uint8_t networkItem)

Retrieve the current BSSID.

Includes:

• WiFiScan.h

• WiFiSTA.h

WiFi.BSSIDstr
Retrieve the current BSSID as a string representation.

String BSSIDstr()
String BSSIDstr(uint8_t networkItem)

Retrieve the current BSSID as a string representation.

Includes:

• WiFiScan.h

• WiFiSTA.h

WiFi.channel
Retrieve the current channel.

int32_t channel()
int32_t channel(uint8_t networkItem)

Retrieve the current channel.

Includes:

• WiFiScan.h

• WiFiGeneric.h

WiFi.config
Set the WiFi connection configuration.

void config(IPAddress local_ip, IPAddress gateway, IPAddress subnet)
void config(IPAddress local_ip, IPAddress gateway, IPAddress subnet, IPAddress dns)

Set the configuration of the WiFi using static parameters. This disables DHCP.

Page 833

Includes:

• WiFiSTA.h

WiFi.disconnect
Disconnect from an access point.

int disconnect(bool wifiOff = false)

Disconnect from the current access point.

Includes:

• WiFiSTA.h

WiFi.dnsIP
Includes:

• WiFiSTA.h

WiFi.enableAP
Includes:

• WiFiGeneric.h

WiFi.enableSTA
Includes:

• WiFiGeneric.h

WiFi.encryptionType
Return the encryption type of the scanned WiFi access point.

uint8_t encryptionType(uint8_t networkItem)

Return the encryption type of the scanned WiFi access point.

The values are one of:

• ENC_TYPE_NONE

• ENC_TYPE_WEP

• ENC_TYPE_TKIP

• ENC_TYPE_CCMP

• ENC_TYPE_AUTO

Includes:

• WiFiScan.h

Page 834

WiFi.gatewayIP
Get the IP address of the station gateway.

IPAddress gatewayIP()

Retrieve the IP address of the station gateway.

Includes:

• WiFiSTA.h

WiFi.getAutoConnect
Includes:

• WiFiSTA.h

WiFi.getMode
Includes:

• WiFiGeneric.h

WiFi.getNetworkInfo
Retrieve all the details of the specified scanned networkItem.

bool getNetworkInfo(
 uint8_t networkItem,
 String &ssid,
 uint8_t &encryptionType,
 int32_t &RSSI,
 uint8_t *&BSSID,
 int32_t &channel)

Retrieve all the details of the specified scanned networkItem.

Includes:

• WiFiScan.h

See also:

• WiFi.scanComplete

• WiFi.scanDelete

• WiFi.scanNetworks

WiFi.hostByName
Lookup a host by a name.

int hostByName(const char *hostName, IPAddress &result)

Page 835

Look up a host by name and get its IP address. This function returns 1 on success and
0 on failure.

Includes:

• WiFiGeneric.h

WiFi.hostname
Retrieve and set the hostname used by this station.

String hostname()
bool hostname(char *hostName)
bool hostname(const char *hostName)
bool hostname(String hostName)

WiFi.isConnected
Includes:

• WiFiSTA.h

WiFi.isHidden
Determine if the scanned network item is flagged as hidden.

bool isHiddem(uint8_t networkItem)

Determine if the scanned network item is flagged as hidden.

WiFi.localIP
Get the station IP address.

IPAddress localIP()

Get the IP address for the station. There is a separate IP address if the ESP is an
access point.

Includes:

• WiFiSTA.h

See also:

• WiFi.softAPIP

WiFi.macAddress
Get the station interface MAC address.

uint_t *macAddress(uint8_t *mac)
String macAddress()

Page 836

Get the station interface MAC address.

Includes:

• WiFiSTA.h

WiFi.mode
Set the operating mode.

void mode(WiFiMode mode)

Set the operating mode of the WiFi. This is one of:

• WIFI_OFF – Switch off WiFi

• WIFI_STA – Be a WiFi station

• WIFI_AP – Be a WiFi access point

• WIFI_AP_STA – Be both a WiFi station and a WiFi access point

See also:

Includes:

• WiFiGeneric.h

Wifi.persistent
Includes:

• WiFiGeneric.h

WiFi.printDiag
Log the state of the WiFi connection.

void printDiag(Print &dest)

Log the state of the WiFi connection. We can pass in either Serial or Serial1 as an
argument to log the data to the Serial port. An example of output is as shown next:

Mode: STA
PHY mode: N
Channel: 7
AP id: 0
Status: 5
Auto connect: 0
SSID (7): yourSSID
Passphrase (8): yourPassword
BSSID set: 0

Page 837

Note that the status value is the result of a wifi_station_get_connect_status() call.

Includes:

• WiFi.h

WiFi.psk
Includes:

• WiFiSTA.h

•

WiFi.RSSI
Retrieve the RSSI (Received Signal Strength Indicator) value of the scanned network
item.

int32_t RSSI(uint8_t networkItem)

Retrieve the RSSI value of the scanned network item.

Includes:

• WiFiScan.h

• WiFiSTA.h

WiFi.scanComplete
Determine the status of a previous scan request.

int8_t scanComplete()

If the result is >= 0 then this is the number of WiFi access points found. Otherwise, the
value is less than 0 and the codes are:

• SCAN_RUNNING – A scan is currently in progress.

• SCAN_FAILD – A scan failed.

Includes:

• WiFiScan.h

See also:

• WiFi.scanNetworks
• WiFi.scanDelete

WiFi.scanDelete
Delete the results from a previous scan.

Page 838

void scanDelete()

Delete the results from a previous scan. A request to scan the network results in the
allocation of memory. This call releases that memory.

Includes:

• WiFiScan.h

See also:

• WiFi.scanComplete
• WiFi.scanNetworks
• WiFi.getNetworkInfo

WiFi.scanNetworks
Scan the access points in the environment.

int8_t scanNetworks(bool async = false, bool show_hidden = false)

Scan the access points in the environment. We can either perform this synchronously
or asynchronously. On a synchronous call, the result is the number of access points
found.

Includes:

• WiFiScan.h

See also:

• WiFi.scanComplete
• WiFi.scanDelete

• WiFi.getNetworkInfo

WiFi.setAutoConnect
Includes:

• WiFiSTA.h

WiFi.setAutoReconnect
Includes:

• WiFiSTA.h

WiFi.smartConfigDone
bool smartConfigDone()

Page 839

WiFi.softAP
Setup an access point.

void softAP(const char *ssid)
void softAP(const char *ssid,

const char *passPhrase,
int channel=1,
int ssid_hidden=0)

The ssid is used to advertize our network. The passPhrase is the password a station
must supply in order to be authorized to access.

Includes:

• WiFiAP.h

WiFi.softAPConfig
void softAPConfig(IPAddress local_ip, IPAddress gateway, IPAddress subnet)

Includes:

• WiFiAP.h

WiFi.softAPdisconnect
int softAPdisconnect(bool wifiOff=false)

Includes:

• WiFiAP.h

WiFi.softAPmacAddress
Get the MAC address of the access point interface.

uint8_t *softAPmacAddress(uint8_t *mac)
String softAPmacAddress()

Get the MAC address of the access point interface.

Includes:

• WiFiAP.h

WiFi.softAPIP
Get the IP address of the access point interface.

IPAddress softAPIP()

Return the IP address of the access point interface. There is a separate IP for the
station.

Page 840

See also:

• WiFi.localIP

WiFi.SSID
Retrieve the SSID.

char *SSID()
const char *SSID(uint8_t networkItem)

Here we retrieve the SSID of the current station or the SSID of the scanned network id.

Includes:

• WiFiScan.h

• WiFiSTA.h

WiFi.status
Retrieve the current WiFi status.

wl_status_t status()

The status returned will be one of:

• WL_IDLE_STATUS (0)

• WL_NO_SSID_AVAIL (1)

• WL_SCAN_COMPLETED (2)

• WL_CONNECTED (3)

• WL_CONNECT_FAILED (4)

• WL_CONNECTION_LOST (5)

• WL_DISCONNECTED (6)

Includes:

• WiFiSTA.h

WiFi.stopSmartConfig
void stopSmartConfig()

WiFi.subnetMask
IPAddress subnetMask()

Page 841

Includes:

• WiFiSTA.h

WiFi.waitForConnectResult
Wait until the WiFi connection has been formed or failed.

uint8_t waitForConnectResult()

If we are a station, then block waiting for us to become connected or failed. The return
code is the status. Specifically, this function watches the status to see when it becomes
something other than WL_DISCONNECTED. Perhaps a more positive form of this function
would be:

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

Includes:

• WiFiSTA.h

Arduino WiFiClient
This library provides TCP connections to a partner. A separate class provides UDP
communications.

To use this library, you must include "WiFi.h".

We create an instance of this class and then connect to a partner using the connect()
method.

WiFiClient

WiFiClient.available
Return the amount of data available to be read.

int available()

Return the amount of data available to be read.

WiFiClient.connect
Connect to the given host at the given port using TCP.

int connect(const char* host, uint16_t port)
int connect(IPAddress ip, uint16_t port)

Page 842

Connect to the given host at the given port using TCP. This function returns 0 on a
failure.

WiFiClient.connected
Determine if we are connected to a partner.

uint8_t connected()

Return true if connected and false otherwise.

WiFiClient.flush
void flush()

WiFiClient.getNoDelay
bool getNoDelay()

WiFiClient.peek
int peek()

WiFiClient.read
Read data from the partner.

int read()
int read(uint8_t *buf, size_t size)

Read data from the partner. These functions read either a single byte or a sequence of
bytes from the partner.

WiFiClient.remoteIP
Retrieve the remote IP address of the connection.

IPAddress remoteIP()

Retrieve the remote IP address of the connection.

WiFiClient.remotePort
Return the remote port being used in an existing connection.

uint16_t remotePort()

Page 843

Return the remote port being used in an existing connection.

WiFiClient.setLocalPortStart
Set the initial port for allocating local ports for connections.

void setLocalPortStart(uint16_t port)

Set the initial port for allocating local ports for connections.

WiFiClient.setNoDelay
void setNoDelay(bool nodelay)

WiFiClient.setOption
int setOption(int option, int *value)

WiFiClient.status
uint8_t status()

WiFiClient.stop
Disconnect a client.

void stop()

Disconnect a client.

WiFiClient.stopAll
Stop all the connections formed by this WiFi client.

void stopAll()

WiFiClient.write
Write data to the partner.

size_t write(uint8_t b)
size_t write(const uint8_t *buf, size_t size)
size_t write(T& source, size_t unitSize);

Write data to the partner. The first function writes one byte, while the second function
writes an array of characters.

Page 844

Arduino WiFiServer

WiFiServer
Create an instance of a Server listening on the supplied port.

WiFiServer(uint16_t port)

Create an instance of a Server listening on the supplied port. Interesting, it appears that
once we crate a server instance within an ESP8266, there is no way to stop it running.

WiFiServer.available
Retrieve a WiFiClient object that can be used for communications.

WiFiClient available(byte* status)

Retrieve the corresponding WiFiClient.

See also:

• Arduino WiFiClient

WiFiServer.begin
Start listening for incoming connections.

void begin()

Start listening for incoming connections. Until this method is called, the ESP8266
doesn't accept incoming connections. Interestingly, once called, there is no obvious
way to stop listening. The port used for the incoming connections is the one supplied
when the WiFiServer object was constructed.

WiFiServer.getNoDelay

WiFiServer.hasClient
Return true if we have a client connected.

bool hasClient()

WiFiServer.setNoDelay

WiFiServer.status

WiFiServer.write
WARNING!! This method is not implemented.

Page 845

size_t write(uint8_t b)
size_t write(const uint8_t *buffer, size_t size)

Although present on the interface, this method is not yet implemented.

Arduino IPAddress
A representation of an IPAddress. This class has some operator overrides:

[i] – Get the ith byte of the address. I should be 0-3.

Arduino SPI
The Arduino SPI library is loaded from the "SPI.h" header file and provides the SPI
interface.

SPI.begin
Begin to use the SPI bus.

void begin(int8_t sck=-1, int8_t miso=-1, int8_t mosi=-1, int8_t ss=-1)

The sck is the pin to use for clock. The miso is the pin to use for MISO, the mosi is the
pin to use for MOSI, the ss is the pin to use for SS.

SPI.beginTransaction
Begin a transaction.

void beginTransaction(SPISettings settings)

The settings is an instance of an SPISettings object. This is constructed with three
parameters:

SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)

This sets the clock speed, bit order and data mode.

SPI.end
Stop using the bus.

void end()

SPI.endTransaction
End a transaction.

void endTransaction(void)

Page 846

SPI.setBitOrder
Set the bit order value.

void setBitOrder(uint8_t bitOrder)

SPI.setClockDivider
Set the clock divider value.

void setClockDivider(uint32_t clockDiv)

SPI.setDataMode
Set the data mode value.

void setDataMode(uint8_t dataMode)

SPI.setFrequency
Set the frequency value.

void setFrequency(uint32_t freq)

SPI.setHwC
void setHwCs(bool use)

SPI.transfer
uint8_t transfer(uint8_t data)

SPI.transfer16
uint16_t transfer16(uint16_t data)

SPI.transfer32
uint32_t transfer32(uint32_t data)

SPI.transferBytes
void transferBytes(uint8_t * data, uint8_t * out, uint32_t size)

SPI.transferBits
void transferBits(uint32_t data, uint32_t * out, uint8_t bits)

Page 847

SPI.write
void write(uint8_t data)

SPI.wirite16
void write16(uint16_t data)
void write16(uint16_t data, bool msb)

SPI.write32
void write32(uint32_t data)
void write32(uint32_t data, bool msb)

SPI.writeBytes
void writeBytes(uint8_t * data, uint32_t size)

SPI.writePattern
void writePattern(uint8_t * data, uint8_t size, uint32_t repeat)

Arduino I2C – Wire
The Wire class provides I2C support. In order to use this class, import "Wire.h" into
your sketch. When we use this class, a global instance called "Wire" is made available
to us. One wire is called SCL which provides the clock while the other wire is called
SDA and is the data bus. On the Arduino, the library supports being either a master or a
slave however in the current implementation, only being a master is supported.

To use this class, first we define which pins should be used and then start the service.

Wire.begin(SDApin, SCLpin);

To send data, we begin a transmission using beginTransmission():

Wire.beginTransmission(deviceAddress);

now we can write some data …

Wire.write(value);

and finally complete the transmission:

Wire.endTransmission();

if we wish to receive data from the slave, we can call requestFrom():

Wire.requestFrom(deviceAdress, size, true);

Page 848

and data can be read using the available() and read() functions.

See also:

• Working with I2C
• Arduino – Wire Library

Wire.available
Determine the number of bytes available to read.

int available(void)

Determine the number of bytes available to read.

See also:

• Wire.read
• Wire.requestFrom

Wire.begin
Initialize the wire library.

void begin(int SDApin, int SCLpin)
void begin()
void begin(uint8_t address)
void begin(int address)

Initialize the wire library. When an address is supplied, we are a slave otherwise we are
a master. We can also specify the pins to be used for SDA and SCL. If we are a
master and no pins are supplied, we will use the default pins.

WARNING!! – It appears that there is NO support for actually being a slave and only a
master is supported at this time.

WARNING!! – In the current code, the address parameter is ignored!!

See also:

• Wire.pins

Wire.beginTransmission
Beging a transmission block to a slave.

void beginTransmission(uint8_t address)
void beginTransmission(int address)

Begin the notion of sending a transmission to a slave device with the supplied address.
Further calls to write() will queue data to be transmitted which is finally executed with a
call to endTransmission().

Page 849

https://www.arduino.cc/en/reference/wire

Wire.endTransmission
End the bracketing of a transmission.

uint8_t endTransmission(void) // Defaults to sendStop = true
uint8_t endTransmission(uint8_t sendStop)

End the bracketing of a transmission and perform the actual transmit. The return codes
are:

• 0 – Transmitted correctly

• 2 – Received NACK on transmit of address

• 3 – Received NACK on transmit of data

• 4 – line busy

Wire.flush
Discard any un-read or un-written data.

void TwoWire::flush(void)

Discard any un-read or un-written data. A call to available() will return 0 and a call to
endTransmission() will transmit no data.

Wire.onReceive
A callback when we are in the role of a slave and receive a transmission from a master.

void onReceive(void (*function)(int numBytes))

A callback when slave receives a transmission from a master.

WARNING!! – This function is not implemented.

Wire.onReceiveService
Not implemented.

void onReceiveService(uint8_t* inBytes, int numBytes)

Not implemented.

WARNING!! – This function is not implemented.

Wire.onRequest
A callback invoked when we are in the role of a slave and a master requests data from
us.

Page 850

void onRequest(void (*function)(void))

A callback invoked when we are in the role of a slave and a master requests data from
us.

WARNING!! – This function is not implemented.

Wire.onRequestService
Not implemented.

void onRequestService(void)

Not implemented.

WARNING!! – This function is not implemented.

Wire.peek
Peek at the next byte.

int peek(void)

Peek at the next byte if one is available. A return of -1 if there is no byte available.

Wire.pins
WARNING!! - This function has been deprecated in favor of begin(sda, scl).

Define the default pins for SDA and SCL.

void pins(int sda, int scl)

Define the default pins for SDA and SCL.

See also:

• Wire.begin

Wire.read
Read a single byte.

int read(void)

Read a single byte from the bus. A value of -1 is returned if there is no byte available.

See also:

• Wire.available
• Wire.requestFrom

Page 851

Wire.requestFrom
Request data from a slave.

size_t requestFrom(uint8_t address, size_t size, bool sendStop)
uint8_t requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
uint8_t requestFrom(uint8_t address, uint8_t quantity)
uint8_t requestFrom(int address, int quantity)
uint8_t requestFrom(int address, int quantity, int sendStop)

Request data from a slave. This method should be called when we are playing the role
of a master. The address parameter defines the slave address for the device that
should respond. If the sendStop is true, a stop message is transmitted releasing the I2C
bus. If sendStop is false, a restart message is transmitted preventing another bus
master from taking control.

The quantity parameter states how many bytes we wish to receive.

The return value is the number of bytes that were received.

See also:

• Wire.read
• Wire.available

Wire.setClock
Set the clock frequency.

void setClock(uint32_t frequency)

Set the clock frequency. Always call setClock() AFTER a call to begin().

Wire.write
Write one or more bytes to the slave.

size_t write(uint8_t data)
size_t write(const uint8_t *data, size_t quantity)

Write one or more bytes to the slave.

Arduino Ticker library
This library sets up callback functions that are called after a period of time. To use this
library you must include "Ticker.h". For example:

#include <Ticker.h>

void timerCB() {
Serial1.println("Tick ...");

}

void setup()

Page 852

{
Serial1.begin(115200);
ticker.attach(5, timerCB);
Serial1.println("Ticker attached");

}

Ticker
An instance of a Ticker object. Commonly this is created as a global such as:

Ticker myTicker;

attach
Attach a callback function to the ticker.

void attach(float seconds,
callback_t callback)

void attach(float seconds,
void (*callback)(TArg),
TArg arg)

Attach a callback function to the ticker such that the callback is invoked each period of
seconds. Note that seconds is a float so we can specify values such as 0.1 to indicate
a callback every 1/10th of a second (100 milliseconds).

The callback_t is a defined as:

void (*callback_t)(void)

attach_ms
Attach a callback function to the ticker.

void attach_ms(uint32_t milliseconds,
callback_t callback)

void attach_ms(uint32_t milliseconds,
void (*callback)(TArg), TArg arg)

Attach a callback function to the ticker such that the callback is invoked each period of
milliseconds. Only one attachment can be made to a timer.

detach
Detach a ticker from the timer.

void detach()

Detach a callback function from the timer. No further callbacks will occur.

Page 853

once
Attach a callback function to the timer for a one-shot firing.

void once(float seconds,
callback_t callback)

void once(float seconds,
void (*callback)(TArg),
TArg arg)

Attach a callback function to the timer for a one-shot firing. Note that seconds is a float
so we can specify values such as 0.1 to indicate a callback every 1/10th of a second
(100 milliseconds).

once_ms
Attach a callback function to the timer for a one-shot firing.

void once_ms(uint32_t milliseconds,
callback_t callback)

void once_ms(uint32_t milliseconds,
void (*callback)(TArg),
TArg arg)

Attach a callback function to the timer for a one-shot firing.

Arduino EEPROM library
This library allows us to store and retrieve data from storage that persists across a
device restart. A singleton object called EEPROM is pre-supplied for use.

EEPROM.begin
Begin the process of writing or reading from EEPROM. The size is the amount of
storage we wish to work with.

void begin(size_t size)

EEPROM.commit
The changes to the data are committed to EEPROM. A return of true indicates success
while a return of false indicates a failure.

bool commit()

EEPROM.end
Commits the changes to the data and then releases any local storage. No further reads
or writes should be attempted until after the next begin() call.

void end()

Page 854

EEPROM.get
Read a data structure from storage.

T &get(int address, T &t)

EEPROM.getDataPtr
Retrieve a pointer to the storage we are going to read or write.

uint8_t *getDataPtr()

EEPROM.put
Put a data structure to storage.

const T &put(int address, const T &t)

EEPROM.read
Read a byte from storage.

uint8_t read(int address)

EEPROM.write
Write a byte to storage.

void write(int address, uint8_t value)

Arduino SPIFFS
FS is the File System library which provides the ability to read and write files from within
the Arduino ESP environment. But wait … read and write files to where? There are no
"drives" on an ESP8266. The data for the files is read and written to an area of flash
memory and since flash is relatively small in size (4MBytes or so max) then that is an
upper bound of maximum size of the cumulative files … however, this is still more than
enough for many usage patterns such as saving state, logs or configuration information.

SPIFFS.begin
Begin working with the SPIFFS file system.

bool begin()

Returns true of success and false otherwise.

Page 855

SPIFFS.open
Open the named file.

File open(const char *path, const char *mode)
File open(const String &path, const char *mode)

The mode defines how we wish to access the file. The options are:

• r – Read the file. The file must exist.

• w – Write to the file. Truncate the file if it exists.

• a – Append to the file.

• r+ – Read and write the file.

• w+ – Read and write the file.

• a+ – Read and write the file.

See also:

• File.close

SPIFFS.openDir
Open a directory.

Dir openDir(const char *path)
Dir openDir(const String &path)

SPIFFS.remove
Remove/delete a file from the file system.

bool remove(const char *path)
bool remove(const String &path)

SPIFFS.rename
Rename a file.

bool rename(const char *pathFrom, const char *pathTo)
bool rename(const String &pathFrom, const String &pathTo)

File.available
Return the number of bytes that are available within the file from the current file position
to its maximum size.

int available()

Page 856

File.close
Close a previously opened file.

void close()

No further reading nor writing should be attempted to be performed.

File.flush
Flush the file.

void flush()

File.name
Retrieve the name of the file.

const char *name()

File.peek
Peek at the next byte of data in the file without consuming it.

int peek()

File.position
Retrieve the current file pointer position.

size_t position()

File.read
Read data from the file.

int read()
size_t read(uint8_t *buf, size_t size)

Read either a single byte of data or a buffer of data from the file.

File.seek
Change the current file pointer position.

bool seek(uint32_t pos, SeekMode mode)

The mode can be one of:

• SeekSet – Change the file pointer position to the absolute value.

Page 857

• SeekCur – Change the file pointer position to be relative to the current position.

• SeekEnd – Change the file pointer position to be relative to the end of the file.

File.size
Retrieve the maximum size of the file.

size_t size()

File.write
Write data to the file.

size_t write(uint8_t c)
size_t write(uint8_t *buf, size_t size)

Write either a single byte or a buffer of bytes into the file at the current file pointer
position.

Dir.fileName
Retrieve the name of the file.

String fileName()

Dir.next
bool next()

Dir.open
File open(const char *mode)
File open(String &path, const char *mode)

Dir.openDir
Dir openDir(const char *path)
Dir openDir(String &path)

Dir.remove

Dir.rename

Arduino ESP library
A class has been provided called ESP that provides ESP8266 environment specific
functions. You must realize that using these functions will result in your applications not
being portable to the Arduino (if that is a desire).

ESP.eraseConfig
bool eraseConfig()

Page 858

ESP.getChipId
uint32_t getChipId()

ESP.getCpuFreqMHz
uint8_t getCpuFreqMHz()

ESP.getCycleCount
uint32_t getCycleCount()

ESP.getFlashChipMode
FlashMode_t getFlashChipMode()

ESP.getFlashChipSize
uint32_t getFlashChipSize()

ESP.getFlashChipSpeed
uint32_t getFlashChipSpeed()

ESP.getFreeHeap
uint32_t getFreeHeap()

ESP.getOption
int getOption(int option, int *value)

ESP.getSdkVersion
Retrieve the string representation of the SDK being used.

const char *getSdkVersion()

ESP.flashEraseSector
bool flashEraseSector(uint32_t sector)

ESP.flashRead
bool flashRead(uint32_t offset, uint32_t *data, size_t size)

Page 859

ESP.flashWrite
bool flashWrite(uint32_t offset, uint32_t *data, size_t size)

ESP.magicFlashChipSize
uint32_t magicFlashChipSize(uint8_t byte)

ESP.magicFlashChipSpeed
uint32_t magicFlashChipSpeed(uint8_t byte)

ESP.restart
void restart()

Arduino String library
Although it is believed that this library may be identical to the Arduino String library, I
believe it is so essential to understand that I am going to list the methods again.

String

Constructor
String(const char *cstr = "");
String(const String &str)
String(char c)
String(unsigned char, unsigned char base = 10)
String(int, unsigned char base = 10)
String(long, unsigned char base = 10)
String(unsigned long, unsigned char base = 10)
String(float, unsigned char decimalPlaces = 2)
String(double, unsigned char decimalPlaces = 2)

Create an instance of the String class seeded with various data type initializers.

String.c_str
Retrieve a C string representation.

const char *c_str()

String.reserve
unsigned char reserve(unsigned int size)

String.length
Return the length of the string.

unsigned int length()

Return the length of the string.

Page 860

String.concat
unsigned char concat(const String &str)
unsigned char concat(const char *cstr)
unsigned char concat(char c)
unsigned char concat(unsigned char c)
unsigned char concat(int num)
unsigned char concat(unsigned int num)
unsigned char concat(long num)
unsigned char concat(unsigned long num)
unsigned char concat(float num)
unsigned char concat(double num)

String.equalsIgnoreCase
unsigned char equalsIgnoreCase(const String &s) const;

String.startsWith
Determine whether or not this string starts with another string.

unsigned char startsWith(const String &prefix)
unsigned char startsWith(const String &prefix, unsigned int offset)

String.endsWith
unsigned char endsWith(const String &suffix)

String.charAt
char charAt(unsigned int index)

String.setCharAt
void setCharAt(unsigned int index, char c)

String.getBytes
void getBytes(unsigned char *buf, unsigned int bufsize, unsigned int index = 0)

String toCharArray
void toCharArray(char *buf, unsigned int bufsize, unsigned int index = 0)

String.indexOf
Find the position of a string or character within the current string.

int indexOf(char ch)
int indexOf(char ch, unsigned int fromIndex)
int indexOf(const String &str)
int indexOf(const String &str, unsigned int fromIndex)

Find the position of a string or character within the current string. If the match is not
found, -1 is returned otherwise the position of the start of the match is returned.

String.lastIndexOf
int lastIndexOf(char ch)
int lastIndexOf(char ch, unsigned int fromIndex)
int lastIndexOf(const String &str)
int lastIndexOf(const String &str, unsigned int fromIndex)

Page 861

String.substring
Retrieve a substring from within the current string.

String substring(unsigned int beginIndex)
String substring(unsigned int beginIndex, unsigned int endIndex)

Retrieve a substring from within the current string.

String.replace
void replace(char find, char replace)
void replace(const String& find, const String& replace)

String.remove
void remove(unsigned int index)
void remove(unsigned int index, unsigned int count)

String.toLowerCase
void toLowerCase(void)

String.toUpperCase
void toUpperCase(void)

String.trim
void trim(void)

String.toInt
long toInt(void)

String.toFloat
float toFloat(void)

Reference materials
There is a wealth of information available on the ESP32 from a variety of sources.

Read-The-Docs

Some of the best knowledge on the ESP32 comes from the Github source of the ESP-
IDF. The project contains markup documentation that is hand written and also the
source files are mechanically scanned. The result is some superb documentation that
can be found here:

http://esp-idf.readthedocs.io/en/latest/

C++ Programming

Eclipse configuration
To support the correct indexing of the standard templates, the following incantation is
required.

Page 862

http://esp-idf.readthedocs.io/en/latest/

1. Open up the project properties

2. Visit C/C++ General > Preprocessor Include Paths, Macros, etc

3. Select the Providers tab

4. Check the box for "CDT GCC Built-in Compiler Settings"

5. Set the compiler spec command to
xtensa-esp32-elf-gcc ${FLAGS} -std=gnu++11 -E -P -v -dD "${INPUTS}"

6. Rebuild the index

Simple class definition
Classes are defined using the "class" keyword. Within a class we can define public
fields and member functions as well as private fields and member functions. Public
items may be accessed directly from outside the class if we have an instance of it.
Private items may be accessed only from within the class itself.

Page 863

A constructor method is a public method having no return type and the same name as
the class itself. Should we need to perform some specialized cleanup, we can declare a
destructor method that is invoked when the class instance is deleted. The name of the
method is the same as the class but prefixed with the "~" character and has no return
type.

Within a class instance methods, we can use a variable called this which will be an
implicit pointer to the instance of the current class.

If we declare a field within a class definition as being static, then just one copy of the
variable is shared across all instances of the class. A method within a class can be
defined as static and is thus allowed to be executed without reference to a class
instance.

One class can inherit from another using:

class newClass: public existingClass {
 ...
}

Sample class header

#ifndef MyClass_h
#define MyClass_h

class MyClass {
public:

MyClass();
static void myStaticFunc();
void myFunc();

};
#endif

Sample class source

#include <MyClass.h>
MyClass::MyClass() {
 // Constructor code here ...
}
String MyClass::myStaticFunc() {
 // Code here ...
}
void MyClass::myFunc() {
 // Code here ...
}

Page 864

Mixing C and C++
The vast majority of the ESP-IDF platform is written in C. Should you wish to write C++
applications and leverage the ESP-IDF C functions or, conversely, have ESP-IDF
application logic call your C++ source files there is an important consideration we have
to include.

In C, if I define a function, foo() for example, then the function is called foo() and there
is no ambiguity. Now consider a class called A which has a function called foo() and a
second class called B which also has a function called foo(). It seems pretty obvious
that I can't simply call foo() as the environment would not know which one was meant.
That is why we prefix a function call with the class name in which it was defined. Now
let us consider functions declared outside of a class. For example:

void bar() {
 // some code
}

If I coded this in a C++ program, I could then call bar() and all would be good.
However if then wrote a C source file and tried to call bar() we might be surprised to find
that the linker would complain that we couldn't find bar(). Why is this?

The answer is that when we declare a global function in a C++ source file, the C++
environment implicitly flags the function as being part of a C++ class that represents
some global class and, as such, its name is not actually bar() but is instead
<someGlobalName>::bar().

Fortunately, should we wish, we can explicitly declare that a function definition should
be defined without a prefix class name by using the syntax:

extern "C" {
 void bar();
}

This results in the exported name of bar() without any further decoration.

Including stdc++ in your app
The Espressif supplied C++ compiler includes the stdc++ library. If we wish to use this,
we must include it in our linking. The easiest way to do this is to add

COMPONENT_ADD_LDFLAGS=-lstdc++ -l$(COMPONENT_NAME)

To component.mk in the main directory.

Page 865

C++ Specialized Data types

String
The string data type is included through:

#include <string>

A string can be declared using:

std::string myString = "Hello World";

Since string is a class, we have objects available on it:

• length / size – The length/size of the string in characters.

• find – Find a sub-string with the string.

• empty – True if the string is empty.

• clear – Empty the string.

• + – Concatenate to the string.

• c_str – Return a null terminated string representation (a C language string).

The string type also has some powerful stream processors associated with it.

There is a class called std::stringstream which allows us to stream data into it and
then retrieve the string representation. For example:

#include <sstream>
std::stringstream stream;
// do stream things
std::string myString = stream.str();

We can append into the stream with:

stream << "hello " << "world: " << 123;

We can also do numeric formatting such as setting the width, fill character and hex
mode:

#include <iomanip>
stream << std::hex << std::setfill('0') << std::setw(2) << 99;

List
The list data type is included through:

#include <list>

std::list<type> myList

Map
This data type stores name/value pairs.

Page 866

The map data type is included through:

#include <map>

We define a map variable using:

std::map<keyType, valueType> mapName;

To insert a value into the map we use:

mapName.insert(std::pair<keyType, valueType>(key, value));

To see if a value is within the map, we use:

valueType value = mapName.at(key);

This will throw a std::out_of_range exception if the key is not found in the map.

To iterate through a map we use:

for (auto &myPair : mapName) {
 // myPair.second is the value
}

We can also use a more conventional iterator:

for (std::map<keyType, valueType>::iterator it = mapName.begin();
 it != mapName.end();
 it++) {
 // it->first is the key
 // it->second is the value
}

See also:

• std::map Tutorial Part 1: Usage Detail with examples

Queue
The queue data type is included through:

#include <queue>

Stack
The stack data type is include through:

#include <stack>

Vector
The vector data type is included through:

#include <vector>

Page 867

http://thispointer.com/stdmap-tutorial-part-1-usage-detail-with-examples/

and is part of the "std::" namespace.

std::vector<type> myVector;

We can access the member's of a vector through the "[x]" array index construct.

We can append to the end of a vector using "push_back()" and pull from the end using
"pop_back()". The size() method returns the number of entries in the vector. The
clear() method removes all entities in the vector. The empty() method returns true if
the vector is empty.

Lambda functions
Modern C++ has introduced lambda functions. These are C++ language functions that
don't have to be pre-declared but can instead be declared "inline". The functions have
no names associated with them but otherwise behave just like other functions.

See also:

• Lambda functions

Designated initializers not available in C++
In the latest versions of the C programming language, we can perform interesting
structure initializations such as:

struct myStruct myVar = {
 .a = 123;
 .b = "xyz";
};

This will create an instance of a variable called "myVar" of type "struct myStruct" and
initialize its members.

This capability is not present in C++.

Ignoring warnings
From time to time, your code may issue compilation warnings that you wish to suppress.
One way to achieve this is through the use of the C compile #pragma directive.

For example:

#pragma GCC diagnostic ignored "-Wformat"

See also:

• GCC Diagnostic Pragmas

Page 868

https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Diagnostic-Pragmas.html#Diagnostic-Pragmas
http://en.cppreference.com/w/cpp/language/lambda

File I/O in C++
Leveraging STL, we have some nice file I/O capabilities.

ofstream myfile;
myfile.open("<name>");
myfile << <data>;
myfile.close();

The open method has the signature open(filename, mode). The mode can control how
the file is opened and is the bitwise or of flags such as:

• ios::in – Open for input.

• ios::out – Open for output.

• ios::binary – Open for binary.

• ios::ate – Set the file pointer to the end of the file.

• ios::app – Append to the end of the file.

• ios::trunc – Truncate the file.

Headers:

• ofstream – Output to files.

• ifstream – Input from files.

• fstream – Input and output from files.

• iostream

See also:

• Input/output with files

The Factory pattern
In an ESP32 environment there are lots of times where "callbacks" of one form or
another are desired. If we were in a C environment, I might do the following:

void myCallbackFunc() {
 … my code;
}

registerCallback(myCallbackFunc);

While this will still work in a C++ environment, I really wanted to take advantage of the
nature of C++ and write a C++ class that implements my logic. For example:

MyClass : public CallbackInterface {
 void callbackFunc() {

Page 869

http://www.cplusplus.com/doc/tutorial/files/

 }
}

and thus, when the event fires, we would invoke myCallbackClass() method. And this of
course would work if we did something like:

MyClass *pMyClassInstance = new MyClass();
registerCallback(pMyClassInstance);

However, if we look closely, what we see is that we are providing ONE instance of the
class. Ideally I want an instance of the class to be created for each event.

We can do this using a factory pattern.

Now imagine we have:

class CallbackInterface {
 virtual void callbackFunct() = 0;
}
class CallbackFactory {
 virtual CallbackInterface* newInstance() = 0;
}
MyCallbackClass : public CallbackInterface {
 void callbackFun() {
 }
}
MyCallbackClass Factory : public CallbackFactory {
 MyClassFactory *newInstance() {
 return new MyCallbackClass();
 }
}

Logging pre-defined symbols
The C and C++ compilers have pre-defined symbols within them. We can log those
with:

$ xtensa-esp32-elf-gcc -dM -E - < /dev/null

The ESP-IDF C++ class libraries
Given the richness of function available in ESP-IDF as well as the power of
encapsulation in C++, a set of sample classes have been created that encapsulate
much of the function of the framework. These classes are open source and can be
found here:

https://github.com/nkolban/esp32-snippets/tree/master/cpp_utils

Documentation for the classes is written in-line in the source using Doxygen.

Here we will provide additional thoughts and notes.

Page 870

https://github.com/nkolban/esp32-snippets/tree/master/cpp_utils

GPIO interactions
GPIO functions have been encapsulated in the class called ESP32CPP::GPIO. Note the
additional ESP32CPP name space. There are name space collisions without this as
ESP32 itself provides a struct called GPIO.

The pin numbers are specified as the ESP-IDF native gpio_num_t so that we may use
constants.

Each GPIO pin has a direction; either input for reading or output for writing. We must
declare which direction we are using through a call to either setInput() or setOutput().
If we have set the pin as output, we can then write a value to it. We have a few choices:

• low(pin) – Set the output value of the pin to be low (0).

• high(pin) – Set the output value of the pin to be high (1).

• write(pin, value) – Set the output value of the pin to be the value supplied.

For reading, we call read(pin).

Example – Writing a value

ESP32CPP::GPIO::setOutput(GPIO_NUM_27);
ESP32CPP::GPIO:high(GPIO_NUM_27);

Example – Reading a value

ESP32CPP::GPIO::setInput(GPIO_NUM_27);
bool value = ESP32CPP::GPIO:read(GPIO_NUM_27);

Task management
Since the ESP32 is multi-tasking through FreeRTOS, a class has been created that
provides a model of such. The class is called Task. It is designed to be sub-classed
with your own implementation. You are responsible for implementing a function called
run which has the following signature:

void run(void* data)

For example, to create your own task, you might code:

#include <Task.h>
class MyTask: public Task {
 void run(void *data) {
 // do something
 }
}

With your class created, you can now create an instance of the task and cause it to start
executing:

Page 871

MyTask* pMyTask = new MyTask();
pMyTask->start();

The default stack size for the new task is 2K but you can set this to a different value
before starting it. The method setStackSize() can be used for that purpose.

SPI Interaction
The C++ wrapper for SPI is found in the class called SPI. We construct an instance of
this as follows:

SPI mySPI();

Next we call a function to initialize it:

void init(mosiPin, misoPin, clkPin, csPin);

This defines the pins to be used for the SPI functions. These are optional and, if not
supplied, the default values will be used which are:

Function Pin

mosiPin 13

misoPin 12

clkPin 14

csPin 15

Finally, there is a function to transfer data. Remember that for SPI, each time write a
byte we simultaneously receive a byte. This means that the input buffer of data can be
used to hold the resulting output buffer of data. The signature is:

void transfer(uint8_t* data, size_t dataLen);

A convenience function is made available for sending and receiving a single byte.

uint8_t transferByte(uint8_t value);

Bluetooth BLE
Using the low level ESP-IDF functions to build a BLE solution is considered difficult.
There are a lot of concepts and there is a lot of state to be considered plus events
needing to be handled. This feels like an ideal candidate for a higher level class
encapsulation to simplify our tasks. To that end, we have created a set of C++ classes
that provide all the needed BLE capabilities with, what we hope to be, an easier model
of usage.

When using these classes, we must use make menuconfig to configure our ESP-IDF
environment. First, we need to ensure that Bluetooth is enabled. Start make
menuconfig and navigate to Component config and select Bluetooth:

Page 872

Next drill into the Bluetooth entry and ensure "Bluedroid Bluetooth stack enable" is
selected:

Page 873

Finally, drill into the "Bluedroid Bluetooth stack enabled" and set the "Bluetooth event
(callback to application) task stack size" to be 8000 (or more).

Save all your changes are rebuilt the source.

We'll split our story into two parts … one being a BLE Server and the other being a BLE
Client.

A BLE Server
A BLE Server is also known as a BLE Peripheral. It is likely that this is how you will
most commonly use the ESP32. With a BLE Server, you will expose one or more
services where each service has one or more characteristics and each characteristic
may have zero or more descriptors. I think we'll agree that is quite a lot going on.

Page 874

In our C++ model, we create the concept of classes that represent these items.

• BLEServer – Models a server.

• BLEService – Models a service. Owned by a BLEServer.

• BLECharacteristic – Models a characteristic. Owned by a BLEService.

• BLEDescriptor – Models a descriptor. Owned by a BLECharacteristic.

And also:

• BLEAdvertising – Models advertising. Owned by a BLEServer to let others know
of our existence.

At a high level, the pseudo code of a minimal BLE server becomes:

// Initialize the BLE environment
BLE::initServer("ServerName");

// Create the server
BLEServer* pServer = new BLEServer();

// Create the service
BLEService* pService = pServer->createService(ServiceUUID);

Page 875

// Create the characteristic
BLECharacteristic* pCharacteristic =
 pService->createCharacteristic(CharacteristicUUID, properties);
// Set the characteristic value
pCharacteristic->setValue("Hello world");

// Start the service
pService->start();

Hopefully you see how this fits together … we create the server, we create the service,
create a characteristic upon the service, set a value for the characteristic and then ask
the service to start responding to requests.

If you are familiar with the BLE APIs, you may notice what is missing … all the
complexity and glue code necessary for event handling and processing of BLE
requests. All of this is handled for you by the implementation of the classes. This
means that you can focus on your intent/usage of BLE while keeping your plumbing to a
minimum.

The goal of these classes is to efficiently process BLE workflow while encapsulating the
plumbing so you don't need to worry about it … but within is the danger that the
implementation will restrict you from some tasks by hiding functions that you might
otherwise have needed for your own project. Thankfully, this has not been seen to be
the case. The classes expose simple high level APIs for the 95% of common practices
while at the same time providing methods that can be called to tweak and tailor the
operations for the rarer cases. Hopefully you won't need those often but, if and when
you do, they are there for you.

When a BLE Server is running, what must happen next is that peer devices (clients)
must be able to locate it. This is made possible through the notion of advertising. The
BLE Server can broadcast its existence along with sufficient information to allow a client
to know what services it can provide.

Once we have started the BLE Server, we can ask it for an object (BLEAdvertising) that
owns the advertisements that the server produces:

BLEAdvertising* pAdvertising = pServer->getAdvertising();
pAdvertising->start();

Once performed, the server can start to be dynamically found by the clients. Of course
a server doesn't need to advertise. If a client should otherwise be informed (or
remember) the address of the BLE server, it can request a connection at any time.

A core concept of BLE is the notion of the characteristic. Think of this as a stateful
record that has an identity and a value. A peer device (if permitted) can read the value
of the characteristic or set a new value. Remember, it the BLE characteristic that owns
the existence of the value so that it may be served up or changed upon request. This is

Page 876

the core notion of BLE. The value read from the characteristic provides information.
For example, if the characteristic represents your heart-rate measured from a sensor,
then a remote client can retrieve your current heart rate by reading the current
characteristic value. In this case, a remote client will not be setting the value, instead
the value will be changed internally by the server either each time a read request by a
client is made or when a new sensor reading is taken. Alternatively, the characteristic
maintained in the BLE Server may represent the state of something that can be
activated or changed. As another example, imagine that the characteristic represents
the state of your car door's lock. You can read the characteristic to determine that your
door is locked when you leave or, conversely, you can set the characteristic's value to
an unlocked state which would result in the server mechanically unlocking the door.

To model these notions in our C++ classes, we leverage the notion that a C++ class can
be sub-classed to be more specialized. A class called BLECharacteristicCallbacks
provides two methods that can be over-riden:

• onRead(BLECharacteristic* pCharacteristic) – Called when a read request
arrives from a client. A new value for the characteristic can be set before return
from the function and will be used as the value received by the client.

• onWrite(BLECharacteristic* pCharacteristic) – Called when a client initiated
write request arrives. The new value has been set in the characteristic already.

To utilize, we can then override these functions in our own C++ class that subclasses
the one provided:

class MyCallback: public BLECharateristicCallback {
 void onRead(BLECharacteristic*) {
 // Do something before the read completes.
 }

 void onWrite(BLECharacteristic*) {
 // Do something because a new value was written.
 }
}

To use this technique, we inform our BLECharacteristic about a callback handler. For
example:

pCharacteristic->setCallbacks(new MyCallback());

Page 877

Here is an example that sends the time since startup each time a client requests the
value:

class MyCallbackHandler: public BLECharacteristicCallbacks {
 void onRead(BLECharacteristic* pCharacteristic) {
 struct timeval tv;
 gettimeofday(&tv, nullptr);
 std::ostringstream os;
 os << "Time: " << tv.tv_sec;
 pCharacteristic->setValue(os.str());
 }
};

Similar to the characteristic callbacks, we also have server callbacks. These inform
about client connection and disconnection events. These are subclassed from the
BLEServerCallbacks class which has virtual methods for:

• onConnect(BLEServer* pServer) – Called when a connection occurs.

• onDisconnect(BLEServer* pServer) – Called when a disconnection occurs.

These could be used to enable or disable sensor readings. For example, if we have no
clients connected then there is no need to spend energy sampling a value if there is no-
one there to read it. However, when a client connects, we can detect that and start
reading from the sensor at that point until a subsequent disconnection indication is
detected.

Another consideration for our BLE Server is the idea that we might want to "push" data
to the peer when something interesting happens. Up until now we have considered the
idea that the server can receive read requests to get the current value or can receive
write requests to set the current value. There is one more operation that we are
interested in that is invoked on the server side by the server and asynchronously to the
client. That operation is called "indicate". It is used to signal (or indicate) to the client
that the characteristic's value has changed. The client will receive an indication event to
let it know that the change has occurred.

On the server, we can cause an indication to occur by invoking:

pCharacteristic->indicate();

The current value of the characteristic will be the value transmitted to the peer. We
might pair this call with a previous request to set a new value:

pCharacteristic->setValue("HighTemp");
pCharacteristic->indicate();

Page 878

A similar function to indicate() is called notify(). The distinction between them is that
an indicate() receives a confirmation while a notify() does not receive a
confirmation.

Associated with the idea of indications/notifications, is the architected BLE Descriptor
called "Client Characteristic Configuration" which has UUID 0x2902. This contains two
distinct bit fields that can be on or off. One bit field governs Notifications while the other
governs Indications. If the corresponding bit is on, then the server can/may send the
corresponding push. For example if the Notifications bit is on, then the server can/may
send notifications. The primary purpose of the descriptor is to allow a partner to request
that the server actually send notifications or indications. Here is an example. Imagine
that we have a BLE Server that can publish notifications when data changes. Now
imagine that a BLE Client connects but is actually not interested in receiving these. If
the BLE Server executes a notification push and sends the data, that will be wasted
effort/energy as the client doesn't want or can't use the information. What we really
want is that the client should inform the server that if it wants to push new data then it
either may or shouldn't. And that is where this descriptor comes into play. If the
descriptor is present on a characteristic then then client can remotely change the bit flag
to enable or disable notifications and indications. Since the descriptor flag is stored
local to the server, the server is at liberty to examine the flag before performing a radio
transmission. What this means is that the client/peer can toggle on or off its desire to
receive notifications and the server should honor those requests.

The BLE specification constrains the maximum amount of data that can be sent through
a notification or indication to be 20 bytes or less. Take this into account in your designs.
If the value of a characteristic is greater than this amount, then only the first 20 bytes of
the data will be transmitted.

It is likely that your own BLE server application is going to expose its own set of
characteristics. Through a characteristic you can set and get the value as a binary
piece of storage, however this may be too low level for you. An alternative is to utilize
the features of the C++ language and model your own specialized characteristic as a
sub class of BLECharacteristic. This could then encapsulate the lower level value's
getter and setter with your own customized version.

For example, if your characteristic represented a temperature, you could create:

class MyTemperatureCharacteristic: public BLECharacteristic {
 MyTemperature(): BleCharacteristic(BLEUUID(MYUUID)) {
 setTemperature(0.0);
 }

 void setTemperature(double temp) {
 setValue(&temp, sizeof temp);

Page 879

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml

 }

 double getTemperature() {
 return *(double*)getValue();
 }
}

A BLE Client
Now we will turn our attention to the second half of our story, namely that of being a
client. In this story, our ESP32 doesn't host services but instead wishes to be a
consumer of services hosted elsewhere. The story can further be broken down into two
sub-stories … namely scanning and interaction.

If we assume that our ESP32 starts up and wishes to be a client of a remote BLE server
then it has to connect to that server. In order to connect to the server, we need to know
the address of the target server. An address is a 6 byte value commonly written in the
form

nn:nn:nn:nn:nn:nn

While in principle this can be hard-coded into your application or manually entered
through some interaction story, this is not the common practice. Instead, we perform a
procedure known as a scan. Scanning is the idea that we actively listen on the BLE
radio frequencies for servers which are actively advertising their existence. As an
analogy, imagine we enter a dark room and we have no idea who is in there with us.
We take off our ear-muffs (yes, for some reason we entered a dark room with no light at
all wearing ear-muffs … but then, this is just an analogy) and we start hearing voices.
We hear "Hi this is Bob, I can make toast" and "Hi this is Susan, I can tell you what
temperature it is" and we also hear "Hi this is Brian, ask me what I can do". In this
analogy, Bob, Susan and Brian are the addresses of the BLE devices. Each of them
are continually saying out loud that they exist and, in some cases, what they can do for
us.

When we perform a BLE scan, we receive short size records of data that always contain
the address of the advertiser and sometimes additional information such as the services
they provide or other descriptive items. This information arrives at us passively. All we
need do is listen and we learn. Should we need to learn more about the devices, we
can connect to them (even the ones that told us little) and explicitly ask them for more
details of what they can do.

And …. that is the principle of scanning. In our C++ BLE story, we have modeled this
through the C++ class called BLEScan. We get an instance of this class by asking the
BLE device for it using:

BLEScan* pMyScan = BLE::getScan();

Page 880

The object returned to us is a singleton. This was chosen because we will only want to
be scanning once per ESP32 at any given time.

The BLEScan object, when presented to us, isn't actually yet scanning, to start it
scanning we invoke its start() method passing in the duration of how long we would
like it to scan for. This is an interval measured in seconds. For example:

pMyScan.start(30); // Scan for 30 seconds

This is a blocking call. It will return after the scan period has elapsed. It returns a C++
vector data type containing each of the unique devices found. Since we are scanning,
we will want to know as soon as possible about the devices that we find and this is
where a callback function comes into play. Before calling start() we can register a
callback function that will be invoked for each peer device that was found. An abstract
C++ class called BLEAdvertisedDeviceCallbacks works for us here. This has a method
on it called onResult() which will be invoked for each unique result found during
scanning. Note that we don't pass the same detected device twice; if it wasn't the one
you werepreviously looking for, it still won't be the one you want a short while later. This
method is passed in a reference to an object of type BLEAdvertisedDevice that
describes the nature of the device that we found.

For example:

class MyCallbacks: public BLEAdvertisedDeviceCallbacks {
 void onResult(BLEAdvertisedDevice* pAdvertisedDevice) {
 // Do something with the found device ...
 }
}

BLE::initClient();
BLESan* pMyScan = BLE::getScan();
pMyScan->setAdvertisedDeviceCallbacks(new MyCallbacks());
pMyScan->start();

What this means is that for every unique device that the scan finds, a call to onResult()
will be made which is passed a reference to a BLEAdvertisedDevice which describes
that device. Now let us look at what a device may tell us. The only thing that a device
will tell us for sure is its BLE address. Beyond that, everything else is optional. The
possible attributes that an advertised device may inform us about is large and the
following subset have been modeled (so far):

• Appearance

Page 881

• Manufacturer data

• Name

• RSSI

• Primary service UUID

• Transmit power

Since none of these are mandatory in an advertisement, for any given advertised device
we learn about, we can't immediately ask about the value of the property. Instead, we
have methods that tell us which properties are present and, if present, then we can ask
for its value.

For example, in our processing logic we may code:

if (pAdvertisedDevice->hasServiceUUID()) {
 BLEUUID service = pAdvertisedDevice->getServiceUUID();
 if (service.equals(BLEUUID((uint16_t)0x1802) {
 // we found a useful device …
 }
}

(The above is merely an example of the logic that can be employed).

If we wish to end the scan early; presumably because we found the device we wanted,
we can call the stop() method of the BLEScan object. A reference to the BLEScan is
conveniently available within the BLEAdvertisedDevice object.

pAdvertisedDevice->getScan()->stop();

From all of this … we end up with the identification of a device that was of interest to us
and since we want to be a BLE Client, this will presumably mean the device to which we
wish to connect. The key item in the advertisement now becomes the device's address
which we can obtain through a call to getAddress().

Now we can turn our attention to actually connecting to the server.

A BLE Client is modeled as the BLEClient class. We obtain an unconnected instance of
this by asking the ESP32 for one:

BLEClient* pMyClient = BLE::createClient();

Next we request a connection to the target device.

pMyClient->connect(address);

… and that's it. The connect() is a blocking call and, on return, we are connected.
However, that isn't the end of the story. Just connecting to a peer is usually not enough.
Now we want to read and write the values that the remote BLE server is hosting. If we
think back to our understanding of the story, the remote server has one or more

Page 882

services and each service has one or more characteristics and it is these characteristics
that hold the values. This means that it doesn't make sense to say "I want to read the
value of the remote BLE server" … instead we must say "I want to read the value of a
named remote characteristic". However, even that is not enough. There may be
multiple services on the BLE server each of which have their own characteristic which
may be of the same characteristic type and hence not be uniquely identified. Thus we
end up with the final concept of "I want to read the value of a named remote
characteristic that is owned by a named service". From this notion, we now get to
introduce two more models. Those are the BLERemoteService and
BLERemoteCharacteristic.

Once we have connected to a BLE Server, we can request a reference to the
BLERemoteService that models a service on that server:

BLERemoteService* pMyRemoteService = pClient->getService(serviceUUID);

and once we have a reference to the service, we can ask that service for a reference to
the desired characteristic.

BLERemoteCharacteristic* pMyRemoteCharacteristic =
 pMyRemoteService->getCharacteristic(characteristicUUID);

and ... finally … we can work with the values.

std::string myValue = pMyRemoteCharacteristic->readValue();

to read the value and …

pMyRemoteCharacteristic->writeValue("abc");

to write a new value. If all that seems like a lot of work … lets put it together in context
and see:

// Create the client
BLEClient* pMyClient = BLE::createClient();

// Connect the client to the server
pMyClient->connect(address);

// Get a reference to a specific remote service on the server
BLERemoteService* pMyRemoteService = pClient->getService(serviceUUID);

// Get a reference to a specific remote characteristic owned by the service
BLERemoteCharacteristic* pMyRemoteCharacteristic =
 pMyRemoteService->getCharacteristic(characteristicUUID);

// Retrieve the current value of the remote characteristic.
std::string myValue = pMyRemoteCharacteristic->readValue();

… and that's it. Hopefully you see that is pretty elegant (and if not, please contact me
and we'll see if we can't improve on it … but come bearing suggestions for what can be

Page 883

improved).

POSIX file system APIs
The POSIX specification provides some APIs for working with a file system that are
mapped to the ESP-IDF Virtual File System. These include:

• close

• fstat

• link

• lseek

• open

• read

• rename

• stat

• unlink

• write

And a set of directory manipulation functions. These functions are defined in:

#include <dirent.h>

The high level notion is that we open a directory by its path and are returned an object
that represents that directory. This is a DIR object. Within the DIR object is maintained
the state of what entries are contained within the directory as well as a "current pointer"
to the next entry to be retrieved.

A call to readdir() returns the next directory entry. This is an instance struct dirent which
will contain:

• d_ino – The identity of the directory entry.

• d_name – The name of the directory entry.

• d_type – The type of the file:

◦ DT_UNKNOWN – Unknown type of file.

◦ DT_REG – Regular file.

◦ DR_DIR – Directory.

The directory functions are:

• closedir – Close a directory previous opened by opendir().

Page 884

http://pubs.opengroup.org/onlinepubs/9699919799/functions/closedir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/write.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/unlink.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/stat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/rename.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/read.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/open.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/lseek.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/link.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fstat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/close.html

• mkdir – Create a new directory.

• opendir – Open a directory for access, returns a pointer to a DIR.

• readdir – Read a directory entry from a DIR.

• rmdir – Remove a directory.

• seekdir – Change the position of the next directory entry to be retrieved.

• telldir – Retrieve the current location of the next directory entry to be retrieved.

Documenting your code – Doxygen
For C and C++ source applications, the defacto standard for documentation is the
Doxygen tool. Doxygen is big and rich and here we will capture a cheat sheet to get
you going with working with your source.

Doxygen is an application that has dependencies on another tool called "Graphviz".

A GUI tool called "doxywizard" is available after installing "doxygen-gui"

See also:

• Doxygen

• Graphviz

Creating a build environment on the Raspberry Pi 3
Many programmers believe that Linux is a superior development environment than
other operating systems such as Windows or Mac OSX. Words like "superior" and
"better" are usually subjective and I will avoid any discussion along those lines. Should
one choose to use Linux as a development environment, there are many choices for
where one hosts it. In this section, we are going to examine using the 4 core Raspberry
Pi model 3 as a platform for hosting Linux and building an ESP32 development
environment.

The CPU on the Raspberry Pi is ARM based which means that we need a cross
compiler to build executables for an ESP32. At the time of writing, there is not a known
location for a binary download of the tool suite for ESP32 so our choice is to build it from
scratch. Fortunately there are instructions for this in the "linux-setup.rst" document
found as part of the ESP-IDF project. In summary the steps are:

Page 885

http://www.graphviz.org/
http://www.stack.nl/~dimitri/doxygen/
http://pubs.opengroup.org/onlinepubs/9699919799/functions/telldir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/seekdir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/rmdir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/readdir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/opendir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mkdir.html

$ sudo apt-get install gawk gperf grep gettext libcurses5-dev python python-dev
automake bison flex texinfo help2man libtool libtool-bin
$ git clone -b xtensa-1.22.x https://github.com/espressif/crosstool-NG.git
$ cd crosstool-NG
$./bootstrap && ./configure --prefix=$PWD && make install
$./ct-ng xtensa-esp32-elf
$./ct-ng build
$ chmod -R u+w builds/xtensa-esp32-elf

Be aware that the build of the tool chain requires about 4GBytes of storage in order to
complete. As such, you will likely need a much larger micro SD card than the minimum
of 8GBytes that is normally used with a Pi. The resulting binaries for the tool chain end
up at about 100MBytes. You might want to download the files pre-compiled. A version
of the files can be downloaded from my web site from:

http://www.neilkolban.com/esp32/downloads/xtensa-esp32-elf.tar.gz

Once downloaded, I suggest extracting the content into /opt using:

$ sudo tar --extract --directory /opt --ungzip --file xtensa-esp32-elf.tar.gz

To physically construct a PI/ESP32 environment, I recommend the following. First, get
two full sized breadboards and remove the power rail from one of them. Next, bind the
two together at the edge where you removed a power rail such that there is only one
power rail between the two boards. This will then allow an ESP32 DevKitC to bridge
between them. Now on one of the breadboards, we can plug in a Raspberry PI
extender. We now have both the PI and the ESP32 col-located on the boards.

Taking a short USB cable, plug the DevKitC into the PI. This will provide both power to
the DevKitC as well as give us a serial port. On the PI, if we now run "lsusb", we will
see the DevKitC:

$ lsusb
Bus 001 Device 018: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge /
myAVR mySmartUSB light
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514 Fast
Ethernet Adapter
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

The DevKitC is the first entry. To further validate, we can look for /dev/ttyUSB0:

$ ls -l /dev/ttyUSB0
crw-rw---- 1 root dialout 188, 0 Sep 25 10:27 /dev/ttyUSB0

This is the serial port that shows up with a USB→Serial connector such as DevKitC.

Page 886

http://www.neilkolban.com/esp32/downloads/xtensa-esp32-elf.tar.gz

We can now connect a serial terminal to this serial port and see the information
produced from it. One can use a tool such as "screen" to achieve this task. This tool is
not installed by default on the PI so we need to install it with:

$ sudo apt-get install screen

Once installed, we can run:

$ screen /dev/ttyUSB0 115200

At this point we should be seeing the serial output from the ESP32. To end our "screen"
session, we use the cryptic:

CTRL+A

followed by

:quit

Now let us turn our attention to using the PI to control booting and other useful
functions. We want to map some PI GPIO pins to some of the ESP32 functions. The
choice of PI pins is arbitrary but in my solution, I used the following:

PI Pin ESP32 function

17 EN

27 IO0 (Used for boot mode selection)

GND GND (common ground)

This is illustrated in the following schematic:

Page 887

Now we can look to some software to achieve our goals.

See also:

• Github: esp-idf/…/linux-setup.rst

• YouTube: ESP32 – Development environment on PI

Makefiles
Books have been written on the language and use of Makefiles and our goal is not to
attempt to rewrite those books. Rather, here is a cheaters guide to beginning to
understand how to read them.

A general rule in a make file has the form:

target: prereqs …
receipe ...

Variables are defined in the form:

name=value

We can use the value of a variable with either $(name) or ${name}.

Another form of definition is:

name:=value

Here, the value is locked to its value at the time of definition and will not be recursively
expanded.

Some variables have well defined meanings:

Page 888

https://www.youtube.com/watch?v=jt0aaMQD1WI
https://github.com/espressif/esp-idf/blob/master/docs/linux-setup.rst

Variable Meaning

CC C compiler command

CXX C++ compiler

CFLAGS Flags for the C compiler

CPPFLAGS Flags for the C++ compiler

AR Archiver command

LD Linker command

OBJCOPY Object copy command

OBJDUMP Object dump command

We can use the value of a previously defined variable in other variable definitions. For
example:

XTENSA_TOOLS_ROOT ?= c:/Espressif/xtensa-lx106-elf/bin
CC := $(XTENSA_TOOLS_ROOT)/xtensa-lx106-elf-gcc

defines the C compiler as an absolute path based on the value of a previous variable.

Special expansions are:

• $@ - The name of the target

• $< - The first prereq

Comments are lines that start with an "#" character.

Wild cards are:

• * - All characters

• ? - One character

• […] - A set of characters

Make can be invoked recursively using

make -C <directoryName>

Imagine we wanted to build a list of source files by naming directories and the list of
source files then becomes all the ".c" files, in those directories? How can we achieve
that?

SRC_DIR = dir1 dir2
SRC := $(foreach sdir, $(SRC_DIR), $(wildcard $(sdir)/*.c))
OBJ := $(patsubst %.c, $(BUILD_BASE)/%.o, $(SRC))

The puzzle

Imagine a directory structure with

Page 889

a
a1.c
a2.c

b
b1.c
b2.c

goal is to compile these to

build
a

a1.o
a2.o

b
b1.o
b2.o

We know how to compile x.c → x.o

MODULES=a b
BUILD_BASE=build
BUILD_DIRS=$(addprefix $(BUILD_BASE)/,$(MODULES))
SRC=$(foreach dir, $(MODULES), $(wildcard $(dir)/*.c))
Replace all x.c with x.o
OBJS=$(patsubst %.c,%.o,$(SRC))

all:
echo $(OBJS)
echo $(wildcard $(OBJS)/*.c)
echo $(foreach dir, $(OBJS), $(wildcard $(dir)/*.c))
echo "SRC: " $(SRC)

test: checkdirs $(OBJS)
echo "Compiled " $(SRC)

.c.o:
echo "Compiling $(basename $<)"
$(CC) -c $< -o build/$(addsuffix .o, $(basename $<))

checkdirs: $(BUILD_DIRS)

$(BUILD_DIRS):
mkdir -p $@

clean:
rm -f $(BUILD_DIRS)

Makefiles also have interesting commands:

• $(shell <shell command>) – Run a shell command.

• $(info "text"), $(error "text"), $(warning "text") – Generate output from
make.

Page 890

See also:

• GNU make
• Makefile cheat sheet

The component.mk settings
Within the ESP-IDF environment, we have the component.mk build system. This uses
specific variables for its configuration.

For a component specific component.mk we have:

• COMPONENT_ADD_INCLUDEDIRS – Directory to be added to the include path of the
entire project.

• COMPONENT_PRIV_INCLUDEDIRS – Relative path to include directories that will only
be used for module compilation.

• COMPONENT_DEPENDS –

• COMPONENT_ADD_LDFLAGS –

• COMPONENT_EXTRA_INCLUDES –

• COMPONENT_SRCDIRS – A set of of one or more directories relative to the location of
the component which are expected to contain source files. The files contained in
these directories will be compiled and included in the resulting library.

• COMPONENT_OBJS – The set of object files that we need as a target.

• COMPONENT_EXTRA_CLEAN –

• COMPONENT_BUILDRECIPE –

• COMPONENT_CLEANRECIPE –

• COMPONENT_BUILD_DIR –

• COMPONENT_EMBED_FILES – This takes a list of binary files that are then added into
the application. The start of the data in flash that corresponds to the file data is
then exposed as a linker symbol. The same is also true for the last byte of the
file giving two symbols in total. For example, if we were to embed a file called
"mydata.dat", we might use:

COMPONENT_EMBED_FILES:= mydata.dat

This would produce two new symbols called _binary_mydata_dat_start and
_binary_mydata_dat_end. These could then be used in an application by using:

extern uint8_t mydata_dat_start[] asm("_binary_mydata_dat_start");
extern uint8_t mydata_dat_end[] asm("_binary_mydata_dat_end");

Page 891

http://www.schacherer.de/frank/technology/tools/make.html
https://www.gnu.org/software/make/manual/html_node/index.html

Note that a change to the file on the file systems does not appear to cause a re-build
and the old data is used.

• COMPONENT_EMBED_TXTFILES – This is identical to COMPONENT_EMBED_FILES except that
a NULL character is added at the end of the data to produce a NULL terminated string.
This might be used if the file contained character data.

• CFLAGS – Use this setting to change C compiler flags passed to the module. Take
care to realize that the environment already passes in flags so don't use absolute
settings. Instead use "CFLAGS+=<value>" to maintain the existing values while
adding new ones.

See also:

• Adding a custom ESP-IDF component

Forums
There are a couple of excellent places to ask questions, answer other folks questions
and read about questions and answers of the past.

• ESP32 Community Forum – The ESP32 community forum where all discussions of ESP32 are happening.

Reference documents
Espressif distributes PDF and Excel spreadsheets containing core information about the
ESP32. These can be downloaded freely from the web.

•
• ESP-WROOM-32 Datasheet – 2017-05-04

• ESP32 Technical Reference Manual

• ESP32 Datasheet

• ESP32_RTOS_SDK

• ESP32 Pin List – V2.0

• ESP32 RTOS SDK API Reference v1.1.0

• ESP-IDF Getting Started Guide

• ESP32 AT Instruction Set and Examples

• Mastering the FreeRTOS real time kernel

Github
There are a number of open source projects built on top of and around the ESP8266
that can be found on Github. Here is a list of links to some of these projects that are
very well worth having a look:

• espressif/esp-idf – The ESP-IDF … without this we would have little to talk about.

• espressif/esp-idf-template – The template application from which we build new
applications.

• espressif/arduino-esp32 – The Arduino environment for the ESP32.

Page 892

https://github.com/espressif/arduino-esp32
https://github.com/espressif/esp-idf-template
https://github.com/espressif/esp-idf
http://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
http://espressif.com/sites/default/files/documentation/esp32_at_instruction_set_and_examples_en.pdf
http://espressif.com/sites/default/files/documentation/esp-idf_getting_started_guide_en.pdf
http://esp32.com/download/file.php?id=79
https://espressif.com/sites/default/files/documentation/esp32_chip_pin_list_en_0.pdf
https://github.com/espressif/ESP31_RTOS_SDK/blob/master/documents/ESP32__RTOS_SDK_API%20Reference.pdf
http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
http://espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://espressif.com/sites/default/files/documentation/esp_wroom_32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp_wroom_32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp_wroom_32_datasheet_en.pdf
http://esp32.com/

Github quick cheats
When working with open source projects, there are times when we would like to perform
some tasks that involve multiple commands. Here we try and capture some of the more
interesting ones that are used in ESP32 projects from time to time.

git remote -v
git remote add upstream <URL>
git fetch upstream
git merge upstream/master

To create a new repository in Github from a directory of goodies, do the following.

1. Create a new github repository

2. echo "# <repository name>" >> README.md

3. git init

4. git add README.md

5. git commit -m "first commit"

6. git remote add origin https://github.com/<repository>.git

7. git push -u origin master

See also:

• Simple guide to forks in GitHub and Git

Installing Ubuntu on Virtual Box
I have a personal preference on the environment on which I perform development. I like
to program on a Linux environment. I use Microsoft Windows for all my desktop work
including document editing, browsing, email and much, much more … however when it
comes to programming, I like Linux. I do not want you to believe that in order to work
with the ESP32 that you must use Linux … that is simply not true. However, if you do
decide that you want to use Linux then you will need a Linux environment. Historically,
one would load an operating system on a machine and that would be the end of the
story. One machine equals one operating system. Thankfully, those days are past and
we can now adopt virtual machines. A virtual machine is a logical machine that runs as
a "guest" under a host operating system. In our story, we want a virtual Linux machine
running as a guest on a Windows or MacOS host. There are many fine vendors of

Page 893

http://www.dataschool.io/simple-guide-to-forks-in-github-and-git/

virtual machine technology. The one I have chosen to illustrate in this story is
VirtualBox from Oracle. This is an open source implementation that is free for us to use.

Let us now look at the steps necessary to get a Linux environment up and running for
ESP32 development. I will assume that you have downloaded and installed the latest
VirtualBox. Next we need an image of Linux to install. Personally, I use Ubuntu
Desktop which can be downloaded here. The end result of the download will be a file
about 1.5GBytes in size. At the time of writing, the download was called "ubuntu-
16.04.2-desktop-amd64.iso". The file is an image of a DVD that could be burned and
installed from physical media however we don't need to do that, we can install directly
from this image.

1. Launch VirtualBox

2. Click "New" to create a new Virtual Machine

3. Give it a name (eg. "ESP32Linux") and specify its type (Linux) and version
(Ubuntu 64Bit)

Click "Next" to continue.

Page 894

https://www.ubuntu.com/download
https://www.virtualbox.org/

4. Specify how much RAM you want to give the machine.

5. Create a virtual disk

Page 895

6. Start the Virtual Machine

Page 896

7. Select the Linux installation image

8. Install Linux

The installation of Ubuntu Linux will now start and take some time to complete. Ten
minutes seems to be about average.

9. Reboot and be in Linux.

Reboot the virtual machine and you will find that you have a Linux environment in which
to work.

Page 897

You can now customize the environment as you wish. Typically I remove the items I
don't want from the task bar including FireFox, Libre Office, Ubuntu Software and
Amazon.

When you plug in an ESP32 to the USB port of a machine running Virtual Box, you may
also have to tell Virtual Box to "own" the USB→UART … in the Devices→USB settings
you can see a list of USB devices to add:

Page 898

Its been my experience I have to re-add it here each time after powering on the Virtual
Box.

Single board computer comparisons
There are a number of single board computers on the market. Although the ESP8266 is
usually not considered one of these, a lot of folks are using it as such. Let us put up a
table and contrast the ESP32 against these computers:

Device CPU RAM Flash Wifi GPIO OS Cost

ESP8266 80MHz 80K 512K Y 9 FreeRTOS $4

ESP32 160MHz 512K Var Y ? FreeRTOS ??

Arduino 20MHz 2K 32K N ? N/A $2

Pi Zero 1GHz 512MB SD N ? Linux $5

Omega 400MHz 64MB 16MB Y 18 Linux $19

Omega 2

C.H.I.P. 1GHz 512MB 4GB Y 8+ Linux $9

Areas to Research
• Hardware timers … when do they get called?

Page 899

http://nextthing.co/
https://onion.io/omega
https://www.raspberrypi.org/products/pi-zero/
https://www.arduino.cc/
http://espressif.com/en/products/esp8266/

• If I define functions in a library called libcommon.a, what is added to the compiled
application when I link with this library? Is it everything in the library or just the
object files that are referenced?

• How much RAM is installed and available for use?

• Document the information contained here …
http://bbs.espressif.com/viewtopic.php?p=3066#p3066

• What is SSDP and how does it related to the SSDP libraries?

• Study Device Hive - http://devicehive.com/

• Document using Visual Micro debugger with Visual Studio.
http://www.visualmicro.com/

• Power management

• Research the semantics of a wifi_station_connect() when we are already
connected.

• Look at using libssh2 as a library in ESP32

• In power management – what is RTC?

• In power management – what is ULP?

• Study IoT.js

• Look at the GDB post here … interesting subcommand .
http://esp32.com/viewtopic.php?f=2&t=767

• How do we set a static IP address for the ESP32 when it is an access point?

• research micro sd APIs

• Study the following http://esp32.com/viewtopic.php?f=13&t=924#p3997

• Write about UDP broadcasting

• Add a section on MCP23017 port expander.

• Study iot.espressif.cn

• Study http://platformio.org/

• Video: Push button interrupts

• Video: Build from scratch – ESP-IDF, compilers etc etc

• Touchpad support

• Document the following http://esp-idf.readthedocs.io/en/latest/build-
system.html#embedding-binary-data

Page 900

http://esp-idf.readthedocs.io/en/latest/build-system.html#embedding-binary-data
http://esp-idf.readthedocs.io/en/latest/build-system.html#embedding-binary-data
http://platformio.org/
http://esp32.com/viewtopic.php?f=13&t=924#p3997
http://esp32.com/viewtopic.php?f=2&t=767
http://www.visualmicro.com/
http://devicehive.com/
http://bbs.espressif.com/viewtopic.php?p=3066#p3066

• Do a video on watchdog processing

• What is WiFi promiscuous mode?

• Document how to compile JerryScript

• Document how to compile Duktape

• Write an APDS-9330 C++ class

• Add task management methods to the CPP class

• Examine the mDNS responder from apple as a possible port …
https://opensource.apple.com/source/mDNSResponder/

• Write and test instructions for building nrf24 on ESP32

• Implement partition logging in C++

• Build samples using ADX345 IC.

• What is Apple iBeacon?

• Write up the AWS support.

• Retest the mDNS support now that we have extra patches.

• study grpc

• Test the libwebsockets https://libwebsockets.org/

• Implement an FTP server

• Implement a ZIP file system

• What is "esp_set_watchpoint" … see https://esp32.com/viewtopic.php?
f=2&t=2421

• Build an IR Transmitter app

• Create a video on being a BLE Client

• Build a DMA sample

Private Notes:

My Sparkfun board has devices on the I2C bus at:

• 0x20 – PCF8574

Page 901

https://esp32.com/viewtopic.php?f=2&t=2421
https://esp32.com/viewtopic.php?f=2&t=2421
https://libwebsockets.org/
https://opensource.apple.com/source/mDNSResponder/

• 0x3C – SSD1305 display

• 0x68 – MPU6050

Special pins are:

PIN 21 – Buzzer – high/on, low/off

PIN 25 – I2C SDA (Green)

PIN 26 – I2C CLK (Yellow)

NRF24

VCC

GND

CE – White - 25

SCK – Blue - 14

MISO – Yellow - 12

IRQ – NA

MOSI – Green - 13

CSN – White - 15

Page 902

	Introduction
	Important Documentation Notes – ESP8266 and ESP32
	Overview
	The ESP32
	The ESP32 specification
	Modules
	ESP-WROOM-32
	ESP32-DevKitC
	ESP-WROVER-KIT
	The SparkFun ESP32 thing

	Connecting to the ESP32
	Assembling circuits
	USB to UART converters
	Breadboards
	Power
	Multi-meter / Logic probe / Logic Analyzer
	Sundry components
	Physical construction
	Configuration for flashing the device

	Programming for ESP32
	Espressif IoT Development framework
	Application entry point
	How ESP-IDF works
	Error handling
	The build environment menu configuration
	Adding a custom ESP-IDF component
	Working with memory

	Compiling
	Compilation
	Flashing
	Loading a program
	Programming environments
	Compilation tools
	xntensa-esp32-elf-ar
	esptool.py
	xtensa-esp32-elf-gcc
	gen_appbin.py
	make
	xtensa-esp32-elf-nm
	xtensa-esp32-elf-objcopy
	xtensa-esp32-elf-objdump
	xxd

	Linking
	Debugging
	ESP-IDF logging
	Exception handling
	Core dump processing
	Using a debugger (GDB)
	OpenOCD and JTAG
	Using the ESP-WROVER-KIT for JTAG

	Dumping IP Addresses
	Debugging and testing TCP and UDP connections
	Android – Socket Protocol
	Android – UDP Sender/Receiver
	Windows – Hercules
	SocketTest
	Linux – netcat (nc)
	Curl
	Eclipse – TCP/MON
	httpbin.org
	RequestBin
	tcpdump

	ESP-IDF component debugging
	LWIP

	Run a Blinky

	WiFi subsystem
	WiFi Theory
	Initializing the WiFi environment
	Setting the operation mode
	Scanning for access points
	Handling WiFi events
	Station configuration
	Starting up the WiFi environment
	Connecting to an access point
	Being an access point
	Working with connected stations
	WiFi at boot time
	The DHCP client
	The DHCP server
	Current IP Address, netmask and gateway
	WiFi Protected Setup – WPS
	Designs for bootstrapping WiFi

	Working with TCP/IP
	The Lightweight IP Stack – lwip
	TCP
	TCP/IP Sockets
	Handling errors
	Configuration settings
	Using select()
	Differences from "standard" sockets

	UDP/IP Sockets
	TLS, SSL and security
	mbedTLS app structure
	mbedTLS Example
	OpenSSL

	Name Service
	Multicast Domain Name Systems
	mDNS API programming
	Installing Bonjour
	Avahi

	Working with SNTP
	Java Sockets

	Bluetooth
	Bluetooth specification
	Bluetooth UUIDs
	Bluetooth GAP
	GAP Advertizing data
	Advertisability – limited and general
	Filtering devices
	Performing a scan
	Performing advertising

	Bluetooth GATT
	GATT Characteristic
	Being a GATT client
	Being a GATT Server
	Notifications and indications
	GATT XML descriptions

	Service Discovery Protocol

	ESP32 and Bluetooth
	GATT Server – Read request
	Debugging ESP32 Bluetooth

	Bluetooth C Programming in Linux
	hci_get_route
	hci_open_dev
	hci_inquiry
	hci_read_remote_name
	str2ba
	ba2str

	Bluetooth Audio
	Bluetooth RFCOMM
	Bluetooth tools
	l2ping
	rfcomm
	bluetoothctl
	hciconfig
	hcidump
	hcitool
	gatttool

	Bluetooth examples
	The iTag peripheral
	Smart Watch / The TW64 Band

	Web Bluetooth
	The Physical Web

	Hardware interfacing
	GPIOs
	Pull up and pull down settings
	GPIO Interrupt handling
	Expanding the number of available GPIOs
	PCF8574
	MCP23017

	Interrupt Service Routines – ISRs
	Working with I2C
	Using the ESP-IDF I2C driver
	Using Arduino I2C libraries
	Common I2C devices

	Working with SPI – Serial Peripheral Interface
	Using the ESP-IDF SPI driver
	The Arduino Hardware Abstraction Layer SPI
	Common SPI devices

	Working with UART/serial
	Using the VFS component with serial

	I2S Bus
	I2S – Camera
	I2S – LCD
	I2S – DMA

	RMT – The Remote Peripheral
	Timers and time
	LEDC – Pulse Width Modulation – PWM
	Automated PWM fading

	Analog to digital conversion
	Sleep modes
	Security
	Working with flash memory
	Working with RAM memory
	RAM Utilization
	Using PSRAM

	EFUSE
	Button press detection
	GPS
	GPS decoding

	Temperature and pressure – BMP180
	Using the Arduino APIs

	NeoPixels
	NeoPixel theory
	NeoPixels and the ESP32

	LED 7-Segment displays
	MAX7219/MAX7221 – Serial interface, 8-digit, led display drivers

	The U8g2 library
	LCD display – Nokia 5110 – PCD8544
	OLED 128x32, 128x64 – SSD1306
	Ambient light level sensor – BH1750FVI
	Ambient light and proximity sensor
	Infrared receivers
	RFID MFRC522
	MFRC522 – Low levels
	Initialization
	AntennaOn

	Cameras
	Ivan's sample
	OV7670

	Accelerometer and Gyroscope – MPU-6050 (aka GY-521)
	The math of accelerometers
	Visualizing orientation

	Compass – HMC5883L (aka GY-271) (aka CJ-M49)
	Tilt compensation of the compass

	Real time clocks
	Servos
	The Mini/Micro SG90

	Audio
	PCM5102 – I2S DAC
	Graphic Equalizer

	External networking
	The nRF24
	Using the Arduino APIs
	Integrating the nRF24 with the ESP32

	Programming using Eclipse
	Installing the Eclipse Serial terminal
	Web development using Eclipse

	Programming using the Arduino IDE
	Mapping from the Arduino to the ESP32
	Implications of Arduino IDE support
	Installing the Arduino IDE with ESP32 support
	Using the Arduino libraries as an ESP-IDF component
	Tips for working in the Arduino environment
	Initialize global classes in setup()
	Invoking Espressif SDK API from a sketch
	Reasons to consider using Eclipse over Arduino IDE

	Programming with JavaScript
	Duktape
	Compiling code
	Building for ESP32
	Integrating Duktape in an ESP32 application
	The Duktape stack
	Working with object properties
	Calling C from a JavaScript program

	JerryScript
	Platform specific files
	JerryScript life-cycle
	Accessing the global environment
	The jerry_value_t
	Handling errors
	Interfacing JerryScript with C

	IoT.js

	Programming with Python
	Pycom Micropython

	Programming with Lua
	Lua-RTOS for ESP32

	Integration with Web Apps
	HTTP Protocol
	HTTP Headers
	Accept header
	Authorization header
	Connection header
	Content-Length header
	Content-Type header
	Host header
	User-Agent header

	Web Servers
	Mongoose networking library
	Setting up Mongoose on an ESP32
	Sending a request from Mongoose
	The Mongoose struct mg_connection
	Handling file uploads

	GoAhead Web Server
	JavaScript Webserver

	REST Services
	REST protocol
	ESP32 as a REST client
	Making a REST request using Curl
	Making a REST request using Mongoose

	ESP32 as a REST service provider

	WebSockets
	A WebSocket browser app
	Mongoose WebSocket
	Other Websocket implementations

	Tasker
	AutoRemote
	DuckDNS

	Networking protocols
	MQTT
	Mosquitto MQTT
	Installing on Windows

	Writing ESP32 MQTT clients
	Using Mongoose as an MQTT client
	Using Espruino as an MQTT client

	Writing non ESP32 MQTT clients
	Eclipse paho
	C – Mosquitto client library
	Node.js JavaScript – MQTT
	Browser JavaScript – MQTT

	CoAP – Constrained Application Protocol
	FTP
	TFTP
	Telnet
	DNS Protocol

	Mobile apps
	Blynk

	Cloud environments
	IBM Bluemix
	If This Then That – IFTTT

	Storage programming
	Partition table
	Non Volatile Storage
	Virtual File System
	VFS Implementations

	FATFS File System
	Spiffs File System
	Building SPIFFs for the ESP32
	mkspiffs tool

	The ESP File System – EspFs
	SD, MMC and SDIO interfacing
	ZIP files
	miniz
	kuba--/zip

	Charting data
	Kst

	Sample Snippets
	Sample applications
	Sample – Ultrasonic distance measurement
	Sample – WiFi Scanner
	Sample – A changeable mood light

	Using FreeRTOS
	The architecture of a task in FreeRTOS
	Stacks and FreeRTOS tasks

	Timers in FreeRTOS
	Blocking and synchronization within FreeRTOS
	Semaphores and Mutices within FreeRTOS
	Queues within FreeRTOS
	Ring buffer withing FreeRTOS
	Working with queue sets
	Running untested functions

	The Serial AT command processor
	Mongoose OS
	The Mongoose OS file system
	Setting up Mongoose OS WiFi
	Building a Mongoose OS App

	AWS IoT
	The ESP-IDF aws_iot component

	Developing solutions on Linux
	Building a Linux environment

	Hardware architecture
	The CPU and cores
	Intrinsic data types
	Native byte order, endian and network byte order
	Memory mapping and address spaces
	Reading and writing registers
	Pads and multiplexing
	Register based GPIO
	GPIO_OUT_REG
	GPIO_OUT_W1TS_REG
	GPIO_OUT_W1TC_REG
	GPIO_OUT1_REG
	GPIO_OUT1_W1TS_REG
	GPIO_OUT1_W1TC_REG
	GPIO_ENABLE_REG
	GPIO_ENABLE_W1TS_REG
	GPIO_ENABLE_W1TC_REG
	GPIO_ENABLE1_REG
	GPIO_ENABLE1_W1TS_REG
	GPIO_ENABLE1_W1TC_REG
	GPIO_STRAP_REG
	GPIO_IN_REG
	GPIO_IN1_REG
	GPIO_STATUS_REG
	GPIO_STATUS_W1TS_REG
	GPIO_STATUS_W1TC_REG
	GPIO_STATUS1_REG
	GPIO_STATUS1_W1TS_REG
	GPIO_STATUS1_W1TC_REG
	GPIO_PCPU_NMI_INT1_REG
	GPIO_PCPU_NMI_INT1_REG
	GPIO_PINn_REG
	GPIO_FUNCm_IN_SEL_CFG_REG
	GPIO_FUNCn_OUT_SEL_CFG_REG

	Strapping pins
	Boot mode source
	Debugging on U0TX0 at boot
	Timing of SDIO slave

	Boot-loader
	Power modes
	Bootloader
	Peripherals
	Remote Control Peripheral – RMT
	SPI
	PID Controller
	UART
	I2S
	I2S Clock
	Camera mode
	Registers
	I2S_CONF_REG
	I2S_CONF2_REG
	I2S_CLKM_CONF_REG
	I2S_CONF_CHAN_REG
	I2S_LC_CONF_REG
	I2S_FIFO_CONF_REG
	I2S_IN_LINK_REG
	I2S_RXEOF_NUM_REG
	I2S_CONF_CHAN_REG
	I2S_SAMPLE_RATE_CONF_REG
	I2S_INT_RAW_REG
	I2S_INT_ENA_REG
	I2S_INT_CLR_REG

	Electronics
	Transistors as switches
	Logic Level Shifting

	Projects
	JerryScript library for ESP32
	The "require" capability

	API Reference
	Configuration, status and operational retrieval
	Arduino Mapping
	bitRead
	bitWrite
	delay
	digitalWrite
	pinMode
	SPI.begin
	SPI.setBitOrder
	SPI.setClockDivider
	SPI.setDataMode
	SPI.transfer
	Wire.begin
	Wire.beginTransmission
	Wire.endTransmission
	Wire.read
	Wire.requestFrom
	Wire.write

	FreeRTOS API reference
	portENABLE_INTERRUPTS
	portDISABLE_INTERRUPTS
	xPortGetCoreID
	pvPortMalloc
	pvPortFree
	xEventGroupClearBits
	xEventGroupCreate
	xEventGroupSetBits
	xEventGroupWaitBits
	xQueueAddToSet
	xQueueCreate
	xQueueCreateSet
	xQueueCreateStatic
	vQueueDelete
	xQueueGenericReceive
	uxQueueMessagesWaiting
	xQueueOverwrite
	xQueuePeek
	xQueuePeekFromISR
	xQueueReceive
	xQueueReceiveFromISR
	xQueueRemoveFromSet
	xQueueReset
	xQueueSelectFromSet
	xQueueSelectFromSetFromISR
	xQueueSend
	xQueueSendFromISR
	xQueueSendToBack
	xQueueSendToBackFromISR
	xQueueSendToFront
	xQueueSendToFrontFromISR
	uxQueueSpacesAvailable
	xRingbufferAddToQueueSetRead
	xRingbufferAddToQueueSetWrite
	xRingbufferCreate
	vRingbufferDelete
	xRingbufferGetMaxItemSize
	xRingBufferPrintInfo
	xRingbufferReceive
	xRingbufferReceiveFromISR
	xRingbufferReceiveUpTo
	xRingbufferReceiveUpToFromISR
	xRingbufferRemoveFromQueueSetRead
	xRingbufferRemoveFromQueueSetWrite
	vRingbufferReturnItem
	vRingbufferReturnItemFromISR
	xRingbufferSend
	xRingbufferSendFromISR
	vSemaphoreCreateBinary
	xSemaphoreCreateCounting
	xSemaphoreCreateMutex
	vSemaphoreDelete
	vSemaphoreGive
	xSemaphoreGiveFromISR
	vSemaphoreTake
	xTaskCreate
	xTaskCreatePinnedToCore
	vTaskDelay
	vTaskDelayUntil
	vTaskDelete
	vTaskGetInfo
	xTaskGetCurrentTaskHandle
	pcTaskGetTaskName
	uxTaskGetNumberOfTasks
	eTaskGetState
	uxTaskGetSystemState
	xTaskGetTickCount
	xTaskGetTickCountFromISR
	vEventGroupDelete
	vTaskList
	uxTaskPriorityGet
	vTaskPrioritySet
	vTaskResume
	xTaskResumeAll
	vTaskResumeFromISR
	vTaskSuspend
	vTaskSuspendAll
	xTimerChangePeriod
	xTimerChangePeriodFromISR
	xTimerCreate
	xTimerCreateStatic
	xTimerDelete
	pcTimerGetName
	xTimerGetExpiryTime
	xTimerGetPeriod
	pvTimerGetTimerDaemonTaskHandle
	pvTimerGetTimerID
	xTimerIsTimerActive
	xTimerPendFunctionCall
	xTimerPendFunctionCallFromISR
	xTimerReset
	xTimerResetFromISR
	vTimerSetTimerID
	xTimerStart
	xTimerStartFromISR
	xTimerStop
	xTimerStopFromISR
	List Processing
	vListInitialise
	vListInitialiseItem
	vListInsert
	vListInsertEnd

	Sockets APIs
	accept
	bind
	close
	closesocket
	connect
	fcntl
	freeaddrinfo
	getaddrinfo
	gethostbyname
	gethostbyname_r
	getpeername
	getsockname
	getsockopt
	htonl
	htons
	inet_ntop
	inet_pton
	ioctlsocket
	listen
	read
	recv
	recvfrom
	select
	send
	sendmsg
	sendto
	setsockopt
	shutdown
	socket
	write
	writev
	Socket data structures
	Sockets – struct sockaddr
	Sockets – struct sockaddr_in

	Working with WiFi
	DNS
	dns_getserver
	dns_setserver

	System Functions
	esp_chip_info
	esp_cpu_in_ocd_debug_mode
	esp_efuse_read_mac
	esp_get_free_heap_size
	esp_get_idf_version
	esp_random
	esp_restart
	system_rtc_mem_write
	rtc_get_reset_reason
	software_reset
	software_reset_cpu
	system_deep_sleep
	system_get_time
	system_restore
	system_rtc_mem_read
	system_rtc_mem_write
	system_rtc_mem_read

	WiFi
	esp_event_loop_init
	esp_event_loop_set_cb
	esp_wifi_ap_get_sta_list
	esp_wifi_clear_fast_connect
	esp_wifi_connect
	esp_wifi_deauth_sta
	esp_wifi_deinit
	esp_wifi_disconnect
	esp_wifi_free_station_list
	esp_wifi_get_auto_connect
	esp_wifi_get_bandwidth
	esp_wifi_get_channel
	esp_wifi_get_config
	esp_wifi_get_country
	esp_wifi_get_mac
	esp_wifi_get_mode
	esp_wifi_get_promiscuous
	esp_wifi_get_protocol
	esp_wifi_get_ps
	esp_wifi_get_station_list
	esp_wifi_init
	esp_wifi_restore
	esp_wifi_reg_rxcb
	esp_wifi_scan_get_ap_records
	esp_wifi_scan_get_ap_num
	esp_wifi_scan_start
	esp_wifi_scan_stop
	esp_wifi_set_auto_connect
	esp_wifi_set_bandwidth
	esp_wifi_set_channel
	esp_wifi_set_config
	esp_wifi_set_country
	esp_wifi_set_mac
	esp_wifi_set_mode
	esp_wifi_set_promiscuous_rx_cb
	esp_wifi_set_promiscuous
	esp_wifi_set_protocol
	esp_wifi_set_ps
	esp_wifi_set_storage
	esp_wifi_set_vendor_ie
	esp_wifi_set_vendor_ie_cb
	esp_wifi_sta_get_ap_info
	esp_wifi_start
	esp_wifi_stop

	WiFi WPS
	wifi_wps_enable
	wifi_wps_disable
	wifi_wps_start
	wifi_set_wps_cb

	mbed TLS
	mbedtls_ctr_drbg_free
	mbedtls_ctr_drbg_init
	mbedtls_ctr_drbg_seed
	mbedtls_debug_set_threshold
	mbedtls_entropy_free
	mbedtls_entropy_init
	mbedtls_net_accept
	mbedtls_net_bind
	mbedtls_net_connect
	mbedtls_net_free
	mbedtls_net_init
	mbedtls_net_recv
	mbedtls_net_recv_timeout
	mbedtls_net_send
	mbedtls_net_set_block
	mbedtls_net_set_nonblock
	mbedtls_printf
	mbedtls_sha1
	mbedtls_ssl_close_notify
	mbedtls_ssl_conf_authmode
	mbedtls_ssl_conf_ca_chain
	mbedtls_ssl_conf_dbg
	mbedtls_ssl_conf_rng
	mbedtls_ssl_config_defaults
	mbedtls_ssl_config_free
	mbedtls_ssl_config_init
	mbedtls_ssl_free
	mbedtls_ssl_get_verify_result
	mbedtls_ssl_handshake
	mbedtls_ssl_init
	mbedtls_ssl_read
	mbedtls_ssl_session_reset
	mbedtls_ssl_set_bio
	mbedtls_ssl_set_hostname
	mbedtls_ssl_setup
	mbedtls_ssl_write
	mbedtls_strerror
	mbedtls_x509_crt_init
	mbedtls_x509_crt_parse
	mbedtls_x509_crt_veryify_info

	Bluetooth LE
	esp_bt_uuid_t
	esp_attr_value_t
	esp_gatt_id_t
	esp_gatt_srvc_id_t
	esp_gatt_status_t
	esp_ble_resolve_adv_data
	esp_ble_gap_config_adv_data
	esp_ble_gap_config_adv_data_raw
	esp_ble_gap_config_scan_rsp_data_raw
	esp_ble_gap_config_local_privacy
	esp_ble_gap_register_callback
	ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT
	ESP_GAP_BLE_ADV_START_COMPLETE_EVT
	ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT
	ESP_GAP_BLE_AUTH_CMPL_EVT
	ESP_GAP_BLE_KEY_EVT
	ESP_GAP_BLE_LOCAL_ER_EVT
	ESP_GAP_BLE_LOCAL_IR_EVT
	ESP_GAP_BLE_NC_REQ_EVT
	ESP_GAP_BLE_OOB_REQ_EVT
	ESP_GAP_BLE_PASSKEY_NOTIF_EVT
	ESP_GAP_BLE_PASSKEY_REQ_EVT
	ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT
	ESP_GAP_BLE_SCAN_RESULT_EVT
	ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT
	ESP_GAP_BLE_SCAN_START_COMPLETE_EVT
	ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT
	ESP_GAP_BLE_SEC_REQ_EVT

	esp_ble_gap_security_rsp
	esp_ble_gap_set_device_name
	esp_ble_set_encryption
	esp_ble_gap_set_scan_params
	esp_ble_gap_set_pkt_data_len
	esp_ble_gap_set_rand_addr
	esp_ble_gap_set_security_param
	esp_ble_gap_start_advertising
	esp_ble_gap_start_scanning
	esp_ble_gap_stop_advertising
	esp_ble_gap_stop_scanning
	esp_ble_gap_update_conn_params
	esp_ble_gattc_app_register
	esp_ble_gattc_app_unregister
	esp_ble_gattc_close
	esp_ble_gattc_config_mtu
	esp_ble_gattc_execute_write
	esp_ble_gattc_get_characteristic
	esp_ble_gattc_get_descriptor
	esp_ble_gattc_get_included_service
	esp_ble_gattc_open
	esp_ble_gattc_prepare_write
	esp_ble_gattc_read_char
	esp_ble_gattc_read_char_descr
	esp_ble_gattc_register_callback
	ESP_GATTC_ACL_EVT
	ESP_GATTC_ADV_DATA_EVT
	ESP_GATTC_ADV_VSC_EVT
	ESP_GATTC_BTH_SCAN_CFG_EVT
	ESP_GATTC_BTH_SCAN_DIS_EVT
	ESP_GATTC_BTH_SCAN_ENB_EVT
	ESP_GATTC_BTH_SCAN_PARAM_EVT
	ESP_GATTC_BTH_SCAN_RD_EVT
	ESP_GATTC_BTH_SCAN_THR_EVT
	ESP_GATTC_CANCEL_OPEN_EVT
	ESP_GATTC_CFG_MTU_EVT
	ESP_GATTC_CLOSE_EVT
	ESP_GATTC_CONGEST_EVT
	ESP_GATTC_CONNECT_EVT
	ESP_GATTC_DISCONNECT_EVT
	ESP_GATTC_ENC_CMPL_CB_EVT
	ESP_GATTC_EXEC_EVT
	ESP_GATTC_GET_CHAR_EVT
	ESP_GATTC_GET_DESCR_EVT
	ESP_GATTC_GET_INCL_SRVC_EVT
	ESP_GATTC_MULT_ADV_DATA_EVT
	ESP_GATTC_MULT_ADV_DIS_EVT
	ESP_GATTC_MULT_ADV_ENB_EVT
	ESP_GATTC_MULT_ADV_UPD_EVT
	ESP_GATTC_NOTIFY_EVT
	ESP_GATTC_OPEN_EVT
	ESP_GATTC_PREP_WRITE_EVT
	ESP_GATTC_READ_CHAR_EVT
	ESP_GATTC_READ_DESC_EVT
	ESP_GATTC_REG_EVT
	ESP_GATTC_REG_FOR_NOTIFY_EVT
	ESP_GATTC_SEARCH_CMPL_EVT
	ESP_GATTC_SEARCH_RES_EVT
	ESP_GATTC_SCAN_FLT_CFG_EVT
	ESP_GATTC_SCAN_FLT_PARAM_EVT
	ESP_GATTC_SCAN_FLT_STATUS_EVT
	ESP_GATTC_SRVC_CHG_EVT
	ESP_GATTC_UNREG_EVT
	ESP_GATTC_UNREG_FOR_NOTIFY_EVT
	ESP_GATTC_WRITE_CHAR_EVT

	esp_ble_gattc_register_for_notify
	esp_ble_gattc_unregister_for_notify
	esp_ble_gattc_search_service
	esp_ble_gattc_write_char
	esp_ble_gattc_write_char_descr
	esp_ble_gatts_add_char
	esp_ble_gatts_add_char_descr
	esp_ble_gatts_add_included_service
	esp_ble_gatts_app_register
	esp_ble_gatts_app_unregister
	esp_ble_gatts_close
	esp_ble_gatts_create_attribute_tab
	esp_ble_gatts_create_service
	esp_ble_gatts_delete_service
	esp_ble_gatts_get_attr_value
	esp_ble_gatts_open
	esp_ble_gatts_register_callback
	ESP_GATTS_ADD_CHAR_DESCR_EVT
	ESP_GATTS_ADD_CHAR_EVT
	ESP_GATTS_ADD_INCL_SRVC_EVT
	ESP_GATTS_CANCEL_OPEN_EVT
	ESP_GATTS_CLOSE_EVT
	ESP_GATTS_CONF_EVT
	ESP_GATTS_CONGEST_EVT
	ESP_GATTS_CONNECT_EVT
	ESP_GATTS_CREAT_ATTR_TAB_EVT
	ESP_GATTS_CREATE_EVT
	ESP_GATTS_DELETE_EVT
	ESP_GATTS_DISCONNECT_EVT
	ESP_GATTS_EXEC_WRITE_EVT
	ESP_GATTS_LISTEN_EVT
	ESP_GATTS_MTU_EVT
	ESP_GATTS_OPEN_EVT
	ESP_GATTS_READ_EVT
	ESP_GATTS_REG_EVT
	ESP_GATTS_RESPONSE_EVT
	ESP_GATTS_SET_ATTR_VAL_EVT
	ESP_GATTS_START_EVT
	ESP_GATTS_STOP_EVT
	ESP_GATTS_UNREG_EVT
	ESP_GATTS_WRITE_EVT

	esp_ble_gatts_send_indicate
	esp_ble_gatts_send_response
	esp_ble_gatts_set_attr_value
	esp_ble_gatts_start_service
	esp_ble_gatts_stop_service
	esp_ble_resolve_adv_data
	esp_bluedroid_deinit
	esp_bluedroid_disable
	esp_bluedroid_enable
	esp_bluedroid_init
	esp_bt_controller_init
	esp_bt_controller_enable
	esp_vhci_host_check_send_available
	esp_vhci_host_register_callback
	esp_vhci_host_send_packet

	Upgrade APIs
	system_upgrade_flag_check
	system_upgrade_flag_set
	system_upgrade_reboot
	system_upgrade_start
	system_upgrade_userbin_check

	Smart config APIs
	smartconfig_start
	smartconfig_stop

	SNTP API
	sntp_enabled
	sntp_getoperatingmode
	sntp_getserver
	sntp_getservername
	sntp_init
	sntp_servermode_dhcp
	sntp_setoperatingmode
	sntp_setserver
	sntp_setservername
	sntp_stop

	Generic TCP/UDP APIs
	ipaddr_addr
	IP4_ADDR
	IP2STR
	MAC2STR

	TCP Adapter APIs
	tcpip_adapter_ap_input
	tcpip_adapter_create_ip6_linklocal
	tcpip_adapter_dhcpc_get_status
	tcpip_adapter_dhcpc_option
	tcpip_adapter_dhcpc_start
	tcpip_adapter_dhcpc_stop
	tcpip_adapter_dhcps_get_status
	tcpip_adapter_dhcps_option
	tcpip_adapter_dhcps_start
	tcpip_adapter_dhcps_stop
	tcpip_adapter_down
	tcpip_adapter_eth_input
	tcpip_adapter_free_sta_list
	tcpip_adapter_get_esp_if
	tcpip_adapter_get_hostname
	tcpip_adapter_get_ip_info
	tcpip_adapter_get_ip6_linklocal
	tcpip_adapter_get_sta_list
	tcpip_adapter_get_wifi_if
	tcpip_adapter_init
	tcpip_adapter_set_hostname
	tcpip_adapter_set_ip_info
	tcpip_adapter_sta_input
	tcpip_adapter_start
	tcpip_adapter_stop
	tcpip_adapter_up

	mdns
	mdns_free
	mdns_init
	mdns_query
	mdns_query_end
	mdns_result_free
	mdns_result_get
	mdns_result_get_count
	mdns_service_add
	mdns_service_instance_set
	mdns_service_port_set
	mdns_service_remove
	mdns_service_remove_all
	mdns_service_txt_set
	mdns_set_hostname
	mdns_set_instance

	OTA
	esp_ota_begin
	esp_ota_end
	esp_ota_get_boot_partition
	esp_ota_set_boot_partition
	esp_ota_write

	GPIO Driver
	gpio_config
	gpio_get_level
	gpio_install_isr_service
	gpio_intr_enable
	gpio_intr_disable
	gpio_isr_handler_add
	gpio_isr_handler_remove
	gpio_isr_register
	gpio_set_direction
	gpio_set_intr_type
	gpio_set_level
	gpio_set_pull_mode
	gpio_uninstall_isr_service
	gpio_wakeup_enable
	gpio_wakeup_disable

	GPIO Low Level
	gpio_init
	gpio_input_get
	gpio_input_get_high
	gpio_intr_ack
	gpio_intr_ack_high
	gpio_intr_handler_register
	gpio_intr_pending
	gpio_intr_pending_high
	gpio_matrx_in
	gpio_matrix_out
	gpio_output_set
	gpio_output_set_high
	gpio_pad_hold
	gpio_pad_pulldown
	gpio_pad_pullup
	gpio_pad_select_gpio
	gpio_pad_set_drv
	gpio_pad_unhold
	gpio_pin_wakeup_disable
	gpio_pin_wakeup_enable

	Analog to Digital Conversion
	adc1_config_channel_atten
	adc1_config_width
	adc1_get_voltage
	hall_sensor_read

	UART driver API
	uart_clear_intr_status
	uart_disable_intr_mask
	uart_driver_delete
	uart_driver_install
	uart_disable_intr_mask
	uart_disable_pattern_det_intr
	uart_disable_rx_intr
	uart_disable_tx_intr
	uart_enable_intr_mask
	uart_enable_pattern_det_intr
	uart_enable_rx_intr
	uart_enable_tx_intr
	uart_flush
	uart_get_baudrate
	uart_get_buffered_data_len
	uart_get_hw_flow_ctrl
	uart_get_parity
	uart_get_stop_bits
	uart_get_word_length
	uart_intr_config
	uart_isr_free
	uart_isr_register
	uart_param_config
	uart_read_bytes
	uart_set_baudrate
	uart_set_dtr
	uart_set_hw_flow_ctrl
	uart_set_line_inverse
	uart_set_parity
	uart_set_pin
	uart_set_rts
	uart_set_stop_bits
	uart_set_word_length
	uart_tx_chars
	uart_wait_tx_done
	uart_write_bytes
	uart_write_bytes_with_break

	UART low level APIs
	uartAttach
	Uart_Init
	uart_div_modify
	uart_buff_switch
	uart_tx_switch
	uart_baudrate_detect
	uart_rx_one_char
	uart_tx_wait_idle
	uart_tx_flush
	uart_tx_one_char
	uart_tx_one_char2

	I2C APIs
	i2c_cmd_link_create
	i2c_cmd_link_delete
	i2c_driver_delete
	i2c_driver_install
	i2c_get_data_mode
	i2c_get_data_timing
	i2s_get_period
	i2c_get_start_timing
	i2c_get_stop_timing
	i2c_isr_free
	i2c_isr_register
	i2c_master_cmd_begin
	i2c_master_read
	i2c_master_read_byte
	i2c_master_start
	i2c_master_stop
	i2c_master_write
	i2c_master_write_byte
	i2c_param_config
	i2c_reset_rx_fifo
	i2c_reset_tx_fifo
	i2c_set_data_mode
	i2c_set_data_timing
	i2c_set_period
	i2c_set_pin
	i2c_set_start_timing
	i2c_set_stop_timing
	i2c_slave_read_buffer
	i2c_slave_write_buffer

	SPI APIs
	spi_bus_add_device
	spi_bus_free
	spi_bus_initialize
	spi_bus_remove_device
	spi_device_get_trans_result
	spi_device_queue_trans
	spi_device_transmit

	I2S APIs
	i2s_driver_install
	i2s_driver_uninstall
	i2s_pop_sample
	i2s_push_sample
	i2s_read_bytes
	i2s_set_pin
	i2s_set_sample_rates
	i2s_start
	i2s_stop
	i2s_write_bytes
	i2s_zero_dma_buffer

	RMT APIs
	rmt_clr_intr_enable_mask
	rmt_config
	rmt_driver_install
	rmt_driver_uninstall
	rmt_fill_tx_items
	rmt_get_clk_div
	rmt_get_mem_block_num
	rmt_get_mem_pd
	rmt_get_memory_owner
	rmt_get_ringbuf_handler
	rmt_get_rx_idle_thresh
	rmt_get_status
	rmt_get_source_clk
	rmt_get_tx_loop_mode
	rmt_isr_deregister
	rmt_isr_register
	rmt_memory_rw_rst
	rmt_rx_start
	rmt_rx_stop
	rmt_set_clk_div
	rmt_set_err_intr_en
	rmt_set_idle_level
	rmt_set_intr_enable_mask
	rmt_set_mem_block_num
	rmt_set_mem_pd
	rmt_set_memory_owner
	rmt_set_pin
	rmt_set_rx_filter
	rmt_set_rx_idle_thresh
	rmt_set_rx_intr_en
	rmt_set_tx_carrier
	rmt_set_tx_intr_en
	rmt_set_tx_loop_mode
	rmt_set_tx_thr_intr_en
	rmt_set_source_clk
	rmt_tx_start
	rmt_tx_stop
	rmt_wait_tx_done
	rmt_write_items

	LEDC/PWM APIs
	ledc_bind_channel_timer
	ledc_channel_config
	ledc_fade_func_install
	ledc_fade_start
	ledc_fade_func_uninstall
	ledc_get_duty
	ledc_get_freq
	ledc_set_duty
	ledc_isr_register
	ledc_set_fade
	ledc_set_fade_with_step
	ledc_set_fade_with_time
	ledc_set_freq
	ledc_stop
	ledc_timer_config
	ledc_timer_pause
	ledc_timer_resume
	ledc_timer_rst
	ledc_timer_set
	ledc_update_duty

	Pulse Counter
	pcnt_counter_clear
	pcnt_counter_pause
	pcnt_counter_resume
	pcnt_event_disable
	pcnt_event_enable
	pcnt_filter_enable
	pcnt_filter_disable
	pcnt_get_counter_value
	pcnt_get_event_value
	pcnt_get_filter_value
	pcnt_intr_enable
	pcnt_intr_disable
	pcnt_isr_register
	pcnt_set_event_value
	pcnt_set_filter_value
	pcnt_set_mode
	pcnt_set_pin
	pcnt_uint_config

	Logging
	esp_log_level_set
	esp_log_set_vprintf
	esp_log_write

	Non Volatile Storage
	nvs_close
	nvs_commit
	nvs_erase_all
	nvs_erase_key
	nvs_flash_init
	nvs_flash_init_custom
	nvs_get_blob
	nvs_get_str
	nvs_get_i8
	nvs_get_i16
	nvs_get_i32
	nvs_get_i64
	nvs_get_u8
	nvs_get_u16
	nvs_get_u32
	nvs_get_u64
	nvs_open
	nvs_set_blob
	nvs_set_str
	nvs_set_i8
	nvs_set_i16
	nvs_set_i32
	nvs_set_i64
	nvs_set_u8
	nvs_set_u16
	nvs_set_u32
	nvs_set_u64

	Partition API
	esp_partition_erase_range
	esp_partition_find
	esp_partition_find_first
	esp_partition_get
	esp_partition_iterator_release
	esp_partition_mmap
	esp_partition_next
	esp_partition_read
	esp_partition_write

	Virtual File System
	esp_vfs_dev_uart_register
	esp_vfs_register

	FatFs file system
	esp_vfs_fat_register
	esp_vfs_fat_sdmmc_mount
	esp_vfs_fat_sdmmc_unmount
	esp_vfs_fat_spiflash_mount
	esp_vfs_fat_spiflash_unmount
	esp_vfs_fat_unregister
	esp_vfs_fat_unregister_path
	f_mount
	ff_diskio_register

	SPI Flash
	spi_flash_erase_range
	spi_flash_erase_sector
	spi_flash_get_chip_size
	spi_flash_get_counters
	spi_flash_init
	spi_flash_mmap
	spi_flash_mmap_dump
	spi_flash_munmap
	spi_flash_read
	spi_flash_reset_counters
	spi_flash_write

	SDMMC
	sdmmc_card_init
	sdmmc_card_print_info
	sdmmc_host_deinit
	sdmmc_host_do_transaction
	sdmmc_host_init
	sdmmc_host_init_slot
	sdmmc_host_set_bus_width
	sdmmc_host_set_card_clk
	sdmmc_read_sectors
	sdmmc_write_sectors

	Hardware Timers
	timer_disable_intr
	timer_enable_intr
	timer_get_alarm_value
	timer_get_config
	timer_get_counter_time_sec
	timer_get_counter_value
	timer_group_intr_enable
	timer_group_intr_disable
	timer_isr_register
	timer_init
	timer_pause
	timer_set_counter_value
	timer_start
	timer_set_alarm
	timer_set_alarm_value
	timer_set_auto_reload
	timer_set_counter_mode
	timer_set_divider

	Watchdog processing
	esp_int_wdt_init
	esp_task_wdt_init
	esp_task_wdt_feed
	esp_task_wdt_delete

	AWS-IoT
	aws_iot_is_autoreconnect_enabled
	aws_iot_mqtt_attempt_reconnect
	aws_iot_mqtt_autoreconnect_set_status
	aws_iot_mqtt_connect
	aws_iot_mqtt_disconnect
	aws_iot_mqtt_get_client_state
	aws_iot_mqtt_get_network_disconnected_count
	aws_iot_mqtt_get_next_packet_id
	aws_iot_mqtt_init
	aws_iot_mqtt_is_client_connected
	aws_iot_mqtt_publish
	aws_iot_mqtt_reset_network_disconnected_count
	aws_iot_mqtt_resubscribe
	aws_iot_mqtt_set_connect_params
	aws_iot_mqtt_set_disconnect_handler
	aws_iot_mqtt_subscribe
	aws_iot_mqtt_unsubscribe
	aws_iot_mqtt_yield

	JSON processing
	HTTP/2 processing
	Parsing XML – expat
	Arduino – ESP32 HAL for UART
	uartAvailable
	uartBegin
	uartEnd
	uartFlush
	uartGetBaudRate
	uartGetDebug
	uartPeek
	uartRead
	uartSetBaudRate
	uartSetDebug
	uartWrite
	uartWriteBuf

	Arduino – ESP32 HAL for I2C
	i2cAttachSCL
	i2cAttachSDA
	i2cDetachSCL
	i2cDetachSDA
	i2cGetFrequency
	i2cInit
	i2cRead
	i2cSetFrequency
	i2cWrite

	Arduino – ESP32 HAL for SPI
	spiAttachMISO
	spiAttachMOSI
	spiAttachSCK
	spiAttachSS
	spiClockDivToFrequency
	spiDetachMISO
	spiDetachMOSI
	spiDetachSCK
	spiDetachSS
	spiDisableSSPins
	spiEnableSSPins
	spiFrequencyToClockDiv
	spiGetBitOrder
	spiGetClockDiv
	spiGetDataMode
	spiRead
	spiReadByte
	spiReadLong
	spiReadWord
	spiSetBitOrder
	spiSetClockDiv
	spiSetDataMode
	spiSSClear
	spiSSDisable
	spiSSEnable
	spiSSSet
	spiStartBus
	spiStopBus
	spiTransferBits
	spiTransferBytes
	spiWaitReady
	spiWrite
	spiWriteByte
	spiWriteLong
	spiWriteWord

	Newlib
	abort
	abs
	asctime
	atoi
	atol
	bzero
	calloc
	check_pos
	close
	creat
	ctime
	div
	environ
	fclose
	fflush
	fmemopen
	fprintf
	fread
	free
	fscanf
	fseek
	fstat
	fwrite
	gettimeofday
	gmtime
	isalnum
	isalpha
	isascii
	isblank
	isdigit
	islower
	isprint
	ispunct
	isspace
	isupper
	itoa
	labs
	ldiv
	localtime
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memrchr
	memset
	mkdir
	mktime
	open
	open_memstream
	printf
	qsort
	rand
	read
	readdir
	realloc
	scanf
	setenv
	setlocale
	settimeofday
	sprintf
	srand
	sscanf
	stat
	strcasecmp
	strcasestr
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strftime
	strlcat
	strlcpy
	strlen
	strncasecmp
	strncat
	strncmp
	strncpy
	strndup
	strnlen
	strrchr
	strsep
	strspn
	strstr
	strtod
	strtof
	strtol
	strtoul
	strupr
	time
	times
	toascii
	tolower
	toupper
	tzset
	ungetc
	unlink
	utoa
	vprintf
	vscanf
	write

	SPIFFs API
	SPIFFS_check
	SPIFFS_clearerr
	SPIFFS_close
	SPIFFS_closedir
	SPIFFS_creat
	SPIFFS_eof
	SPIFFS_errno
	SPIFFS_fflush
	SPIFFS_format
	SPIFFS_fremove
	SPIFFS_fstat
	SPIFFS_gc
	SPIFFS_gc_quick
	SPIFFS_info
	SPIFFS_lseek
	SPIFFS_mount
	SPIFFS_mounted
	SPIFFS_open
	SPIFFS_open_by_dirent
	SPIFFS_open_by_page
	SPIFFS_opendir
	SPIFFS_read
	SPIFFS_readdir
	SPIFFS_remove
	SPIFFS_rename
	SPIFFS_stat
	SPIFFS_tell
	SPIFFS_unmount
	SPIFFS_write

	Eclipse Paho – MQTT Embedded C
	MQTTClientInit
	MQTTConnect
	MQTTDisconnect
	MQTTPublish
	MQTTRun
	MQTTSubscribe
	MQTTUnsubscribe
	MQTTYield
	NetworkConnect

	Arduino ESP32 Libraries
	Arduino WiFi library
	WiFi.begin
	WiFi.beingSmartConfig
	WiFi.beginWPSConfig
	WiFi.BSSID
	WiFi.BSSIDstr
	WiFi.channel
	WiFi.config
	WiFi.disconnect
	WiFi.dnsIP
	WiFi.enableAP
	WiFi.enableSTA
	WiFi.encryptionType
	WiFi.gatewayIP
	WiFi.getAutoConnect
	WiFi.getMode
	WiFi.getNetworkInfo
	WiFi.hostByName
	WiFi.hostname
	WiFi.isConnected
	WiFi.isHidden
	WiFi.localIP
	WiFi.macAddress
	WiFi.mode
	Wifi.persistent
	WiFi.printDiag
	WiFi.psk
	WiFi.RSSI
	WiFi.scanComplete
	WiFi.scanDelete
	WiFi.scanNetworks
	WiFi.setAutoConnect
	WiFi.setAutoReconnect
	WiFi.smartConfigDone
	WiFi.softAP
	WiFi.softAPConfig
	WiFi.softAPdisconnect
	WiFi.softAPmacAddress
	WiFi.softAPIP
	WiFi.SSID
	WiFi.status
	WiFi.stopSmartConfig
	WiFi.subnetMask
	WiFi.waitForConnectResult

	Arduino WiFiClient
	WiFiClient
	WiFiClient.available
	WiFiClient.connect
	WiFiClient.connected
	WiFiClient.flush
	WiFiClient.getNoDelay
	WiFiClient.peek
	WiFiClient.read
	WiFiClient.remoteIP
	WiFiClient.remotePort
	WiFiClient.setLocalPortStart
	WiFiClient.setNoDelay
	WiFiClient.setOption
	WiFiClient.status
	WiFiClient.stop
	WiFiClient.stopAll
	WiFiClient.write

	Arduino WiFiServer
	WiFiServer
	WiFiServer.available
	WiFiServer.begin
	WiFiServer.getNoDelay
	WiFiServer.hasClient
	WiFiServer.setNoDelay
	WiFiServer.status
	WiFiServer.write

	Arduino IPAddress
	Arduino SPI
	SPI.begin
	SPI.beginTransaction
	SPI.end
	SPI.endTransaction
	SPI.setBitOrder
	SPI.setClockDivider
	SPI.setDataMode
	SPI.setFrequency
	SPI.setHwC
	SPI.transfer
	SPI.transfer16
	SPI.transfer32
	SPI.transferBytes
	SPI.transferBits
	SPI.write
	SPI.wirite16
	SPI.write32
	SPI.writeBytes
	SPI.writePattern

	Arduino I2C – Wire
	Wire.available
	Wire.begin
	Wire.beginTransmission
	Wire.endTransmission
	Wire.flush
	Wire.onReceive
	Wire.onReceiveService
	Wire.onRequest
	Wire.onRequestService
	Wire.peek
	Wire.pins
	Wire.read
	Wire.requestFrom
	Wire.setClock
	Wire.write

	Arduino Ticker library
	Ticker
	attach
	attach_ms
	detach
	once
	once_ms

	Arduino EEPROM library
	EEPROM.begin
	EEPROM.commit
	EEPROM.end
	EEPROM.get
	EEPROM.getDataPtr
	EEPROM.put
	EEPROM.read
	EEPROM.write

	Arduino SPIFFS
	SPIFFS.begin
	SPIFFS.open
	SPIFFS.openDir
	SPIFFS.remove
	SPIFFS.rename
	File.available
	File.close
	File.flush
	File.name
	File.peek
	File.position
	File.read
	File.seek
	File.size
	File.write
	Dir.fileName
	Dir.next
	Dir.open
	Dir.openDir
	Dir.remove
	Dir.rename

	Arduino ESP library
	ESP.eraseConfig
	ESP.getChipId
	ESP.getCpuFreqMHz
	ESP.getCycleCount
	ESP.getFlashChipMode
	ESP.getFlashChipSize
	ESP.getFlashChipSpeed
	ESP.getFreeHeap
	ESP.getOption
	ESP.getSdkVersion
	ESP.flashEraseSector
	ESP.flashRead
	ESP.flashWrite
	ESP.magicFlashChipSize
	ESP.magicFlashChipSpeed
	ESP.restart

	Arduino String library
	Constructor
	String.c_str
	String.reserve
	String.length
	String.concat
	String.equalsIgnoreCase
	String.startsWith
	String.endsWith
	String.charAt
	String.setCharAt
	String.getBytes
	String toCharArray
	String.indexOf
	String.lastIndexOf
	String.substring
	String.replace
	String.remove
	String.toLowerCase
	String.toUpperCase
	String.trim
	String.toInt
	String.toFloat

	Reference materials
	C++ Programming
	Eclipse configuration
	Simple class definition
	Mixing C and C++
	Including stdc++ in your app
	C++ Specialized Data types
	String
	List
	Map
	Queue
	Stack
	Vector

	Lambda functions
	Designated initializers not available in C++
	Ignoring warnings
	File I/O in C++
	The Factory pattern
	Logging pre-defined symbols

	The ESP-IDF C++ class libraries
	GPIO interactions
	Task management
	SPI Interaction
	Bluetooth BLE
	A BLE Server
	A BLE Client

	POSIX file system APIs
	Documenting your code – Doxygen
	Creating a build environment on the Raspberry Pi 3
	Makefiles
	The component.mk settings

	Forums
	Reference documents
	Github
	Github quick cheats

	Installing Ubuntu on Virtual Box
	Single board computer comparisons
	Areas to Research

